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Abstract

Given an undirected 2-edge connected graph, finding a minimum
2-edge connected spanning subgraph is NP-hard. We solve the prob-
lem for Butterfly network, Benes network, Honeycomb network and
Sierpiriski gasket graph.

1 Introduction

The study of connectivity in graph theory has important applica-
tions in the areas of network reliability and network design. In fact, with
the introduction of fiber optic technology in telecommunication, design-
ing a minimum cost survivable network has become a major objective in
telecommunication industry. Survivable networks have to satisfy some con-
nectivity requirements, this means that they are still functional after the
failure of certain links [1). As pointed out in [1], the topology that seems to
be very efficient is the network that survives after the loss of £ — 1 or less
edges, for some k > 2, where k depends on the level of reliability required
in the network [2]. In this paper, we concentrate on the minimum 2-edge
connected spanning subgraph.

A connected graph G = (V, E) is said to be 2-edge connected if |V'| > 3
and the deletion of any set of less than 2 edges leaves a connected graph.
The minimum 2-edge connected spanning subgraph (2-ECSS) problem is
defined as follows: Given a 2-edge connected graph G, find efficiently a
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spanning subgraph S(G) which is also 2-edge connected and has a minimum
number of edges [5]. We denote the number of edges in a graph G by &(G)
and the edges of minimum 2-edge connected spanning subgraph of G by
(5(G)).

The minimum 2-edge connected spanning subgraph problem is not yet
solved for the interconnection networks. In this paper, we compute the
number of edges in the minimum 2-edge connected spanning subgraphs of
interconnection networks such as Butterfly network BF'(n), Benes network
BB(n), Honeycomb HC(n) and Sierpinski gasket graph S,.

2 Butterfly Network

Definition 2.1. [6] The n-dimensional butterfly network, denoted by BF (n);
has vertex set V = {(z;i) : ¢ € V(Qr),0 < i < n}. Two vertices (x;) and
(y;7) are linked by an edge in BF(n) if and only if =i+ 1 and either
(i)z =y, or

(i) x differs from y in precisely the jth bit,

for x =y, the edge is said to be a straight edge. Otherwise, the edge is a
cross edge. For a fized i, the vertex (x;1) is a verter on level i.

From the definition 2.1, the butterfly network BF(n) has (n + 1)2"
vertices because BF'(n) has n 4 1 levels and there are 2™ vertices in every
level. Each vertex on level 0 and n is of degree 2, otherwise, every vertex
is of degree 4. It follows that BF(n) has n2"*! edges.

X X

Figure 1: A graph G and its spanning subgraph H

The following Lemma is very interesting and crucial to the proofs of some
of our results.

Lemma 2.2. If one end of every edge of a graph G with § > 1 is of degree
2 then no proper spanning subgraph of G is 2-edge connected.
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Proof. Let H be a proper spanning subgraph of G. Suppose (z,y) ¢ E(H).
If dege(x) = 2, then degy (z) = 1. Then H is 1-edge connected. See Figure
1. O

The following Lemma. 2.3 is an easy consequence of Definition 2.1.

Lemma 2.3. Let BF(n),n > 3 be an n-dimensional butterfly network.
Then the removal of all crossing edges between levels 1 and n—1 disconnects
BF(n) into 2"~2 components. See Figure 2.
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Figure 2: Two disjoint copies in BF(3) after the removal of crossing edges
between levels 1 and 2 and Minimum 2-ECSS of BF(3)

Theorem 2.4. Let BF(r),r > 3 be an r-dimensional butterfly network. Then
e(S(BF(r))) =2"(r +2) + 272,

Proof. Let us prove the theorem by induction on . When r = 3, Lemma
2.2, aliows no edges incident to vertices of degree 2 to be removed. Thus the
only possible edges that can be removed are the edges between the levels 1
and 2. By Lemma 2.3, removal of all crossing edges between levels 1 and 2
disconnects BF'(3) into 23-2 components which is shown in Figure 2. From
definition 2.1, adding 23~2 crossing edges between levels 1 and 2 gives a
connected minimum 2-edge connected spanning subgraph.
Hence e(S(BF(r =3)))=¢(BF(r=3))-6
=3 x23+1 _ ((3 - 2)23 - 23-2)
=23(3+2)+232
Thus the result is true for r = 3. We assume that the result is true for
r =k —1. When r = k, Lemma 2.2, allows no edges incident to vertices
of degree 2 to be removed. By Lemma 2.3, removal of all crossing edges
between levels 1 and k— 1 disconnects BF (k) into 2¥~2 components. Thus,
adding 2*¥~2 crossing edges among 2¥~2 components between levels 1 and
k—1 gives a minimum 2-edge connected spanning subgraph. Therefore the
number of crossing edges removed from BF (k) is (k — 2)2F — 2¢—2,
Hence £(S(BF(r = k)))= &(BF(r = k)) — [(k — 2)2% — 2¥—2
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= k2k+1 — [(k — 2)2F — 2¢-2)
=2F(k +2) +2k2 3

3 Benes Network

Definition 3.1. (6] The n-dimensional Benes network consists of back-to-
back butterfly, denoted by BB(n). The BB(n) has 2n + 1 levels, each with
2" vertices. The first and last n+ 1 levels in the BB(n) form two BF(n)’s

respectively, while the middle level in BB(n) is shared by these butterfly
networks.

From the definition 3.1, the n-dimensional Benes network BB(n) has
(2n + 1)2™vertices and n2™*2 edges. It has only 2-degree vertices and 4-
degree vertices, and, thus, is eulerian. The removal of the first and last
levels from BB(n) results in two disjoint BB(n — 1)’s. Benes network is
very similar to the butterfly network, in terms of both its computational
power and its network structure.

The following Lemma 3.2 is an easy consequence of Definition 3.1.

Lemma 3.2. Let BB(n),n > 2 be an n-dimensional benes network. Then
the removal of all crossing edges between levels 1 and 2n — 1 disconnects
BB(n) into 2"~ components. See Figure 3.
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Figure 3: Two disjoint copies in BB(2) after the removal of crossing edges
between levels 1 and 3 and Minimum 2-ECSS of BB(2)

Theorem 3.3. Let BB(r), 2> 2 be an r-dimensional benes network. Then
e(S(BB(r))) = 2k+1(2k — 1) 4 2k-1,

Proof. Let us prove the theorem by induction on r. When r» = 2, Lemma
2.2, allows no edges incident to vertices of degree 2 to be removed. Thus the
only possible edges that can be removed are the edges between the levels
1 and 3. By Lemma 3.2, removal of all crossing edges hetween levels 1
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and 3 disconnects BB(2) into 22~! components which is shown in Figure 3.
The resulting graph is not connected. Therefore using definition of BB(n),
adding any two of crossing edges between levels 1 and 3 gives a minimum
2-edge connected spanning subgraph.
Hence ¢(S(BB(r = 2))) = e(BB(r=2)) -6
=2x2¢-((2-1)22-2)
=2x24-2x2%4+23%42)
=2%2+1)+2
Thus the result is true for r = 2.

We assume that the result is true forr = k—1. When r» = k, Lemma 2.2,
allows no edges incident to vertices of degree 2 to be removed. By Lemma
3.2, removal of all crossing edges between levels 1 and 2k — 1 disconnects
BB(k) into 2¥~! components. Thus adding any two of crossing edges be-
tween levels 1 and 2k — 1 gives a minimum 2-edge connected spanning
subgraph. Therefore the number of crossing edges removed from BB(k) is
(k —1)2k+ — k.

Hence e(S(BB(r = k)))= e(BB(r = k)) — [(k — 1)25+1 — k]
= k2K+2 — (k- 1)2k+! 4k
=2kt (k+1)+k

(@ ®)
Figure 4: (a) A 1-dimensional honeycomb HC(1) and (b) 2-dimensional
honeycomb HC(2)

4 Honeycomb Network

Definition 4.1. [4] A honeycomb network can be built in various ways. The
honeycomb network HC(1) is an hezagon; See Figure {(a). The honeycomb
network HC(2) is obtained by adding a layer of siz hezagons to the boundary
edges of HC(1) as shown in Figure 4(b). Inductively honeycomb network
HC(r) is obtained from HC(r — 1) by adding a layer of hezagons around
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the boundary of HC(n — 1). The number of vertices and edges of HC(n)
are 6r2 and 9r% — 3r respectively. If X, denotes the boundary of HC(1),
X2 denotes the boundary of HC(2),..., X, denotes the boundary of HC(r),
then the number of edges in X; is 12i-6, 1 <i<r.

Lemma 4.2. Let HC(2) be a 2-dimensional honeycomb network. Then
2

S(S(HC®) = ¥, e(Xi) + 1.
i=1

Proof. Consider HC(2). Since one end of every edge of X3 is of degree two,
by Lemma 2.2 none of the edges in X» can be removed. Removing any two
consecutive edges of X gives a 1-edge connected spanning subgraph. See
Figure 5(b).

Let 2y = (m,n), z2 = (0,p), 23 = (¢,7) and z4 = (s,t) be the four edges
connecting X; and X, and z5 = (u,v) be an edge of X;. See Figure 5 (a).
Removing the edges z;, 29, 23 and z4, no edges incident with z;, 22, 23 and
z4 can be removed, otherwise we get a 1-edge connected spanning subgraph.
But, removing an edge z5 = (u,v) of X; which is not incident with z;, z3,
23 and z4 gives a minimum 2-edge connected spanning subgraph. Therefore
the maximum number of edges removed is 5.

Removing all the six edges connecting X; and X, disconnects HC(2).
See Figure 5 (c). Similarly, removing six edges of X; gives a 1-edge con-
nected spanning subgraph. See Figure 5 (d). By an easy verification,
removing three consecutive edges of X; and any three edges connecting X,
and X2 (See Figure 5 (€)) or three alternative edges of X; and any three
edges connecting X; and X, (See Figure 5 (g)) or removing two consecutive
edges of X; and any four edges connecting X; and X3 or two alternative
edges of X; and any four edges connecting X; and X, (See Figure 5 (4))
or removing five edges connecting X; and X5 and an edge of X; vice versa
gives either a 1-edge connected spanning subgraph or a disconnected graph.
See Figures 5 (f,h,i;k,1). Therefore removing any six edges of HC(2) gives
a 1-edge connected spanning subgraph or a disconnected graph. Thus, in
the resulting spanning subgraph S(HC(2)), an edge of X, and every edge
except two edges connecting X; and Xs are removed. Hence e(S(HC(2)))

2
=5+184+2=¢6(X1)—1+e(X2)+2 =Y e(Xi)+1. 4
i=1

Theorem 4.3. Let HC(r), r > 3 be the honeycomb network of dimension
r. Then e(S(HC(r))) = 3 e(Xi) + (r - 1).

i=1

Proof. We prove this theorem by induction on ». When r = 3, Consider
HC(3). Since one end of every edge of X3 is of degree two, by Lemma
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2.2 none of the edges in X3 can be removed. Let us construct the mini-
mum 2-edge connected spanning subgraph of HC(3) using minimum 2-edge
connected spanning subgraph S(HC(2)). It is easy that adding two edges
between X of S(HC(2)) and X3 will give a 2-edge connected spanning
subgraph. Therefore e(S(HC(3))) = e(S(HC(2))) + &(X3) + 2. But we
construct in such a way that adding two edges between X, of S(HC(2))
and X3 where the two edges added should have one end at a unique edge
of X3 and deleting that edge gives & minimum 2-edge connected spanning
subgraph where no other edges can be removed by Lemma 2.2. See Figure

1 6.
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Figure 5: A 2-dimensional honeycomb HC(2)

Thus (S(HC(3))) = ((S(HC(2))) +(Xs) +2) ~ 1
= (2 e(X:) +1+e(X3) +2) — 1
i=1
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= é e(X:) +e(X3) +2

= > (X)) +(3-1).

i=1
We assume that the result is true for »r = k—1. Consider HC(k). Since it is

not possible to remove any edges in X,, S(HC(r)) can be constructed from
S(HC(r —1)) and adding two edges between X,.; and X, where both the
edges added have one end at a unique edge of X,_; and delete that edge.

Figure 6: A 3-dimensional honeycomb and its minimum 2-edge connected
spanning subgraph

Thus e(S(HC(K))) = (:(SHO(k ~ 1) +&(Xi) +2) ~ 1
Z e(Xi)+((k—1)—-1)+e(Xk)+2) -1

=%—‘_:15( Xi)+e(Xe)+((k-1)-1)+2-1
= ¥ e+ (k- D). =
i=1

5 Sierpinski Gasket Graph

Definition 5.1. [3] The Generalized Sierpiriski Graph S(n,k),n > 1,k > 1
is defined in the following way: V(S(n,k)) = {1,2,...,k}", two distinct
vertices u = (uy,u,,...,un) and v = (v;,v2,...,Un) being adjacent if and
only if there ezists an h € {1,2, ...,n} such that

(i) ue=mw, fort=1,....h—1;

(%) up # vp; and

(%) vy = vp, and vy = up, fort = h+1,...,n. For convenience, we write the
vertex (uy, Uy, ..., Un) @S (U1u,...un). The vertices (1...1),(2...2), ..., (k...k)
are called the extreme vertices of S(n, k). In the literature, S(n,3),n > 1
is known as the Sierpirski graph. For i = 1,2,3, let S(n + 1,3); be the
subgraph induced by the vertices of the form (i...). Clearly S(n+1,3); is
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isomorphic to S(n,3) for i = 1,2,3. The Sierpiriski gasket graph Sn,n 2 1,
can be obtained by contracting all the edges of S(n,3) that do not lie on
any triangle. If (u1u,...urij...5) and (uyu,...u,ji...i) are the end vertices
of such an edge, then we will denote the corresponding vertez of S, by
(uy..up}{i, 5}, » < n—2. Thus S, is the graph with three special vertices
(1...1),(2...2) and (3...3) called the extreme vertices of Sy, together with
vertices of the form (uy...u,){i,j}, 0 < r <n—2 where all uy’s, i and j are
from {1,2,3}. This labeling is called quotient labeling of Sn and (uy...ur) is
called the prefiz of (uy...ur){i,j}. Sn+1 contains three isomorphic copies of
S, that can be described as follows: Fori = 1,2,8 let Sy ;, be the subgraph
of Sn41 induced by (i...i), {i,j}, {i, k} where {i,j,k} = {1,2,3}, and all the
vertices whose prefiz starts withi. S, has 3(3"~1+1) vertices and 3" edges.

Lemma 5.2. Let S; be the 2-dimensional sierpiriski gasket graph. Then
£(S(82)) =2 x 321

Proof. From Definition 5.1, S; has 3% edges. Now label the vertices of Sz
as shown in Figure 7. By Lemma 2.2, edges (1,2), (1,3), (4,2), (4,5), (6,3)
and (6,5) cannot be removed. Therefore removing the edges (2,3), (2,5)
and (3,5) gives a minimum 2-edge connected spanning subgraph. Thus
€(S(S2)) =2 x 3271,

5 5
Figure 7: Sierpiniski gasket S2 and its minimum 2-ECSS

Theorem 5.3. Let S,.,r > 3 be the r-dimensional sierpiriski gasket graph.
Then €(S(S,)) =2 x 371,

Proof. We prove this theorem by induction on r. When r = 3, S3 contains 3
copies of So. Now we construct a minimum 2-edge connected spanning sub-
graph of S3 using 3 copies of minimum 2-edge connected spanning subgraph
of S5. Hence S(S3) = 35(S2) = £(S(S3)) =36(S(S2)) =3 x 6 =2 x 3371,
Thus the result is true for r = 3.

We assume that the result is true for 7 = k — 1. That is, €(S(Sk-1)) =
36(S(Sk-2)) = 2 x 3*=2. Consider r = k. Sk contains three copies of
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Sk—1. Construct a minimum 2-edge connected spanning subgraph of S
using 3 copies of minimum 2-edge connected spanning subgraph of Sk_;.
Thus S(Sk) = 3S(Sk-1) = €(S(Sk)) = 3e(S(Sk-1)) = 3 x 2 x 3k~2 =
2 x 3k-1, m]
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