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Abstract

Let G(V,E) be a graph. A set W C V of vertices resolves a
graph G if every vertex of G is uniquely determined by its vector of
distances to the vertices in W. The metric dimension of G is the
minimum cardinality of a resolving set. By imposing conditions on
W we get conditional resolving sets.

1 Introduction

A query at a vertex v discovers or verifies all edges and non-edges whose end-
points have different distance from v. In the network verification problem
(1], the graph is known in advance and the goal is to compute a minimum
number of queries that verify all edges and non-edges. This problem has
previously been studied as the problem of placing landmarks in graphs or
determining the metric dimension of a graph [2]. Thus, a graph-theoretic
interpretation of this problem is to provide representations for the vertices
of a graph in such a way that distinct vertices have distinct representations.
This is the subject of the papers [3, 4, 5].
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For an ordered set W = {w),ws...wx} of vertices and a vertex v in a
connected graph G, the code or representation of v with respect to W is
the k-vector

Cw (v) = (d(v, wy), d(v, w2)...d(v, wr))

where d(z, y) is the distance between the vertices z and y. The set W is a
resolving set for G if distinct vertices of G have distinct codes with respect
to W. Equivalently, for each pair of distinct vertices u,v € V(G) there is
a vertex w € W such that d(u,w) # d(v,w). The minimum cardinality of
a resolving set for G is called the resolving number or dimension and is
denoted by dim(G).

2 An Overview of the Paper

The concept of resolvability in graphs has previously appeared in literature.
Slater [4, 5] introduced this concept, under the name locating sets, moti-
vated by its application to the placement of a minimum number of sonar
detecting devices in a network so that the position of every vertex in the
network can be uniquely determined in terms of its distance from the set
of devices. He referred to a minimum resolving set as a reference set and
called the cardinality of a minimum resolving set as the location number.
Independently, Harary and Melter [3] discovered this concept, but used the
term metric dimension, rather than location number. Later, Khuller et al.
[2] also discovered these concepts independently and used the term met-
ric dimension. These concepts were rediscovered by Chartrand et al. (6]
and also by Johnson [7] while attempting to develop a capability of large
datasets of chemical graphs.

It was noted in [8] that determining the metric dimension of a graph is
NP-complete. It has been proved that the metric dimension problem is NP-
hard (2] for general graphs. Manuel et al. [9] have shown that the problem
remains NP-complete for bipartite graphs. There are many applications of
resolving sets to problems of network discovery and verification (1}, pattern
recognition, image processing and robot navigation [2], geometrical routing
protocols [10], connected joins in graphs [11} and coin weighing problems
[12).

Many resolving parameters are formed by combining resolving property
with another common graph-theoretic property such as being connected,
independent, or acyclic. The generic nature of conditional resolvability in
graphs provides various ways of defining new resolving parameters by con-
sidering different conditions. In general, a connected graph G can have

234



many resolving sets. It is interesting to study those resolving set whose
vertices are located close to one another. In this paper we an independent
resolving set in generalized fat trees. We introduce a new resolving param-
eter called one star resolving number. A resolving set W is said to be a
one-star resolving set if the subgraph induced by W is a star together with
isolated vertices. This paper also introduces a new interconnection network
called amalgamation trees and one-star resolving number is investigated for
the amalgamation trees.

3 Generalized Fat Trees

Several topologies have been proposed as interconnection networks for mul-
ticomputer systems. Among these interconnection networks, the hypercube
and mesh topologies are two popular networks from a commercial point of
view. However, although the hypercube is an efficient network because of its
symmetry, regularity, logarithmic diameter, modularity and fault tolerance,
it suffers from wire-ability and packing problems for VLSI implementation
due to a non-constant node degree. A good interconnection network must
have a relatively small node degree. Therefore a new family of multipro-
cessor interconnection networks, called generalized fat trees, which includes
as special cases the fat trees used for the connection machine architecture
CM-5, pruned butterflies, and various other fat trees proposed in the litera-
ture have been defined in {14]. This architecture provides a formal unifying
concept to design and analyze a fat tree based architecture. Leiserson [15]
proposed fat trees as hardware efficient, general-purpose interconnection
networks. Several architectures including the Connection Machine CM-5 of
Thinking Machines, the memory hierarchy of the KSR-1 parallel machine
of Kendall Square Research, and Meiko supercomputers CS-2 are based on
the fat trees.

Definition 3.1 A generalized m-ary fot tree GFT(h + 1,m,w) is recur-
sively generated from m copies of GFT(h, m,w), denoted as GFT(h, m, w)
= G(V],E]), 1 < j £ m, and wh*t! additional nodes such that each top-
level node (h,k + jw") of each GFTi(h,m,w), for 0 < k < wh — 1, is
adjacent to w consecutive new top-level nodes, given by (h + 1,k - w), (h +
1, kw+1), (h+1,k-w+2)... (h+1, (k+1)-w—1). The graph GFT?(h, m, w)
is also called a sub-fat tree of GFT(h + 1, m,w). See Figure 1.

In the fat tree architecture, the processing elements are located at the
leaf nodes and the intermediate nodes serve as routers or switches. There-
fore the generalized fat tree GFT(h + 1, m,w) of height h + 1 consists
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(e) GFT(244) " GFT(244)

Figure 1: Generalized fat trees of height 2

of m"*+1 processors in the leaf-level and routers or switching-nodes in the
non-leaf levels. Each non-root has w parent nodes and each non-leaf has
m children. Leaf nodes are said to be in level 0; a node u is said to be at
level I, if there is a vertex v at level 0 such that d(u,v) = . It is clear that
GFT(h + 1,m,w) has m"*+!~! copies of GFT (I, m,w) which are denoted
by GFTi(l,m,w),1 < j < m**1~! and has m**1=! ! vertices in level {.

3.1 Twin vertices and twin sets

In this section we start with the definition of open neighborhood and closed
neighborhood and follow the terminology of Caceres et al. [16].

Definition 3.2 Let u be a verter of a graph G. The open neighborhood of
u is N(u) = {v € V(G) : wv € E(G)}, and the closed neighborhood of u is
Nu) = N(u) U {u}.

Definition 3.3 Two distinct vertices u,v are adjacent twins if N[u] =
Nv], and non-adjacent twins if N(u) = N(v).

Definition 3.4 For a graph G, a set T € V(G) is a twinset of G if u,v
are twins in G for every pair of distinct vertices u,v € T'.
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Lemma 3.1 [16] Ifu and v are twins in a connected graph G, thend(u,z) =
d(v,z) for every vertez z € V(G) \ {u,v}.

Corollary 1 [16] Suppose that u and v are twins in a connected graph G
and W resolves G. Then u or v is in W. Moreover, ifu € W and v not in
W, then {W\ {u}} U {v} aiso resolves G.

Lemma 3.2 [16] Let u,v,w be distinct vertices in a graph G. If u,v are
twins and v, w are twins, then u,w are also twins.

The next result follows from Lemmas 3.1 and 3.2.

Lemma 3.3 Let G be a connected graph with twin sets T3, 1 <7 < n.
Then 8(G) > >, ITi| — n.

3.2 Independent Resolving Set

In this section we determine the independent resolving number for the gen-
eralized fat trees.

Definition 3.5 A resolving set W of G is independent if the subgraph in-
duced by W is an empty graph.

Theorem 3.1 Let G be GFT(h + 1,m,w). Then ir(G) = m*(m — 1) +
wh(w—1), h >2.

Proof. GFT(h + 1, m,w) has m copies of GFT(h, m,w) which are denoted
by GFT*(h,m,w), 1 < k < m. There are m"**! number of level 0 vertices
and w"*! number of level A + 1 vertices. In general, at any level [, G has
mP+1=! ! vertices and these are the top level vertices of the m”*+1~* copies
of GFT(l,m,w). Let Tp be the set of all level 0 vertices and T’r be the
set of all level h + 1 vertices. Let Tp, = {bi,,b;;...0i,. }, 1 £ i < mht and
Tr, = {tji tjp-tju}, 1 < j < wh. Consider b;,,b;, € Tg,, k # s. Then it
follows from the structure of G that N(b;,) = N(b;,). This implies that b;,
and b;, are twins and consequently by Lemmas 3.1 and 3.2 T,, 1 <i < m"
and T, 1 <5 < wh are twin sets. Since T, contains m vertices, and by
Corollary 1 and Lemma 3.3, m — 1 of these m vertices must belong to any
resolving set. For convenience we take the first m — 1 vertices from any

Tp,. This is true for every . The same argument applies to the set T,
h

1<j <wh. Let W = {UR,Wg,} U {US Wr,}, Wg, = {biy, bi.bi_y, },
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1<i<mhand Wr, = {tj,tj;-tj_nyr 1 £ 3 < w*. Hence ir(G) >
[W| = mh(m — 1) + wh(w - 1).

We next claim that i7(G) < mP(m - 1) + w”(w — 1). To do this we
exhibit an independent resolving set of cardinality m”(m —1) + w"(w — 1).
Let V(G) = {uf :0< 1< h+1,1<k<mM17L 1 < p < w'} where
refers to the level of the vertex, k refers to the position of copies of sub fat
trees in level [ and p the position of the vertex in level ! in the sub-fat tree.

Let z,y € V(G) ~ W. If z and y are vertices in different levels, then
it follows from definition of generalized fat tree that they are resolved by a
vertex in some Wpg,. So it is sufficient to consider vertices in same level.

Case 1: z and y are level 0 vertices

In this case £ = by,, and y = b, for some k # s. This is because
z,y € V(G) \ W. Therefore d(z, bx,) = 2 and d(y, bx,) > 2.

Case 2: z and y are level h + 1 vertices

In this case x = tx, and y = t,, for some k # s and hence d(z,tk,) =2
and d(y, tx,) > 2.
Case 3: z and y are level [ vertices, 0 <{ < h+1

Case 3.1: r and y belong to different sub fat trees with root nodes in
level 1. m—uf“ andy=u, 1<p <w,1<kp,ky <mhti-f and
ky # k2

In this case a descendant of z in level 0 lying in Wpg resolves = and y.

Case 3.2: £ and y belongs to different sub fat trees with root nodes
in level 1. x—ufp‘ andy—u, 1< p,p2 w1 <k ky <mhti-l
ky # ko and p; # po.

In this case a descendant of z in level 0 lying in Wg resolves z and y.
0

4 Amalgamation Trees

A complete binary tree is a binary tree in which the root is of degree two
and every internal vertex is of degree exactly three. A complete binary tree
with height ~ has 2"*1 — 1 vertices and 2#+! — 2 edges.

In this section we introduce a new architecture called the amalgamation
tree and list a few of its topological properties. An amalgamation tree
AT (h,m) is obtained from m copies of complete binary trees of height
h by identifying the corresponding leaf vertices. We shall call these leaf
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Level3

Level 1

Level0

Figure 2: AT(3,4)

vertices as vertices of amalgamation. Each copy is denoted by T}, 1 <
i < m. AT(h,1) is just a complete binary tree of height h. AT'(h,2) is
called a diamond tree in the literature. As in the generalized fat trees, leaf
vertices are said to be in level 0. A vertex is said to be in level [, if it is a
distance ! from a descendent leaf vertex. We propose a labeling of vertices
of AT'(h,m) using the labeling of the vertices of the complete binary tree.
Let V(AT (h,m)) = {(5,7) : 1 <i<m, 2! < j <2k~ 1,0 <1 < h}.
In the ordered pair (%, j), the first component ¢ refers to the i-th complete
binary tree T* and the second component j denotes the label of a vertex
in T". See Figure 2.

Theorem 4.1 Let G be AT(h,m). Then |[V(G)| = 2"(m + 1) — m and
|E(G)| = m(2"+! —2).

Theorem 4.2 The diameter of AT(h,m) = 2h.

Theorem 4.3 AT(h,m) is bipartite.

4.1 One-Star Resolving Number

In this section we introduce a new parameter called one-star resolving num-
ber.

Definition 4.1 A resolving set W of G is a one-star resolving set if the
subgraph induced by W is a star together with independent vertices.

The minimum cardinality of a one-star resolving set is called one-star
resolving number and is denoted by 0s(G). A one-star resolving set of
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cardinality 0s(G) is called an os-set of G. If G is a connected graph of
order n containing an os-set, then it is clear that 2 < 0s(G) <n - 1.

Theorem 4.4 Let G be AT(h,m). Then os(G) < 214+ m —1.

Proof. We exhibit an os-set of cardinality 2"~ +m — 1. Consider the
vertices of amalgamation {(4,7) : 1 < i < m,2" < j <2+l 1} Let L
be the set of alternate vertices of amalgamation beginning with the first.
Since the index ¢ has no role to play, we denote vertices of the set L as
L={L:L=02"+2p-1),1 <p< 21} Let S = {s5: 8, =
(@2 1),1<g<m—1}.

We claim that W = LU S is a resolving set for G. Let u,v € V. \ W.
We consider different cases depending upon whether v and v belong the
same copy of the binary tree or different copies and whether they are in
the same level or different level. Let u = (i1, 41), v = (42, j2) where 2h~! <
Jng2 2P 1,1 <4< m, 0< U< h.

Case 1: u and v belong to the same copy of the binary tree.

In this case iy = i3, 1 <i; =i <m

Case 1.1: u and v are in the same level | , 0 <1 < h. If d(u,lp) = |,

for some I, € L, then d(v,l,) > 1 + 2.

Case 1.2: u and v are in different levels I} < I3, 0 < 1;,l, < h.
If d(u, lp) = U1, then d(v,lp) > I + 1.

Case 2: u and v belong to different copies of the binary tree.
In this case 11 # ig, 1 <11, <m

Case 2.1: v and v are in the same level [, 0 < I < h.
Case 2.1.1: j; = j,

In this case u and v are not resolved by any I, € L. Now we show some
sq € S resolves these vertices. If d(u,sq) = h — [, then d(v,s4) 2 h -1+ 2.

Case 2.1.2: j; # j»
If d(u,lp) =1, then d(v,1,) > 1 + 2.
Case 2.2: u and v are in different levels [; < I3, 0 < 13,1, < h.

If d(u,l,) = Iy, then d(v,l;) = {; + 1. This proves our claim that W
is a resolving set. Further W induces a star S, and independent vertices.
Hence W is an os-set. O



4.2 One-factor and Independent Resolving Number

In this section we determine the one-factor and independent resolving num-
bers for amalgamation trees. We recall the definitions.

Definition 4.2 A set W of G is a one factor resolving set for G if G(W] =
tKs, for some integer t. The minimum t for which G(W)] = tK, is called
the one factor resolving number of G and it is denoted by onef(G).

Theorem 4.5 Let G = AT(h,m). Then onef(G) < 2"~! when m =
2h-1 41

Theorem 4.6 Let G be AT (h,m). Then ir(G) < 2P+ m—1.

5 Conclusion

In this paper we have exhibited an independent resolving set in general-
ized fat trees and we have determined three different resolving parameters
namely the one-star resolving number, one-factor resolving number and
independent resolving number for amalgamation trees. Investigating con-
ditional resolving parameters is an open problem.
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