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Abstract

Eternal 1-secure set of a graph G = (V, E) is defined as a set
So C V that can defend against any sequence of single-vertex attacks
by means of single guard shifts along edges of G. That is, for any k
and any sequence vy, va,..., v of vertices, there exists a sequence of
guards u),u2,...,ur with u; € S;—; and either u; = v; or w;v; € E,
such that each set S; = (Si—1 — {u:}) U {v:} is dominating. It follows
that each S; can be chosen to be an eternal 1-secure set. 'The eternal
I-security number, denoted by o1(G), is defined as the minimum
cardinality of an eternal 1-secure set. This parameter was introduced
by Burger et al. [3] using the notation .. The eternal m-security
number 0., (G) is defined as the minimum number of guards to handle
an arbitrary sequence of single attacks using multiple-guard shifts.
A suitable placement of the guards is called an eternal m-secure set.
It was observed that ¥(G) < om(G) < B(G). In this paper we obtain
specific values of 0, (G) for certain classes of graphs namely circulant
graphs,generalized Petersen graphs, binary trees and caterpillars.
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1 Introduction

Burger et al. [2, 3], introduced a dynamic form of domination which has,
according to Goddard et al. [7], been designated eternal security.The con-
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cept calls for a fixed number of guards which are positioned on the vertices
of a graph G = (V, E), at most one to a vertex. A guard on a vertex w
can respond to an attack at a vertex v by moving along an edge from w
to v (assuming v does not already have a guard). Informally, if such a re-
sponse can be made no matter what vertex is attacked and if the changing
position of the guards can continue to respond forever, they say that the
guards form an eternally secure set.

Two versions of the eternal security problem were considered. In the
first version, which they call I-security, only one guard moves in response
to an attack; in the second, which they call m-security all guards can move
in response to an attack. The first version was introduced by Burger et
al. (2, 3], though being able to withstand two attacks with a single-guard
movement was explored in [4, 5, 11, 13, 14]. On the other hand, the idea
that all guards may move in response to an attack appears to have heen
considered only in [14].

They defined an eternal I-secure set of a graph G = (V, E) as a set
Sp C V that can defend against any sequence of single-vertex attacks hy
means of single-guard shifts along the edges of G. That is, for any k and
any sequence vy, vs,..., v of vertices, there exists a sequence of guards
U1, Uy, ..., ux with u; € S;_; and either u; = v; or u;v; € E, such that each
set S; = (Si—1 — {u;}) U {v;:} is dominating. It follows that each S; can be
chosen to be an eternal 1-secure set. They defined the eternal I-security
number, denoted by ¢,(G), as the minimum cardinality of an eternal 1-
secure set. This parameter was introduced by Burger et al. [3] using the
notation veg-

In order to reduce the number of guards needed for eternal security,
they consider allowing more guards to move. Suppose that in responding
to each attack, every guard may shift along an incident edge. The eternal
m-security number g, (G) is defined as the minimum number of guards to
handle an arbitrary sequence of single attacks using multiple-guard shifts.
A suitable placement of the guards is called an eternal m-secure set, they
call such a set a o,,-set of G. They observed that ¢,,(G) < 01(G), for all
graphs G.

A set S is a dominating set if N[S] = V(G) or equivalently, every
vertex in V — § is adjacent to at least one vertex in S. The domination
number y(G) is the minimum cardinality of a dominating set in G, and a
dominating set S of minimum cardinality is called a y-set of G. A set S is
a 2-dominating set if every vertex in V — § is dominated by at least two
vertices in S. The minimum cardinality of a 2-dominating sct is called the
2-domination number v2(G). A sct S of vertices is called independent if
no two vertices in S are adjacent. The independence number 3(G) is the
maximum cardinality of a independent set in G.

Wayne Goddard et al. [7] have proved that v(G) and B(G) are lower
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and upper bounds of o,,,(G) respectively for any graph G. They have also
proved that the 2-domination number v2(G) of a graph is also an upper
bound for o, (G). Further they have found the value of 0,,,(G) when G is
a path, cycle, complete graph, and complete bipartite graph. More results
related to these parameters o;(G) and o (G) are found in (1, 9, 10]. In
[15] we have characterized trees and split graphs for which 0,,(G) = ¥(G).
Further we have also characterized trees, unicylic graphs and split graphs
for which 0,,(G) = B(G). Wayne Goddard et al. [7] also have proved
that ¢,,(G) = v(G) when G is a Cayley graph and they have mentioned
that 0,,(G) = ¥(G) is probably true for any vertex transitive graph. In this
paper we disprove this statement by way of proving that certain generalized
Petersen graphs are such that ¢,,(G) > v(G).

In this paper we obtain specific values of 6,,(G) for certain classes of
graphs namely,circulant graphs, generalized Petersen graphs, binary trees
and caterpillars.

2 Notations

Let G = (V,E) be a simple and connected graph of order |V| = n. For
graph theoretic terminology we refer to Harary [8]. For any vertex v € V,
the open neighbourhood of v is the set N(v) = {u € V : wv € E} and the
closed neighbourhood is the set N[v] = N(v) U {v}. For a set S C V, the
open neighhourhood is N(S) = U N (v) and the closed neighbourhood is

veES
N[S] = N(S)uUS. The external private neighbourhood epn(v, S) of a vertex

v € S is defined by epn(v,S) ={ue V-S: N@u)nS = {v}}.

A vertex of degree one in a graph is a pendant vertez (a leaf). A vertex
of G adjacent to pendant vertices is called a support. We call a support
vertex adjacent to exactly one pendant vertex a weak support and a support
vertex adjacent to at least two pendant vertices a strong support.

A connected graph having no cycle is called a tree. A rooted tree is a tree
in which one of the vertices is distinguished from others. The distinguished
vertex is called the root of the tree.

A graph G is k-partite, k > 1 if it is possible to partition V(G) into k&
subsets. V1, Va,..., Vi (called partite set) such that every element of E(G)
joins a vertex of V; to a vertex of Vj, i # j. If G is a 1-partite graph of
order n, then G = K,,. For k = 2, such graphs are called bipartite graphs.

3 Circulant Graphs

The circulant graph C,,(S.) is the graph with the vertex set
V(Cn(sc)) = {'Ui :0<i<n— 1} and the edge set
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E(Cn(S:)) = {viv; : 0<4,7<n—1,( - j)(mod n) € Sp}.
S. C€{1,2,3,..., IJ%]} where subscripts are taken modulo n.In this section
we find the value of o,, for the circulant graphs C,(1,2) and C,(1,3).

Theorem 3.1. For any integer n > 5, 0m(Cn(1,2)) = [£].

Proof. Let G = C,(1,2) and V(G) = {v1,v2,...,Un}.

We know that v(G) = [%]. Therefore, om(G) > [2]. Define S = {vsk—4 :
k=1,2,3,...,[2]}

Let v; € S. If there is an attack at v;4, or v;—;, then the guard at v; will
respond to it and the guards at the other vertices in S say v; will move to
vj+1 or vj_y accordingly so that one can eternally respond to any attack.
If there is an attack at v; 2 or v;_2, then the guard at v; will respond to it
and the guards at the other vertices in S say v; will move to vj42 or vj_2
accordingly so that one can eternally respond to any attack. Hence we see
that S is a op-set of G. Therefore 0,n(G) = [%].

Figure 1: 06,,[C11(1,2)] =3

Now we state a theorem proved by Nader Jafari Rad [12].
Theorem 3.2. [12] For any integer n > 6,

[%} ) n # 4(mod 5)

Y(Cn(1,3)) = {l’%'l +1, n=4(mod 5).

Theorem 3.3. For any integer n > 5,

om(Cn(1,3)) = {r] n = 4(mod 5)

o3 o

] otherwise.

Proof. Let G = C,(1,3) and V(G) = {v1,v2,...,va}. By Theorem 3.2

-

]l +1, n=4(mod 5)
1, otherwise.

om(G) 2 {{

o3 ol



Case (i) n = 4(mod 5).

Define S = {vgr_4 : £ =1,2,3,...,[E]}U{vn_1}. Letv; € S. Ifthere is an
attack at v;4; or v;_;,then the guard at v; will respond to it and the guards
at the other vertices in S say v; will move to v;4) or v;_1 accordingly so
that one can eternally respond to any attack.

If there is an attack at v;;3 or v;_s, then the guard at v; will respond
to it and the guards at the other vertices in S say v; will move to v;43 or
vj_3 accordingly so that one can eternally respond to any attack. Hence
we see that S is a o,,-set of G. Therefore o,,(G)) = [2] + 1.

Case (ii) n # 4(mod 5).
Define S = {usr—q : £ =1,2,3,..., [%]} As in Case (i) we see that S is a

om-set of G. Hence 0,n(G)) = [%].

Figure 3: ¢,,(C12(1,3)) =3
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Corollary 3.4. If G is Cp(1,2) or Cpn(1,3), then 6,(G) = ¥(G).
Proof. The proof follows from Theorems 3.1 to 3.3.

4 Generalized Petersen Graphs

The generalized Petersen graph P(n, k) is defined to be a graph on 2n ver-
tices with V(P(n, k)) = {vi,u; : 1 < i < n} and E(P(n, k)) = {viviq1, vivi, vitiy
1 < i < n} subscripts taken modulo n + 1. In this section we find the value
of o, for the generalised Petersen graphs P(n,1) and P(n,2).

We state the following theorems proved by B.J. Ebrahimi et al. [6].

Theorem 4.1. [6] For any integer n > 3, y(P(n,1)) = [$] + 1 when
n = 2(mod 4) and ¥(P(n,1)) = [§] when n =0,1,3(mod 4).

Theorem 4.2. [6] For any integer n > 4, ¥(P(n,2)) = [32].

Theorem 4.3. For the generalized Petersen graph G = P(n, 1),

n =
om(G) = [31+1, n= 2(vr.wd 4)

21, otherwise.
Proof. Let C; and C; be the two disjoint cycles of G, and let V(C)) =
V1,02, ...,Un and V(C3) = uy,us,...,u,y. Since 6,(G) = ¥(G), by Theo-
rem 4.1 we have,
[31+1, n=2(mod4)
[51

, otherwise.

Om [G] P {

Let Sy = {var41:0<t < 3}, So = {vgr43: 0 <t < §}.
Definc S as follows:

Sy U 8,, n = 0(mod 4)
5 S1U Sy U {v,}, n = 1(mod 4)
S;uUSU {vn_l,u,,}, n= 2(moti 4)
S1U S U {u,}, n = 3(mod 4).

Now, we claim that S is a o,-set of G. Let v € SN C,. If v has to
respond to an attack at a vertex on Cj, then the guard at v moves either
in the clockwise or anticlockwise direction in C; whereas all the guards at
the vertices of $ N C; and S N Cy move in the clockwise or anticlockwise
direction respectively. If v has to respond to an attack at a vertex in Cs,
then the guards at S N C; move to the cycle Cy whereas the guards at
SN Ca move to the cycle C;. Hence we see that the guards at the vertices
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Figure 4: 0,,(P(14,1)) =8

Figure 5: 6,,(P(17,1)) =9

of S can eternally respond to any attack. Hence when n = 2(mod 4),
om(G) = |S1|+152|+2 = |§] + 3] +2 = [3] +1 and when n # 2(mod 4),
om(G) =[5].

Corollary 4.4. For the generalized Petersen graph G = P(n,1), 0,,(G) =
v(G).

Proof. The proof follows from Theorems 4.1 to 4.3.
Theorem 4.5. For the generalized Petersen graph G = P(n,?2),

om|G] = [3]+1, n=0,3(mod 5)
TR, otherwise.

Proof. Let V(G) = {vl,vz,...,vn,ul,ug,....,u,,}, where u;v; € E(G),
1 <4 < n. Now, by Theorem 4.2, 0,,[G] 2 [%*]
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When n = 0,3(mod 5), let S = {vse41, uss, ust2,: 0 < t < |§]} where
Ug = u, be a y-set of G. Here u; is a non private neighbour of S. If there
is an attack at u,, then the guard at v; or u, or us responds to it.

Figure 7: 0,,(P(16,2)) = 10

If the guard at u, responds to it, then us — uy, u, = Wy = Up—1;
vy — V3.
If the guard at u,, responds to it, then w, — w1, v1 = ¥p-1, U2 = ug.
If the guard at vy responds to it, then v; = ug, ¥, = up—1, us — ug.
In all the above movements of guards, we see that when n = 0(mod 5),
vg and v, are undefended and when n = 3(mod 5), v2 is undefended.
Hence om(G) > [32].
SU{v}, n=0,3(mod 5)
S, otherwise.
We claim that S’ is a g,,,-set of G.
Letv; € §'. Let Vi = S'N{vy,va,...,vn} and Vo = S8'0{uy,uz,...,un =
up}. If there is an attack at v;42 or v;_2 and the guard at v; has to respond

Now define S/ =
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Figure 9: 0,,,(P(18,2)) =12

it and the guards at V), will move either clockwise or anticlockwise along
one edge each, whereas the guards at V2 (if necessary) will move in such a
way that ve,ue_1,us41, 1 £ S < [2] are equipped with guards. In this
way one can eternally respond to any attack.

Similarly, if there is an attack at u; € S’ then the guards in S’ move in
such a way that vy, ug_1, U441, 1 £ § < [%] are equipped with guards so
that one can eternally respond to any attack.

Corollary 4.6. For the generalized Petersen graph G = P(n,2),

Y(G)+1, n=0,3(mod 5)

m(G) =
m(C) {’y(G), otherwise.

Proof. The proof follows from Theorem 4.2 and Theorem 4.5.
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5 Binary Trees

A complete binary tree is a rooted tree in which all leaves have the same
depth and all internal vertices have degree three except the root vertex
which is of degree two. If T is a complete binary tree with root vertex v,
the set of all vertices with depth k are called vertices at level k. In this
section, we find the value of 0, (T) for a complete binary tree.

Theorem 5.1. For any binary tree T of level k,

(2% —1) for k = 0(mod 3)
om(T) = ¢ 3(2¥ - 1) for k= 1(mod 3)
32 - 1) for k =2(mod 3).

Proof. Let S; be the set of vertices in level i. Then |S;| = 2¢~'. Now at
least 21 guards are needed to safeguard the set of vertices Sk U Si_; U
Si—2 and at least 2¥—4 guards are needed to safeguard the set of vertices
Sr-3USk_qUSk_5 and so on.

Now we define

SpUSK_3U --US; if k EO(‘mod 3)
S=¢85,US_3U---US4US; if k=1(mod 3)
S USk_3U---US5US, ikaQ('modZ})

Then S is a 0,,-set of T.
Hence

ok=1 4 ok—d 1 ... 192 if k= 0(mod 3)
om(T) =21 4264 4 ... 420 if k= 1(mod 3)
ok=1 4 9k=4 1 ... 42l if k= 2(mod 3).
Case (7): k = 0(mod 3).

om(T) =281 4 2k=4 1. 492

22
= —7—(2’" —-1)
- 4?(2" ~1).
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Case (i7) k = 1(mod 3).

on(T) = 20 1 93 4 ... 4 ok—1 4 ok-1
(25 -1

28-1
2k+2_1

7
4,, 1
= =2 - ).

Case (iii) k = 2(mod 3).

om(T)y=2F"142k4 ... 4214 9!
22 -1

231
4, 1
=72 _2)'

6 Caterpillar

A caterpillar is a tree T with the property that the removal of the end-
vertices of a tree results in a path. This path is referred to as the spine of
the caterpillar. We now proceed to find the value of 0,,(T) when T is a
caterpillar.

First we state a Theorem proved by Wayne Goddard et al. [7]

Theorem 6.1. [7] 0,,(P,) = [2].

Theorem 6.2. Let T be a caterpillar such that every vertex on the spine
is a support. Then

t, if every vertex on the spine is a weak support
t+ 1, otherwise,

on(T) = {

where t is the number of vertices on the spine of T'.

Proof. Let T be a caterpillar such that every vertex on the spine is a
support and ¢ be the number of vertices on the spine of T. Suppose every
vertex on the spine is a weak support, then clearly o, (T) = t.

Suppose at least one vertex on the spine is a strong support.Let v be
a strong support of T. Let S be the set of all supports of T. Now S
is a y-set of T. Since |epn(v,S)| > 2. The guard at v cannot respond
to two successive attacks at the eternal private neighbours of v. Hence
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AT NA

Figure 10: A caterpillar T with 0, (T) =7

om(T) > ¥(T). Now we claim that SU {z} where z is a leaf adjacent to a
strong support in T is a o,,-set of T

Now, if there is an attack at any leaf, then the guard at the corre-
sponding support vertex responds to the attack and the remaining t guards
move in such a way that all the spine vertices are equipped with guards
(Refer Figure 10). Hence one can eternally respond to any attack. Hence
0m(T) =t + 1 which proves the theorem.

Now in order to find the value of ¢,,(T) when T is a caterpillar with
at least one non-support vertex on the spine, we define a collection 7 of
caterpillars as follows: A caterpillar T € T, if every vertex on the spine is
a support with at least one strong support. Consider a caterpillar T. Let
Hy.H,,...,H, be subgraphs of T which are in 7 and n; be the number

S

of vertices on the spine of H;, 1 < 1 < s. Define S) = U V(H;) and

i=1
Sy = {z : 2 ¢ S,andz is a weak support or z is a leaf adjacent to a weak
support}. Now let T} = V(T)\(N[Si] U S2) and Q1,Q2,...,Qr be the
components of T) which are paths. We now consider a weak support z on
T to be an artificial strong support, if z is adjacent to vertices of @, and
@b, 1 <a,b <7 of T} and hoth Q, and @Q; are of even length (Refer Figure
11).

Figure 11: A caterpillar with subgraphs H; € 7,1 <i<3

Theorem 6.3. Let T be a caterpillar with at least one vertex on the spine
of degree 2. Then

om() = 341+ 30 [A2LEL] 4 o
. 2

=1
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where W is the set of all weak supports which are not artificial and H;, n;,
1<i<s, 85, 8, Q;, 1 Lj<r are as defined earlier.

8
Proof. Let S = U V(H;). By Theorem 6.2, exactly Y_;_,(n: + 1) guards
i=1
are needed to safeguard vertices in N[S]. Further these }";_;(n;+1) guards
cannot move to the vertices in V(T')\N[S]. Now consider the path compo-
nents @;, 1 < j <r. By Theorem 6.1,0,,(Q;) = [ﬂg)—ﬂ.', 1<j<r. If2
is an artificial strong support of T, then by definition, the path components
say Qa, @b, 1 € a,b < 7, which are adjacent to z are of even length. Hence
the vertices of @, and @, which are adjacent to z will receive one guard
each and these two guards will safeguard the vertices of N|[z]. The rest of
the weak supports which are not artificial clearly need one guard each.
Hence

om(T) =3 i+ 1)+ [”(Q—fz)i—ﬂ + WL,

i=1 Jj=1
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