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Abstract

Eigenvalues of a graph are the eigenvalues of its adjacency matrix.
The multiset of eigenvalues is called the spectrum. The energy of a
graph is the sum of the absolute values of its eigenvalues. In this
paper, we devise an algorithm which generates the adjacency matrix
of WK - recursive structures WK (3, L) and WK(4, L) and use it in
the effective computation of spectrum and energy.

1 INTRODUCTION

Spectral methods in graph theory have received great attention since their
introduction and have proved to be a valuable tool for the theoretical and
applied graph theory (1, 2]. The study of graph eigenvalues realizes in-
creasingly rich connections with many other areas of mathematics. A par-
ticularly important development is the interaction between spectral graph
theory and differential geometry. Spectral graph theory has a long history.
In the early days, matrix theory and linear algebra were used to analyse
adjacency matrices of graphs. Algebraic methods are especially effective in

JCMCC 92 (2015), pp. 215-222



treating graphs which are regular and symmetric. Sometimes, certain eigen-
values have been referred to as the algebraic connectivity of a graph. There
is an interesting analogy between spectral Riemannian geometry and spec-
tral graph theory. The concepts and methods of spectral geometry bring
useful tools and crucial insights to the study of graph eigenvalues, which in
turn lead to new directions and results in spectral geometry. New spectral
techniques have emerged and they are powerful and well-suited for dealing
with general graphs. In a way, spectral graph theory has entered a new era.

A graph G with vertex set V = {v;, vs,...,v,} can be represented by its
adjacency matrix A = A(G) = [a;;] where a;; =1 if v; and v; are adjacent
and a;; = 0 otherwise. The spectrum of G is the set of numbers which
are eigenvalues of A(G), together with their multiplicities. If the distinct
eigenvalues of A(G) are Ay > Az > ... > A, and their multiplicities are
m(A1),m(A2)...m(),s) then we can write the spectrum as

There are many properties which can be explained using the spectrum
like energy, connectedness, vertex connectivity, chromatic number, and per-
fect matching etc. It is one of the most important algebraic invariants of
a graph. Let d(v) denote the degree of v € V(G) and let D = D(G) be
the diagonal matrix indexed by V(G) and with D,, = d(v). The matrix
L=D-Aand Q = D+ A are called the Laplacian and Signless Laplacian
matrices respectively.

The energy E(G) of a simple graph G is defined to be the sum of the
absolute values of the eigenvalues of G. In (3] the spectra and energy of
several classes of graphs containing a linear polyene fragment are obtained.
In [4] the energy of iterated line graphs of regular graphs and in [5] the
energy of some self-complementary graphs is discussed. The energy of reg-
ular graphs is discussed in [6]. Some works pertaining to the computation
of energy can be seen in (7, 8, 9, 10, 11].

The aim of this section is to draw the attention of the mathematical
community to rapidly growing applications of the theory of graph spec-
tra and energy of graphs. There are applications of graph eigenvalues in
Computer Science in various investigations. There are also applications in
several other fields like biology, geography, economics and social sciences.

Motivation for founding the theory of graph spectra has come from ap-
plications in chemistry and physics. The first mathematical paper on graph
spectra was motivated by the membrane vibration problem [12]. In quan-
tum chemistry, the skeleton of a non-saturated hydrocarbon is represented
by a graph. The energy levels of the electrons in such a molecule are the
eigenvalues of the graph. The stability of molecules is closely related to
the spectrum of its graph [13]. The spectra of graphs, or the spectra of
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certain matrices which are closely related to adjacency matrices appear in
a number of problems in statistical physics (see, for example, [14, 15, 16]).
Graph spectra appear in internet technologies, pattern recognition, com-
puter vision, and in many other areas.

The eigenvalues of a graph characterize the topological structure of the
graph. The technique is usually efficient in counting structures, e.g., acyclic
digraphs, spanning trees, Hamiltonian cycles, independent sets, Eulerian
orientations, cycle covers, k-colorings etc. [17]. If a graph possesses certain
properties, using its eigen-properties it is possible to derive (recurrence)
formulas for counting the number of structures.

In this paper, we devise an algorithm which generates the adjacency
matrix of the recursive structures WK (3, L) and WK (4, L). This algorithm
works efficiently in software platforms like Maple, Matlab etc. Once the
algorithm generates the adjacency matrix, then there are inbuilt functions
in the software to calculate the eigenvalues and hence the energy.

2 WK-RECURSIVE STRUCTURES

The architecture of the W K-recursive networks denoted by WK (K, L) (18]
depends on the equality between the amplitude W and the degree K of
virtual nodes and L the expansion level. The first level virtual node is
constructed by connecting K real nodes of degree K to each other in a
"fully connected configuration”, and leaving K links free. Therefore, a
virtual node is virtually similar to real node of degree K. By the same
manner, K first level virtual nodes may be used to construct a second level
virtual node, also of degree K, and so on, until level L, which may be
constructed from K,(L — 1)* level virtual nodes. Amplitude W of the L*
level virtual node is the number of its (L — 1)** level virtual nodes, having
of course W = K. The W K-recursive topologies are identified essentially
by the following analytic relation L = loggN where N is the number of
real nodes, K is the node degree and L is the expansion level. In the WK-
recursive graph WK (K, L), there are K corner real nodes of degree (K —1).
Therefore, the edge connectivity, which is the smallest number of links that
can be deleted in order to disconnect the graph, is equal to (K — 1). The
node connectivity of the graph is the smallest number of nodes that can be
deleted in order to disconnect the graph and is also equal to (K — 1). The
diameter of the W K-recursive topologies is D = 2% — 1. In general, the
diameter depends only on the expansion level whatever the node degree is.
WK (K, L) is a recursive structure. It consists of K copies of WK (K,L—1)
or K? copies of WK (K, L —2) and so on. Thus, WK (K, L) contains K Z~!
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copies of WK (K,1).

2.1 Labelling Algorithm

In order to generate the adjacency matrix of the recursive network WK (3, L)
we propose a specific labelling method. We call this labelling as WK la-
belling.

Algorithm WK Labelling

Input: WK (K L) with K attached copies of WK (K, L — 1)) denoted by
wi-twi-t Wi

Step 1: Label WK(K,1) in the anti-clockwise sense.

Step 2: At stage t, Wi~! ~ WK(K,t —1). The unlabelled vertices of
Wil 2<i < K induce a graph isomorphic to WK(K,t — 1)
Let y = |V(WK(K,t—1))|. Label an unlabelled vertex of W}~!
1 <i< K as j+ (i — 1)y if the corresponding vertex in Wt lis
labelled j.

Step 3: Stop when step 2 cannot be implemented further.
Output: WK Labelling of WK(K, L)

Proof of correctness of WK3 labelling: We observe that the ahove
algorithm is proper since each vertex in W K (K, L) receives a unique label,
as at every stage of the algorithm only the unlabelled vertices are labelled.

We now propose an algorithm to generate the adjacency matrix of
WK (3,L). The adjacency matrix of WK (3, L) is a 3- x 3* matrix. Finding
the adjacency matrix becomes difficult as L increases. In this algorithm,
we provide a technique to compute the adjacency matrix for any L using
the adjacency matrix of WK(3,1) which is the smallest substructure of
WK(3,L). The algorithm is as follows:

2.2 Algorithm Adjacency WK3

Input: Adjacency matrix A, of WK(3,1), dimension L, k = 1.

Step 1: Apis a 3L x 3% matrix all of whose diagonal entries are A; and
zeros elsewhere.
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(a) ®

Figure 1: Labelling of (a)WK(4,1) (b YWK(4,2) using WK labelling al-
gorithm

Step 2: k=k+1,
k
y=yk)=1+ 332
=2

Step 3: At stage k of the algorithm, for m =0,1,2..3L~% — 1
Put Ax(y +m3¥%,2y + m3%) =1
Ak(2y + m3%,y + m3¥) =1
Ar(dy — 2+ m3* 5y — 2 + m3*) =1
Ak(5y —2+m3F 4y — 2+ m3*) =1
Ap(2y— 1+ m3k 4y —1+m3¥) =1
A4y —14+m3* 2y —1 4+ m3¥) =1
Step 4: If k < L, Go to Step 2.
Step 5: Stop

Proof of Correctness of Algorithm Adjacencyl WK3

In Step 1 of the algorithm, 3~ edges of WK(3, L) are accounted for.
In the first iteration of Step 3 (i.e. when k = 2), 3 x (3£72) edges are
accommodated and in its i** iteration 3 x (3L~%). Step 3 is repeated (L —1)
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times. Therefore Step 3 accommodates a total of (3¢ — 3)/2 edges. Hence
the total number of edges accounted by this algorithm is (3L+! — 3)/2 ,
which is the total number of edges of WK (3, L).

We next propose an algorithm to generate the adjacency matrix of
WK(4,L).

2.3 Algorithm Adjacency WK4

The adjacency matrix of WK (4, L) is a 4% x 4 matrix. In this algorithm,
the adjacency matrix of WK (4, L) for any L is obtained using the known
adjacency K of WK(4,1). The algorithm is as follows:

Input: Adjacency matrix A; of WK (4,1),dimension L, k =1

Step 1: A; is a 4F x 4L matrix all of whose diagonal entries are 4; and
zeros elsewhere.

Step 2: k=k+1
k
y=y(k) =1+ 142
=2

Step 3: At stage k of the algorithm, for m = 0,1,2..4L-% — 1
Put Ax(y +md*, 3y — 14+ mdF) =1
Ar(3y — 1+ md* y+ ma*) =1
A2y — 14+ mdk 6y -3 +ma*) =1
Ac(6y — 34+ md* 2y — 1 + mdF) =1
A(By — 24+ mdaF 9y -5+ mak) =1
A9y — 54 mda* 3y —2+maF) =1
Ar(10y — 6 + m4* 6y —4 4+ mdk) =1
Ax(6y — 4 +md* 10y — 6 + mda*) = 1
A9y — 6 +mdaF 11y — 74+ mda*) =1
Ar(1ly — 7+ ma* 9y —6 + mda*) =1
A5y —34+md*, Ty -4 +mdk) =1
Ax(Ty — 44+ md* 5y -3 + md*) =1

Step 4: If k < L, Go to Step 2.

Step 5: Stop
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Proof of Correctness of Algorithm Adjacency W K4

In Step 1 of the algorithm, 4% x 6 edges of WK (4, L) are accounted
for. In the first iteration of Step 3 (i.e. when k = 2), 6 x (4L~2) edges are
accommodated and its i*® iteration 6 x (4£~%) edges. Step 3 is repeated
(L —1) times. Therefore Step 3 accommodates a total of 2(4L~! — 1) edges.
Hence the total number of edges accounted by this algorithm is 2(4% — 1),
which is the total number of edges of WK (4, L).

3 CONCLUSION

The algorithm proposed in this paper can be simulated using any of the
mathematical packages like MATLAB, Maple or Mathematica. The adja-
cency matrix thus obtained from the algorithm is directly used to obtain the
spectrum. From the adjacency matrix generated , Laplacian and Signless
Laplacian matrices are also obtained and hence their respective energies.
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