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Abstract

The Terminal Wiener index TW(G) of a graph G is the sum of
the distances between all pairs of pendant vertices. In this paper we
find an explicit formula for calculating the terminal wiener index for
Detour saturated tree and Nanostar Dendrimers.
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1 Introduction

In a general sense, molecular descriptors are “terms that characterize a
specific aspect of a molecule”. In particular, topological indices have been
defined as those “numerical values associated with chemical contribution for
correlation of chemical structure with various physical properties, chemical
reactivity or biological activity”. They are derived from a graph-theoretical
representation of molecules and can be considered as structure-explicit de-
scriptors [13, 14]. A representation of an object giving information only
about the number of elements composing it and their connectivity is named
as topological representation of an object. Topological indices are used
for development of quantitative structure-activity relationships (QSARs)
in which the biological activity or other properties of molecules are cor-
related with their chemical structure. A topological representation of a
molecule is called molecular graph. A molecular graph is a collection of
points representing the atoms in the molecule and set of lines represent-
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ing the covalent bonds. These points are named vertices and the lines are
named edges in graph theory language.

Let G be an undirected connected graph without loops or multiple edges
with n vertices, denoted by {vi,v2,vs,...,un}. The topological distance
between a pair of vertices i and j, which is denoted by d(vi,v;), is the
number of edges of the shortest path joining ¢ and j. In 1947 Harold Wiener
[12] defined the Wiener index W(G) as the sum of distances between all

vertices of the graph G. W(G) = %ZZd(v,,v,) where d(v;,v;) is the

i=1 j=1
distance between the vertices v; and v; in a graph [4]. Among all the trees
on n vertices, the star K ,—; has the lowest Wiener number and the path
P, has the largest Wiener number.

In 2009, Gutman, B. Furtula, and M. Petrovic [5] introduced terminal
distance matrix or reduced distance matrix of trees. The Terminal Wiener
index TW(G) of a graph G is the sum of the distances between all pairs of
pendant vertices.

TW(G) =) > d(vi,v))

i=1 j=1

where d(v;, v;) is the distance between pair of pendant vertices in a graph
G.

A benzenoid graph is called Cata-condensed if its characteristic graph
is a tree. Lukovits [6] investigated the use of the detour index (3] in quanti-
tative structure-activity relationship (QSAR) studies. Following the work
in (7], Trinajstic et al. [10] analyzed the use of the detour index and com-
pared its application and that of the Wiener index in structure-boiling
point modeling, while Riicker et al. [9] also probed the detour index as a
descriptor for boiling points of acyclic and cyclic alkanes. It was found that
the detour index in combination with the Wiener index is very efficient in
structure-boiling point modeling of acyclic and cyclic saturated hydrocar-
bons. Lukovits and Razinger [7] proposed an algorithm for the detection
of the longest path between any two vertices of a graph, which was used to
derive analytical formulas for the detour index of fused bicyclic structures.
Trinajstic et al. [10] and Riicker [9] proposed computer methods for com-
puting the detour distances [1, 2, 11] and hence for computing the detour
index.

Double claw also can be connected to the species in the form of polyhexes
see Figure 3 double claw is denoted by T4 can be constructed inductively
by adding two new leaves at each of the old leaves of T,,_, and n > 6.

A dendrimer is an artificially manufactured or synthesized molecule
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Figure 1: Cata-Condensed and its dualist graph Tp
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Figure 2: Detour saturated Trees for T3(0), T3(1) and T3(2)

built up from branched units called monomers.

The nanostar dendrimer [8] is part of a new group of macromolecules
that appear to be photon funnels just like artificial antennas. Dendrimers
have gained a wide range of applications in supra-molecular chemistry, par-
ticularly in host guest reactions and self-assembly processes. These macro-
molecules and more precisely those containing phosphorus are used in the
formation of nanotubes, micro and macro capsules, nanolatex, coloured
glasses, chemical sensors, modified electrodes and so on. Nanostar den-
drimers possess a well defined molecular topology. For every infinite inte-
ger n, D3(n) denotes the nt* growth of nanostar dendrimer. A kind of 3¢
growth of dendrimer is in Figure 6.

In this paper we calculate explicit formula for Detour saturated tree and
Nanostar Dendrimers.
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Figure 3: Detour saturated Tree of Double claw
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Figure 4: Detour saturated Tree for T4(0), T4(1) and T,(2)

Figure 5: D3(0) is the primal structure of nanostar dendrimer D3(n)
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Figure 6: The 2-dimensional of a kind of 37 growth of dendrimer D3(3)
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2 Main Results

Theorem 1. The Terminal Wiener Index of detour saturated tree T3(n) is

n+1
TW(T3(n)] = 3.2°71 | k2¥ + (n+1)2°*!
k=1

Proof. If n = 0 then T3(0) is a claw which contains 4 vertices with three
leaves. T3(1) is obtained from T3(0) by adding two new leaves to the three
old leaves in T3(0). Hence six new leaves are added to T3(0) to form T3(1),
twelve new leaves are added to form T3(2) and so on. Let n denote the num-
ber of steps in the formation of detour-saturated trees. Then the number
of pendant vertices in the Detour saturated tree T3(n) has 3(2") pendant

vertices. The Terminal Wiener Index of T3(n) = ~ Z Z d(vi, vj)

z—l j=1

TWIT3(0)] = % 32 + 2]

TW[T31)]=-21-3 24 (4+4)+ (4+4)]

TW[T3(2)]—%322[2+(4+4)+(6+6+6+6)+(6+6+6+6)]

TW[T33)]% [2+(4+4)+(6+6+6+6)+(8+8+---+8)
8 times

N, e’
8 times

1
TW[T3(4)]=5.3.24 [2+(4+4)+ 6+6+---+6) + (8+8+---+8)
Nt — N, o———

4 times 8 times

(go+10+~--+1q) + (go+10+---+1q)}
16 ;irmes 16 ;zrmes
and so on.

3.20

TW(T5(0)} = ——(2(2)]

TWT3(1)] = ?[2 +2(2%)] + %_2_[2(22)]

TW(T3(2)] = —[2 +2(2%) +3(2%)) + = 3:2 [3(23)]
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TW[T3(3)] = -—[2 +2(2%) + 3(2%) + 4(2Y)] + [4(24)]

TWI[T3(4)) = %[2 +2(2%) + 3(2%) + 4(2%) + 5(2%)) + [5(25)]
and so on.

TW(Tz(n)) = %[2 +2(2%) +3(2%) +4(2%) +5(2%) + - - + (n +1)27+D)

+%[(n +1)2(n+1))
3.2" = k n+l
TW[T3(n)l = —- Z k2 [(n+ 1)2(n+1))
n+1
TW(T3(n)] = 3.27! [Z k2%(n + 1)2("“)] . O
k=1

Theorem 2. The Terminal Wiener Indez of detour saturated tree Ty(n) is

n+1
TW([Ty(n)] = 27! {i k28 + (2n + 3)2" ! }
k=1

Proof. If n = 0 then T4(0) is a double claw which contains 6 vertices with
four leaves. Ty(1) is obtained from T4(0) by adding two new leaves to the
four old leaves in T4(0). Hence eight new leaves are added to T4(0) to form
T4(1), sixteen new leaves are added to form T4(2) and so on. Let n de-
note the number of steps in the formation of detour-saturated trees. Then
the number of pendant vertices in the double-claw of detour saturated tree
Ty4(n) has 2'”'2 pendant vertices. By definition

TW[Ty(n)) = Z Z d(vi, v;)

z_l i=1

TWIT(O)] = 5{(42°)(2+ (3 +3)}

TW[T4(1)]=%{(4.2) [2+(4+4)+ (5+5+5+5)”
4 times
TW{T4(2)] = % {(4.22) [2+(4+4)+ (6+6+6+6) + (7+7+~--+7)]}
4 times 8 times

248



4 times 8 times

+ (9+9+---+9)]}
R
16 times

TW[T4(4)]=-;-{(4,24) [2+(4+4)+ <6+6+6+6) + (8+s+...+8)

TW[T4(3)]=%{(4.23) [2+(4+4)+ <6+6+6+6) + (g+g+...+8)

4 times 8 times
+ (\10+10+~-+1Q) + (\11+11+...+11}):|}
16 Eirmes 32 t‘irmes
and so on
(4.20)
TWL(0)] = {2+ (2+2) + (1 +1)}

TW[T4(1)]=£{[2+(4+4)+$4+4+4+42+$1+1+---+14}

v -
4 times 4 times

4.22
TW[T4(2)]=—2-{[2+(4+4)+(§+6+6+§)+(§+6+--~+§)]
4tt?mes Btim.‘ﬁes
+(1+1+~-+1)}
R
8 times
4.23
TW(T,(3)) = —5—{ [2+4+4+ | 6+6+6+6 |+ (8+8+---+8
N’ P ——
4 times 8 times

+ (8+8+"-+8)} + (1+1+...+1)}
e S
16 times 16 times
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4
TW[T4(4)]=3£{[2+4+4+ (6+6+6+6) + <1o+10+...+10)
2 N pm— ~ v

v
4 times 16 times

+ <1o+1o+---+10>} + (1+1+---+1)}
— ~ - [ -
32 times 32 times
and so on.
(4.29)

TWITW(0)] = ——{[2(2)] + 2+ 2 + (1 + )]}

Twin) = G2 (2 + 2027 + 2027)] + @)}

Tw(T@)] = L2 (2 4+ 2022) + 3(5)] + (32%) + 3] + (27
WL @) = E2 (242020 +3(%) + 4(29)] + [429)] + (429 + %))

TWITy(4)] = %23{[2 +2(2%) + 3(2%) + 4(2%) + 5(2%)] + [5(2%)] + [5(2%)]
+2(29)}
and so on.

TW(Ty(n)) = @{[2 +2(2%) +3(2%) +4(2Y) +5(2°) + - - - + (n 4 1)2" ]

+((n + 1))+ [(n + 1)(2"H] + [2(2M)]}

(4.271) & k n+1 n+1 n+1
TW(Ty(n)] = 5 DO k2F 4 (n+1)27H 4 (n 4 1)20H ot
k=1

n+1
TW([Ty(n)] = 2"+! {i k2% + (2n + 3)2"“}. O

k=1
Theorem 3. The Terminal Wiener Index of Nanostar Dendrimer D3(n)
v n+1
TW|Ds(n)] = 15.2" {Z k251 4 (n + 1)2"}
k=1

Proof. Let D3(n) be the nanostar dendrimer. We define an element as in
figure 7.
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Figure 7: Leaf, is added in each branch of D3(n)

Every leaf consists of a cycle Cs or Benzene ring. We added a 3(2")
leaves to D3(n —1). If n = 0 then D3(0) is a nanostar dendrimer which
contains 3 pendant vertices. In the n** stage nanostar dendrimer contains
3.2" pendant vertlces The Terminal Wiener Index of Nanostar Demdrimer

TW|Ds(n)] = = Z Zd (vi, v5)

t—IJ 1

TW[Ds(0)] = 5{3(10 +10])

TW(Ds(1)] = 5{(3:2)[10 + (20 +20) + (20 + 20)}

TW([Ds(2)] = % {(3.22) [(10) + (20 +20) + (go +30+--- +§)
4 c;:nes
4 tzmes
1
TW[D3(3)] = 3 {(3 23) [(10) + (20 +20) + ( +30+---+ 3q)
4 ttmes
+ (40+40+ +40) + (40+40+ +4q>] }
8 times 8 times
1
TW([D3(4)] = 3 { (3.2% [(10) +(204+20)+ {30+30+---+ 39)
4 t;;nes

+ <g+40+ +40) + (50+50+--»+59)

8 times

+(50+50+ +50)jl}
16 times
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3.10

TWIDs(0)) = 5°{1+1}
TwIDs(1)] = 222 1 4 22)) + B (59

WD) = 2292 (1 1 202y + 327} + B2 (3%

TW[Ds(3)] = 3'12'23 {1+2(2) +3(29) + 429} + (110_23{4(23 )
TW(Ds(4)] = 3'12'24 {1+2(2) +3(22) +4(2%) + 52} + %{5(24)}
a:fnvctl/{s;:(?{)] - 3'12'2" {142(2) +3(22) + 4(2%) + 5(2%) + - + (n+ 1)27}

+ 82 (0 1))

n [(ntl
TW(D3(n)] = 3'12‘2 {Z K2k~ 4 (n + 1)2"}

k=1
n+l
TW([Ds(n)] = 15.2" {Z k2¥-1 4 (n 4+ 1)2"} O
k=1
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