Oriented Diameter of Grids

Indra Rajasingh?, R. Sundara Rajan®, Rajesh MPand Paul Manuel®

2School of Advanced Sciences, VIT University, Chennai, India

bSchool of Computing Sciences and Engineering, VIT University, Chennai,
India

°Department of Information Sciences, Kuwait University, Safat, Kuwait
rajesh.m@vit.ac.in

Abstract

A grid is a large-scale geographically distributed hardware and soft-
ware infra-structure composed of heterogeneous networked resources owned
and shared by multiple administrative organizations which are coordi-
nated to provide transparent, dependable, pervasive and consistent com-
puting support to a wide range of applications. One of the major problems
in graph theory is to find the oriented diameter of a graph G, which is
defined as the smallest diameter among the diameter of all strongly con-
nected orientations. The problem is proved to be NP-complete. In this
paper we obtain the oriented diameter of grids.
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1 Introduction

A network is a graph with a collection of nodes interconnected by edges. The
distance d(u,v) between two vertices u and v in a graph G is the length of a
shortest path between them. The diameter d(G) of a graph G is the maximum
of the distances between pairs of vertices. An orientation O of an underlying
undirected graph G is a directed graph G(O) whose arcs correspond to assign-
ment of directions to the edges of G. A vertex v of a simple digraph is said
to be reachable from w if there is a directed path from u to v. In general, the
condition that u is reachable from v does not imply that v is also reachable
from u. A directed graph G is said to be strongly connected, if for every pair of
vertices of the graph, both the vertices of the pair are reachable from one an-
other. An orientation O is strongly connected if the induced digraph is strongly
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connected. The oriented diameter d(G) of a directed graph G is the smallest
diameter among the diameters of all strongly connected orientations of G.

In 1939, Robbins proved that every undirected graph G admits a strongly
connected orientation if and only if G is connected and bridgeless [3]. Strongly
connected orientations of graphs have been studied by Chvatal and Thomassen
[3, 4, 12]. If a graph G is thought of as the plan of the system of two-way
streets, then the orientations of G can be viewed as arrangements of one-way
streets. Applications also appear in network routing, broadcasting and gossip
problems [3, 7, 9]. A variety of interrelated diameter problems are discussed in
the literature [7]. Among interconnection network topologies, the grid has been
extensively studied because it has many advantages over other topologies, such
as short diameter, short average distance, simple connection method, ease of
routing, node symmetry and edge symmetry [6].

The term “Grid” was coined in the mid 1990s to denote a proposed dis-
tributed computing infrastructure for advanced science and engineering. Con-
siderable progress has since been made on the construction of such an infras-
tructure (e.g., [1, 10]), but the term grid has also been conflated, at least in
popular perception, to embrace everything from advanced networking to arti-
ficial intelligence [6]. Finding oriented diameter of a graph is NP-complete [8].
Fedor et al. have shown that finding minimum oriented diameter of chordal and
split graphs remain NP-complete and obtained approximated oriented diameter
of chordal graphs [5]. They have derived linear bounds for the oriented diame-
ter of AT-free graphs. Earlier, Chvatal and Thomassen studied the problem of
finding the largest oriented diameter among graphs of diameter d [4]. In this
paper we obtain the oriented diameter for grid graph.

2 Oriented Diameter of Grids

An orientation of an undirected graph G is an assignment of exactly one direc-
tion to each of edges of G. There are 2|1 orientation for G. Let O.(G) denote
the set of all orientations of G. For an orientation O € Oz, let G(O) denote the
directed graph with orientation O and whose underlying graph is G.

An orientation O of an undirected graph G is said to be strongly connected if
for any two vertices z,y of the directed graph G(O), there are both (z, y)-path
and (y,z)-path in G(O). Let O,(G) denote the set of all strongly connected
orientations of G [2].

Let d(G) denote the diameter of the directed graph G and d(G) denote the
diameter of the undirected graph G.

Definition 1. The oriented diameter d(G) = min {d(G(0)) : O € 0,(G)}
Theorem 2. For any graph G, d(G) > d(G).

Theorem 2 gives a lower bound for the oriented diameter of a graph G. In
this paper, we prove that the bound is sharp for grid networks.

Grid graph is a well known architechture with an infrastructure that bonds
and unifies globally remote and diverse resources in order to provide computing
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Figure 2.1: Grid M(m x n)

support for a wide range of applications. It has been used for parellel computing,
distributed supercomputing, high-throughput computing support, on-demand
computing support, collaborative computing support, data-intensive computing
support, multimedia computing support and VLSI layout [2].

Definition 3. [11] Let m and n be positive integers such that m < n. An
m x n grid graph M(m,n) is a graph where V = {(3,5)|1 < i <m,1 < j < n}
and E = {((,9), (5 + 1) : 1 <i<m1 <3 < n-1U{(Ga) (i + 1,9)) :
1<i<m-1,1<j < n}. See Figure 2.1.

Notations:

Rows of M(m x n) are oriented either from left to right (—) or from right to
left («+) and the columns of M(m x n) are oriented either from top to bottom
(4) or from bottom to top (1)). If v = (4,5), then v(—,l) indicates that row
i is oriented from left to right and column j is oriented from top to bottom.
Similarly v(—,1), v(¢,!) and v(+,1) are defined. Let d(u,v) be the distance
from u to v in a directed graph.

Grid Orientation Algorithm :
Input:  The grid graph M(m x n), m,n > 6.
Algorithm: Orient the edges in M(m x n) as follows:

Stepl:  Orient the rows 1 & 2 and m & (m — 1) from left to right and right
to left respectively. Orient the columns 1 & 2 and n & (n — 1) from
bottom to top and top to bottom respectively.

Step2: Orient the rows 3 to (m — 2) alternately from left to right and right
to left beginning with left to right.

Step3:  Orient columns 3 to (n — 2) alternately from top to bottom and
bottom to top beginning from bottom to top, see Figure 2.2.
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Output: Oriented diameter of m xn grid graph is d(M(mxn)) = d({M(mxn))=
n+m-2.

Figure 2.2: Orientation of M(6,8), d(v,u) = d(u,v)+2 and d(w, u) = d(u, w)+4.

Proof of Correctness:

Let u and v be the two distinct vertices in M(m x n).

Case (i): u and v are in the same row (column) _

In this case, d(u,v) < n—1 < m+n —2. Next to prove d(v,u) <n+m—2.
Let j be the column and ! be the distance between any two vertices » and v in
M(m x n).

Kj=1lor2and j+I=norn—1. Then!+2 < d(v,u) <!+ 4. Therefore,
d(v,u) <n+3<n+m-2.iffj=1or2and j+!<n-1, then d(u,v) = ! and
dv,u) <l+6<n+m-2.

On the otherhand, if j #1or2and j+!#norn-1,then { <n-2and
d(v,u) <! +8 < n+m — 2. Thus, d(u,v) and d(v,u) are at most m +n — 2.

Case (ii): u and v are in distinct rows (columns)

Let u = (i, §) and v = (i +k, j + ) be the two vertices in G with orientations
u(—,1) and v(«,l), respectively. Let P; be the path along the i** row from
u= (4,5) to (4,7 + [); P be the path along the (j + {)** column from (4,7 + ()
to (i + k,j +1). Again let Q; be the path along the (i + k)** row from v
= (i+k,j+1) to (i +,j) and Q2 be the path along j** column from (i + k, 7)
to u= (4,5). Now, P = P o P, and Q = Q; o Q2 are the paths from (i, j)
to (i + k,j + 1) and from (i + k, 5 + 1) to (,7) respectively. Then dp(mxn) =
a((¢,7), (4,7 + )+d((E,7 + D),G+ k,j+ )=l + k < n+m — 2. Similarly,
div,u) <n+m-2.

Let v = (4,7) and v = (i + k,j + {) be two vertices in G with orientations
u(—,4) and v(+, 1), respectively. Let R; be the path along the i** row from
u= (i,j) to (3,5 + [ + 1); R, be the path along the (j +{ + 1)** column from
(4,j+1+1) to (i +k,j+1+1). Again let S; be the path along the (i + k)**row
from (i +k,j+1+1) to (i+k,j— 1) and S; be the path along (j — 1)** column
from(i+k,j—1) to (i,7—1). Now, R= RjoRgpo((¢+k,j+1+1),(i+k,j+1))
and S = S 0 S3 0 ((i,7 — 1),(4,5)) are the paths from (¢,7) to (¢ + k,j + k)
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and from (i + k, j + k) to (3, j) respectively. Then das(mxn) = d((%,7), (4,5 +1 +
1)+d((5,7 + 1), (6 + k,7 + 1 +1))< n+m — 2. Similarly, d(v,u) <n+m -2
The worst case arises when d(u,v) is calculated when u(—,1) and v(—,1)
are in first row. In this case, « cannot be in the first 3 columns and v cannot
be in the n — 1 or n** column. Then d(u,v) = d(v,u) <n+m—2.
Proceeding in the same way, we see that d(u,v) and d(v,u) are at most
n+ m — 2 in all other cases.
The following theorem is an easy consequence of Grid Orientation Algorithm

Theorem 4. Let G be a M(m x n) grid, m,n >6. Then d(G) = d(G).

Proof. By Theorem 2, d(G) > d(G) = m+n—2. By Grid Orientation Algorithm,
we have d(G) < m + n — 2. Hence d(G) = d(G). O

3 Conclusion

In this paper we have been discussed oriented diameter of grids and proved that
oriented diameter of grid is exactly equal to the diameter of grid. The oriented
diameter problem is still open for multi-dimension of grid, cylinder and torus.
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