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Abstract

A proper vertex coloring (no two adjacent vertices have the same
color) of a graph G is said to be acyclic if the induced subgraph of any
two color classes is acyclic. The minimum number of colors required
for acyclic coloring of a graph G is said to be its acyclic chromatic
number and is denoted by a(G). In this paper, we find the exact
value of the acyclic chromatic number of the central and total graph
of path P, and Fan graph F,. ..

1. Introduction

All graphs considered here are simple finite and undirected. Throughout
this paper, we use the term coloring for vertex coloring of graphs. A proper
coloring of a graph G is a coloring of the vertices of G such that no two
neighbors in G are assigned the same color.

Definition 1. A subgraph H of a graph G is an induced subgraph if it has all
the edges that appear in G over the same verter set. The subgraph induced
by the vertez set vy,vs,v3,..., U is denoted by < v1,v2,V3,...,Uk >.

Definition 2. A vertez coloring of a graph is said to be acyclic [9] if the
induced subgraph of any two color classes is acyclic. In other words, the
subgraph induced by any two color classes is a forest.
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Definition 3. The minimum number of colors needed to acyclically color
the vertices of a graph G is called its acyclic chromatic number and is
denoted by a(G).

The concept of acyclic coloring was introduced by B.Grunbaum in 1973[9].

He has proved that any planar graph is acyclically 9-colorable and he has
conjectured that any planar graph can be acyclically vertex colored with 5
colors. This conjecture was later proved by Borodin[5]. Determining the
acyclic chromatic number is a hard problem from both theoretical and an
algorithmic point of view. More specifically, A.V. Kostochka has proved
that it is an N P- complete problem to decide for a given graph G, whether
a(G) < 3[11]. Determining a(G) for the class of bipartite graphs is still
an open problem. Alon et al. have given a greedy algorithm to color any
graph of maximum degree A acyclically, using A% +1 colors [2]. Albertson
et al. have improved this result and shown that ¢(G) < A(A — 1) + 2
[1]. Some of the research works have been carried out by focusing on the
family of graphs with small maximum degree. The introductory work of
Grunbaum started with a bound of 4 colors on acyclic vertex coloring of
a graph with maximum degree 3. Burnstein has shown that any graph
with maximum degree 4 can be acyclically vertex colored with 5 colors [6].
Fertin and Raspaud have given o(nA?) algorithm to color any graph with
A(A —1)/2 colors[7]. They have also proved that 9 colors are sufficient to
color a graph with maximum degree 4. Skulrattankulchai has given a linear
time algorithm to acyclically color the vertices of a subcubic graph with 4
colors [17]. Recently, V.Satish and K.Yadav have proved that graphs with
maximum degree 4,5 and 6 can be acyclically vertex colored with 5,8 and
12 colors respectively by providing a linear time algorithm that color these
graphs [15, 16, 18]. They have also shown that a graph of maximum degree
A can be acyclically vertex colored with (3A2 + 4A + 8)/8 colors [14].

Definition 4. A cycle in a graph G is said to be a bicolored (j, k)-cycle if
all its vertices are properly colored with two colors j and k. A graph G is
said to be a (j,k)-cycle free graph or Cjk-free graph if it does not contain
any bicolored (7, k)-cycle.

Definition 5. Let G be a graph with vertez set V(G) and edge set E(G).
The central graph [13] of G, denoted by C(G), is obtained from G by sub-
dividing each edge exactly once and joining all the non adjacent vertices of

G.

Definition 6. The total graph [4] of a graph, denoted by T(G), is a graph
such that the vertex set of T corresponds to the vertices and edges of G and
two vertices are adjacent in T if and only if their corresponding elements
are either adjacent or incident in G.
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Definition 7. A Fan graph Fr,n [8] is defined as the graph sum of null
graph on m vertices with path on n vertices. Symbolically, Frnn = Km+ Py.

This work is an extended version of [3]. The purpose of this paper is to
find the exact value of the acyclic chromatic number of central and total
graph of path P, and Fan graph Fy, n.

2. Acyclic Coloring of C(F,)

Let P, be a path on n vertices v1,v2,...,vn. Let zx(1 < k < n—-1)
be the newly introduced vertex on the edge joining vx and wvi41. In this
section, we first present a coloring algorithm of C(P,) and then we prove
the coloring is acyclic in the immediate following theorem.

2.1. Structural Properties of C(F,)

1. The vertex v; is adjacent with vs,vy,...v, whereas the vertex vy, is
adjacent with vy,vs,...,vp_o.

2. For each k = 2 ton—1, vk is adjacent to v;, forall j = 1,2, ..., (k—2),
(k+2),...,n.

2.2. Coloring Algorithm
Input : C(P,)

V « {v1,v2,...,Un,Z1,%2,...,Tn-1}
V1,V2 & 1; v3,uq + 2;
fork=5ton

v — k—2;
end for
fork=1ton—-1

{

T e—n-—1 ;

}
end for

end procedure
Output: vertex colored C(P,)

Theorem 8. For any path on n vertices, the acyclic chromatic number
is
a[C(P,)]=n-1, forall n>4

Proof. Color the vertices of C(P,) as given in the algorithm 2.2. The
color class of 1 is {v,v2} and that of 2 is {v3,vs}. The color class of j is
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{vj32,5 < j < n—2} whereas the color class of n —11is {z4;1 < k < n—1}.
Case(i):Consider the colors 1 and 2. The induced subgraph of these color
classes contain a bicolored (1 — 2)-path, vav4vivs. Since ve and vz are non-
adjacent, the induced subgraph is a Co-free graph.

Case(ii): Consider the colors 1 and j, 3 < j < n — 2. The induced sub-
graph of these color classes contains a bicolored path vpv;42v;. As v; and
vy are non-adjacent, the induced subgraph is C);-free graph.

Case(iii): Consider the colors 2 and &, 3 < k < n — 2. By the same argu-
ment as in case (ii), the induced subgraph is a Cox-free graph.

Case(iv): Consider ¢ and n — 1, = 1,2. The induced subgraph of
color classes of i and n — 1 contains only the bicolored [i — (n — 1)] path,
ViTiVi+1Ti+1, but not bicolored cycle. Hence, the induced subgraph is a
Ci(n—1)-free graph.

Case(v): Consider j and n — 1, 3 £ 5 < n — 2. The induced sub-
graph of these color classes contains only the bicolored [j — (n — 1)]-path
Tj+1Vj42%542. S0, the induced subgraph is a Cj(n_1)-free graph. Thus,
the induced subgraph of any two color classes is acyclic and therefore,
the coloring given in the algorithm 2.2 is an acyclic coloring. As mini-
mum (n — 1) colors are required for acyclic coloring, we have a[C(P,)] =
n—1, forall n>4.

Fig.1.a[C(Py)] = 6

3. Acyclic Coloring of C[F,, ]

In Fan graph F, ,, let v1,vs,...,v;m be the vertices of null graph on
m vertices and w,,ws,...,w, be the vertices of path P,. Let us denote
the newly added vertex on the edge joining v; and w; by fi; (1 < i < m,
1 € j € n). Let us denote the newly added vertex on the edge joining wi
and wrp by gr 1<k <n-1).
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3.1. Structural properties of C[Fp, »]

1. < vk, k=1 tom > form a clique of order m + 1

2. For each 1 £ i <m,1 < j < n, the neighbors of fi; are {vi,w;}.

3. For each k = 1 to n — 1, the neighbors of g, are {vk,vk+1}-

4. For each k = 2 to n — 1, the neighbors of vx are {gk—1,9%,v1,v2,...,
Vk—2, Uk+2; - - - » Un } and the neighbors of vy are {g1,vs, ..., v} whereas the
neighbors of v, are {gn—1,v1,%2,...,Vn—-2}.

5. <wj,zj;i=1tonand j=1ton—1>isa C(FP,).

3.2 Coloring Algorithm

Consider the acyclic coloring of C[Fm, ] as follows. Assign i to v;, 1 <
i < m. Assign 1 to w;,ws and 2 to w3, wy and j to wj42,3 < j<n-—2,
(n—1)togi,1 <i<n-—1. Now, assign colors to fi;,1 < i < m and
1 < j < n as follows.

Case (i): Suppose v; and w; (adjacent vertices of f;;) have different colors|
(i-e) 7 and j — 2 are distinct]. Then, assign k to f;; where k # i, j — 2 and
1 <k < maz(m,n—1).

Case (ii):Suppose v; and w; have the same color. We have the following
cases. (a) Both v; and w; have the same color 1.(w; and v; as well as v
and vg). So, consider f1; and fio. Assign 2 to fi11, but not to fi2. If we
assign 2 to both fi1 and fig, then v friwiwaws fiovav; will be a bicolored
(1 — 2) cycle in C[F;, ). Hence, assign n — 1 to fi2.

(b). Consider f23 and fas. Assign 3 to fa3 and n — 1 to fa4. (c). Both v;
and w; have the same color, say k, other than 1 and 2. Then, assign r to
fi; only if k is not assigned to f;;’ whose adjacent vertices have color r.(i-e)
suppose fi; is the newly added vertex on edge joining v; and w; which have
same color k and f;;’ is the newly added vertex on the edge joining v;’
and w;’ with same color 7 . Then, assign r to f;; only if k is not assigned
to fi;’. Otherwise, v;fijw;w} fi;viv; will become a bicolored (k —r) cycle
(Refer fig.2).

Theorem 9. For any Fan graph F,, », the acyclic chromatic number is

a{C(Fm n)] = m, if m>2nand m>3
=n-1, if m<n and n>5.

Proof. Color the vertices of C(Fy, ) as given in the algorithm 3.2.
Case (i): Consider the subgraph induced by the vertices {v1,v2,...,Um}.
As it is a clique, it contains no bicolored cycle.
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Fig.2. Existance of bicolored cycle

Case (ii):Consider the subgraph induced by {w;,w2,...,wn,91,92,...,9n-1}-

It is a C(P,). As the vertices are colored as given in the algorithm 2.2, it
does not contain any bicolored cycle by theorem 2.3.

Case (iii): Any bicolored cycle in C(Fn ), if such a cycle exists, should
contain the path (of length 2) connecting the vertices v; and w; with the
same color. But, there exists no such a bicolored cycle in the above color-
ing. Hence, the coloring given in the algorithm 3.2 is acyclic. To determine
the acyclic chromatic number of C(Fy, ), we have the following cases.
Case (a): m > nand n > 24. As < v;,vy,...,Un > form a clique of or-
der m, minimum m colors are required for coloring this induced subgraph
and (n — 1) colors are required for C(P,). Since m > (n — 1), we have
a{C(Fm,n)) = m,n > 2. Case (b): m < n and n > 5. By the same argu-
ment as in case (a), we need minimum (n — 1) colors for acyclic coloring of
C(Fm,n) and hence, a[C(Frp )] =n—1,n2>5.

4. Acyclic Coloring of T'(P,)

4.1. Structural Properties of T'(P,)
1. For each k, k = 2 to n — 1, the neighbors of v are {zx_1, Tk, Vk—1,Vk+1}

whereas the neighbors of v; and v, are {z1,v2} and {Zn—1,vn—1} respec-
tively.
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2. For each k, k = 2 to n — 2, the neighbors of = are {Zk—1,Tk+1, Vk, Vk+1}
whereas the neighbors of z; and z,_1 are {v1,v2,z2} and {Vn_1,Vn, Tn-2}
respectively.

4.2. Coloring Algorithm

Input : T(P)
V « {v1,v2,v3,...,Un,Z1,%2,...,Tn—1}
for k=1to |[(n+2)/3]

U3k-2 < 1 ;T3k—2 «— 2;

end for
for k = 1to |(n + 1)/3]
{

Vzk—1 ¢ 3; T3k—1 < 1;
}
end for
for k=1 to [n/3]

’ng(—2;$3k(—3;

end for
end procedure.
Outputo: vertex colored T'(P,)

Theorem 10. The acyclic chromatic number of T(P,) is
a[T(P,)] =3, n>2.

Proof. Color the vertices of T'(Pn) as given in the algorithm 4.2. The color
class of 1is {vak—2,Zar—1; k=1to |[(n+2)/3] and ¥’ =1 to |(n+1)/3]}
and the color class of 2 is {vsk,zax—2; k = 1 to [n/3] and k' =1 to
(n +2)/3]}. The color class of 3 is {vak—1,Z3k; k = 1to [(n + 1)/3] and
k'=1to |n/3]}.

Case (i): The induced subgraph of the color classes of 1 and 2 is a bicol-
ored path,

(a). viz1z2v3 ... Th— v, when n = 0(mod3)

(b). viz1Z2V3 ... Un_ v, When n = 1(mod3)

(c). viz1z2v3...Vp—1Tn—1 when n = 2(mod3)

In all the cases, the induced subgraph of 1 and 2 is a Cj2-free graph.
Case (ii): The induced subgraph of the color classes of colors 1 and 3 is a
bicolored path
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(a). v1vex223 ... Un_1T,—1 When n = 0(mod3)

(b). vivazazs...ZTp_1v, when n = 1(mod3)

(c). vivazazs ... vn_1v, when n = 2(mod3)

In all the cases, the induced subgraph of 1 and 3 is a C)3-free graph.
Case (iii): The induced subgraph of the color classes of colors 2 and 3 is
a bicolored path

(a). T1v2v3Z3. .. Vn—1v, When n = 0(mod3)

(b). z vv3z3...Un_1ZTn—1 When n = 1(mod3)

(c).x1vovaz3 . . . Zn—1vn when n = 2(mod3)

In all the cases, the induced subgraph of 2 and 3 is a Ca3-free graph. Thus,
the induced subgraph of any two color classes is acyclic and therefore the
coloring given in the algorithm 4.2 is an acyclic coloring of T(P,). As T(FP,)
has paths vjv2...v, and z175...2,-1, minimum 3 colors are required for
the acyclic coloring. Therefore, we have a[T'(P,)] =3, n>2.

5. Conclusion
In this paper, we obtain the following results.

1. a[C(R)]=n—-1,n>4.

2. a[C(Fmpn)l =m,if m>nand m > 3.
=n—-1,ifm<nandn>5.

3. a[T(P,)]=3,n>2.
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