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Abstract

By a (1,1) edge-magic labeling of a graph G(V, E), we mean a
bijection f from VU E to {1,...,|V]U |E| } such that for all edges
uv € E(G), the value of f(u) + f(v) + f(uv) is the same. We give
a different proof of a well-known result of Paul Erdos in additive
number theory and curiously an interesting application of the same
is realized. Also some progress is made with the help of computers
towards the conjecture that: “Every graph on p > 9 vertices can be
embedded as a sub graph of some (1,1) edge-magic graph” raised by
Yegnanarayanan.

1 Introduction

The graphs considered in this paper are finite, simple and undirected. By a
graph labeling we mean an assignment of integers to the elements of a graph
such as vertices, or edges or both subject to some conditions. These condi-
tions are usually stated on the basis of the values of some function. That
function will produce partial sums of the labeled elements of the graph.
The partial sums will be either a et of vertex weights, obtained for each
vertex by adding all the labels of a vertex and its adjacent edges, or a set of
edge weights, obtained for each edge by adding the labels of an edge and its
end vertices. A notable instance is one, when all the edge weights or all the
vertex weights are the same. In this paper, we prove certain results concern-
ing a specialized variety of magic labeling. Incidentally we have borrowed
some ideas from Number Theory and used computer programming (C++).
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By G(p,q) we mean a graph having p vertices and g edges, by V(G) and
E(G) the vertex-set and the edge-set of G respectively. A graph G(p,q) is
said to be (1,1) edge-magic with the common edge count kg if there exists a
bijection f : V(G)UE(G) — {1,...,p+q} such that f(u)+ f(v)+f(e) = ko
for all e = (u,v) € E(G). A graph G(p,q) is said to be (1,1) vertex-magic
with the common vertex number count k; if there exists a bijection f :
V(G)UE(G) — {1,...,p+q} such that for each u € V(G), f(u)+_, f(e) =
ky for all e = (u,v) € E(G) with v € V(G). A graph G(p, q) is said to be
(1,0) edge-magic with the common edge count k3 if there exists a bijection
f:V(G) = {1,...,p} such that for all e = (u,v) € E(G), f(u)+ f(v) = ke.
A graph G(p,q) is said to be (0,1) vertex-magic with the common vertex
count k3 if there exists a bijection f : E(G) — {1,...,q} such that for
each u € V(G),Y, f(e) = ks for all e = (u,v) € E(G) with u € V(G).
A graph G(p, ¢q) is said to be (1,0) vertex-magic with the common vertex
count k4 there exists a bijection f : V(G) — {1,...,p} such that for each
u € V(G), f(u) + f(v) = kq for all v € V(G) such that (u,v) € E(G). A
graph G(p, q) is said to be (0,1) edge-magic with the common edge-count
ks if there exists a bijection f : E(G) — {1,...,q} such that for each
e € E(G), f(e) + f(eo) = ks for all e € E(G) such that e and e are
adjacent in G. We have made some observations in [4,5, 6] concerning these
labeling.

2 Main Results

Theorem 2.1 If A = {a; : 1< i< Randa; < ...< an} is a subset
of integers in [1,N] such that B = {a, — a, : ar,as € A and s < r} are
distinct, then R < N¥ + Nt +1.

Remark 2.1 The above result was due to Erdos in [2]. An improvement
of this was obtained later by Bose and Chowla in [1]. One can also see [3]
for an exhaustive information. We present here a slightly different proof,
enabling to compute the 0-constant in the error term better.

Proof. Let us define A; = {a,4+; —a,:1<r < R—j}. Then |Aj|=R—j
and 3 pe 4. b =31 cp-jlarsj —ar) = (@ar —a1) + (@R-1—- @) +... +
(aR_._H.l - a,,-) <jN.Let D = UlSjskAj- Then |D| = kR — k(k + 1))/2
and 3 4cpd < 31 JN = (k(k +1)/2)N. Now the elements of D are
distinct by definition, and Y, p d is at least the sum of first | D| natural
numbers. Hence Y 4.pd > ((kR — k(k + 1)/2(kR — k(k + 1)/2 + 1))/2.
Comparing the upper and lower bound of ) ;. d, we get that (k(k +
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1)N)} > kR — k(k + 1)/2. That is (N(k + 1)/k)} > R — (k +1)/2 and
R < N¥(1+ (1/2k)) + (k +1)/2. Now set k| N3 | +1 to get the result.

Remark 2.2 Now following Erdos, we shall call any set A as in the The-
orem 2.1 as a Siden set.

Theorem 2.2 The complete graph K, is not (1,1) edge-magic if p > 17.

Proof. Assume that K, is (1,1) edge-magic. Then there exists a (1,1)
edge-magic labeling f: V(K,) UE(Kp) = {1,..., (p + p(p — 1)/2) = N}.
If e; = (u, v;) for 1 < i < 2 are any two edges, then c(e;) = c(ez) implies
f(uy)- f(uz) = f(v1)- f(v2). Now as {f(u) : u € V(Kp)} is a Siden set in
[1,N], we get by the Theorem 2.1, that p = [V(K,)| < N + N¥ +1. This
yields a contradiction if p > 17 is clear. For, put N = x4, so that p(p + 1)
= 274 and 2z < (p+ (1/2))2. Now p + (1/2) < N¥ + N 4 3/2 implies
that /222 < 2 + z+3/2 and = < 3.45.

Problem 2.1 For what values of m and n, is the graph Kp, » (0,1) vertex-
magic?

Theorem 2.3 Every graph on p vertices with 9 < p < 12 can be embedded
as a subgraph of some (1,1) edge-magic graph.

Comments: Consider K, for 9 < p < 12. Form a new graph G from
K, by adding a number of vertices and joining each of them to appropri-
ate vertices of K,. We do this using computers to match the following
requirement: How many vertices are needed to add to K, and how their
adjacency with the vertices of K, can be defined so that the resulting graph
G is connected and there exists a bijection f: V(G) — {(1,...,p(G)} with
the induced edge labeling fg : E(G) = Z* forming the set of consecutive
integers {r,7 + 1,...,q(G) + r — 1} for some r (= fe(e) = f(u) + f(v))
€ Z% where e = (u,v) € E(G). We give a detailed proof for p = 9. It is
routine to organize the details for p = 10 to 12 in a similar manner. But we
give the complete vertex labels of the corresponding G’s extending K, for
p = 10 to 12 in Tables 3 to 5. In these Figures the pendant vertex/vertices
with their respective labels adjacent to a vertex of K, with its label are
indicated by an arrow.

Proof. Let V(Kg) = {v; : 1 <i<9}. Form anew graph G = Ko(v1,v2,...
,vg) ® (K11, K12, K11, K313, K12, K1,2, K1,19, K1,21), Where G is the graph
obtained from Ky by identifying the central vertex of Ky 1, K12, K1,1, K1,3,
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K12,K1,2, K1,10,K1,21, With vy,...,vs respectively. Denote the pendant
vertices of G by v, v}, v%, v, v}, v3,v3, v}, v3,vd,v8,vi,1 <1 <19, v, 1
< i £ 21. Suppose that f: V(G) — (1,...,60} is a bijection defined as
follows: f(v1) = 1; f(v2) = 2; f(vi) = f(vim1)+f(vi-2); f(v]) = 16; f(v3) =
10; f(v3) = 18; f(v3) = 29; f(v}) = 23; F(v3) = 26; f(v) = 47; f(v})
11; f(v3) = 42; f(vg) = 20; f(vd) = 3L, f(v}) = 4 f(v]) = 6; f(v})
9; f(vd) = 17; f(v§) = 19; f(v§) = 22; f(v]) = 24; f(v§) = 30; f(v7*') =
31+i4,1 <i <2 f(u3%) =424, for 1 <i < 4; f(wi*) =55 44, forl <
i< 5 f(v)) = T f(wd) = 12, f(2t) = 13 4+ 4, forl < i £ 2;f(48) =
25; f(vg+") = 26+, forl < i < 2; f(vg*’) = 34+, forl <i < 7 flvg*t) =
47+, forl < ¢ < 7. Then the induced edge-labeling fg : E(G) —» Z* forms
the set A of consecutive and distinct integers A = UA; withi =1 to 9, where
Ay =1{3,4,...,11,13, ..., 16, 18, 21,..., 24, 26, 29, 34,..., 37, 39, 42,
47, 55,..., 58, 60, 63, 68, 76, 89} from the vertex labels of Ko; Ay = {17}
from the label of the vertex adjacent to vy; Az = {12, 26} from the label of
the vertices adjacent to vg; Ay = {32} from the label of the vertex adjacent
to v3; As = {28, 31, 52} from the label of the vertices adjacent to vy; Ag =
{19, 50} from the label of the vertices adjacent to vs; A7 = {33, 44} from
the label of the vertices adjacent to vg; Ag = {25,27, 30, 38, 40, 43, 45, 51,
53, 54, 64 to 67, 77 to 81} from the label of the vertices adjacent to vz; Ag =
{41, 46, 48, 49, 59, 61, 62, 69 to 75, 82 to 88} from the label of the vertices
adjacent to vg. Now define a bijection f; : V(G) U E(G) — {1,...,147}
by f1i(V(G)) = f(V(G)) and f1(E(G)) = {147,146,...,61}. Then one can
check that f; is a required labeling with the common edge count 150.

on

Theorem 2.4 Let G be an r—regular (p,q)(0,1) edge-magic graph. Then
a) ifr =1(mod 2), then p =2 (mod 4);b) if r =2 (mod 4) and p = 0 (mod
2), then G contains no component of an odd order; ¢) If p > 2, thenr > 2.

Proof. First observe that for an r-regular (p, ¢) graph G that k, = 2f(e) =
g(g+1),e € E(G) where k is the common edge count and g = rp/2 implies
r =1(1+rp/2)/2. Now to see that (a) is true, suppose that p = 0(mod 2).
Then k = r(1 + (rp/2))/2 implies that k is not an integer. But this is a
contradiction to the fact that the common edge count k is a sum of integer
labels of the edges of G. Further as the order of an odd regular graph is
even it follows that p = 2(mod 4). Now to see that (b) is true, let us assume
that G contains a component Cy of an odd order. Then from k = r(1 +
(rp/2))/2 it follows that k is odd. Hence k|V(C))| is odd. But then this
implies that k|V(Co)| = 23 f(e),e € E(Co), a contradiction. Now it is
easy to see (c) as a regular graph of degree one is magic if and only if it is
connected (ie., p is equal to 2) and a 2-regular graph is never magic.
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Ko

1 — 16, 24

2 — 10, 18, 31

3 — 29, 50

5 — 23, 26, 39, 47

8 — 11, 37, 42, 63, 76

13 — 60, 68

21 - 6,9, 17, 19, 22, 30, 43, 44, 56,
57, 58

34 — 7, 12, 14, 15, 20, 27, 28, 32,
33, 35, 36, 38, 40, 41, 48, 49, 51
to 54, 59, 61, 62, 64, 65, 69 to 75,
77 to 86, 90 to 107

55 — 4, 25, 45, 46, 66, 67, 87, 88

89

Table 1:

1 - 11, 16, 29, 37

2 — 18, 23, 26, 31, 52

3 — 50, 84

5 — 39, 47, 60, 68, 81

8 — 24, 42, 58, 63, 71, 73, 76, 97,
110, 131

13 — 6, 14, 32, 94, 102, 115, 118,
123

21 — 10, 19, 22, 27, 40, 53, 56, 57,
165

34 — 7,12, 15,17, 28, 33, 35, 36, 38,
48, 49, 54, 59, 61, 69, 70, 74, 75,
77 to 80, 82, 90 to 92, 95, 96, 98
to 101, 103, 116, 117, 119 to 122,
124, 136 to 143, 145, 157 to 164,
166, 178 to 187

55 — 4, 9, 20, 25, 30, 41, 43 to 46,
51, 62, 64 to 67, 72, 83, 85 to 88,
93, 104 to 109, 111 to 114, 125 to
130, 132 to 135, 146 to 156, 167
to 177

89

144

Table 2:
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1 — 16, 29, 42, 50

2 — 10, 18, 23, 31, 36, 52

3 — 84

5 — 26, 39, 44, 47, 60, 68, 81, 136

8 = 11, 24, 45, 58, 63, 71, 73, 76,
92, 97, 105, 110, 118, 123, 128,
131

13 — 15, 32, 37, 57, 65, 86, 94, 102,
107, 115, 149, 157, 170, 178, 204,
212

21 — 6, 19, 53, 139, 152, 165, 183,
186, 191, 199

34 =7, 12, 14, 27, 28, 33, 35, 48, 49,
54, 69, 70, 74, 75, 78, 90, 91, 95,
96, 99, 116, 117, 120, 137, 138,
141, 158 to 160, 162, 179 to 181,
K2 225, 246, 267

55 = 4, 9, 17, 20, 22, 25, 30, 38,
40, 41, 43, 46, 51, 56, 59, 61, 62,
64, 66, 67, 72, 77, 79, 80, 82, 83,
85, 87, 88, 93, 98, 100, 101, 103,
104, 106, 108, 109, 111 to 114,
119, 121, 122, 124 to 127, 129,
130, 132 to 135, 140, 142, 143, 145
to 148, 150, 151, 153 to 156, 161,
163, 164, 166 to 169, 171 to 177,
182, 184, 185, 187 to 190, 192 to
198, 200 to 203, 205 to 211, 213
to 224, 226 to 232, 234 0245, 247
to 266, 268 to 321

89 -
144 -
233 -
Table 3:
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