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Abstract

Unlike an ordinary fuzzy set, the concept of intuitionistic
fuzzy set (IFS), characterized both by a membership degree
and by a non-membership degree, is a more flexible way
to capture uncertainty. In this paper we have classified the
states of intuitionistic Markov chain (IMC) (1] and analyzed
the long-run behavior of the system.
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1 Introduction

Fuzzy Markov model has been defined and is being widely used
in [2]-[4]. It has been asserted by many authors that there are a
large number of life problems for which intuitionistic fuzzy set (IFS)
theory is a more suitable tool than fuzzy set theory for searching
solution. For example, in decision making problems, particularly
in the case of medical diagnosis, etc. Intuitionistic fuzzy set theory
(IFS theory) introduced by K.Atanassov [5], is a significant exten-
sion of fuzzy set theory. Fuzzy sets can be viewed as intuitionistic
fuzzy sets but the converse is not true. Intuitionistic Markov Chain
(IMC) is proposed on intuitionistic possibility space in [1]. To know
more on IMC, we refer the readers to [1].

In this paper we have classified the states of IMC and analyzed
the long—run behavior of IMC.
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Definition 1. Let X be an universal set. For an intuitionistic
fuzzy sets A; = {(z, pa,(z),v4,(2))|z € X} = (pa,,va),t € I the
meet A and join V operators [6] are defined by

(LA, va) A (#A,-, VA,-) = (min(pa,, MA,-), max(vy,, VAj))
(NANVA:‘) v (I'LAjiuAj) = (ma‘x(u’An/J'Aj)’min(VAnVAj))

In the following section we have classified the states of an IMC.

2 Classification of states of an IMC

Consider an IMC with n states and let us see some notations to
classify the states of an system.

Definition 2. Intuitionistic possibility for the first time visit
to state j from state i (initial state) at the n*® step is denoted by
pij(n) = (H5:5(n)s Y5i;(n))- Then, the intuitionistic possibility of ever

reaching the state j from state ¢ is given by ‘iij = sup, [p;;(n)]

Definition 3. A state i is said to be recurrent iff starting from
1, the process eventually returns to state i. i.e., p; = (1,0).

Example 1: Consider a IMC with the transition diagram as

Figure 1: Transition Diagram

For n = 1, peo(1) = (0, 1)
For n = 2, there exist a path 0 = 1 — 0. Then

Poo(2) = min(Po1,P10)
= min((l,O),(l,O))
= (L,0)

Forn =3, thepathis0 -2 —>1—0(or) 0 =2 — 3 — 0. Hence
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Poo(3) = min(Poz, P21, P10) or min(Poz, P23, P3o)
in[ (0.2,0.6) (0.5,0.4) (1,0)]
= ma"{ m;::in[ (0.2,0.6) (1,0) (1,0) ] }

0.2,0.6
= ma"{ go.z,o.sg }
= (0.2,0.6)
Therefore
f:1300 = mfx@OO(n))
= max((0,1),(1,0),(0.2,0.6), )
= (150)

Hence the state ‘0’ is a recurrent state. Similarly state ‘1’ is also
recurrent. It is observed that to get P;; =(1, 0) for at least one n,

pi(n) = (1, 0). pi(n) = (1, 0) is possible only when all the edge

values in its corresponding path are equal to (1, 0). Forn > 1,
Paz2(n), p3s(n) do not have such paths and therefore Bao (n), ‘1333 (n)
are not equal to (1, 0). Hence the states ‘2’ and ‘3’ are not recurrent.

In the probability space, positive recurrent is defined in terms
of mean recurrence time whereas it is not in the case in IMC. If we
define the mean recurrence time for a recurrent state ¢ as

fi; = sup [inf(n, pa(n))]
n

since the n values are positive integers and clearly we get
inf [n, Pu(n)] = pa(n)

provided n # 0. Hence, m; = sup, [pu(n)] = ":f!,-i = (1,0) which
is always finite. Hence the positive recurrence for a state of IMC is
defined as follows.

Definition 4. A recurrent state  is said to be positive recur-
rent if the process returns to state ¢ in a finite number of transitions
(n).

In Example 1, the process returns to state ‘0’ starting from
‘0’ and returns to state ‘1’ starting from ‘1’ in a finite number
of transitions, n=2. Hence the recurrent states 0, 1 are positive
recurrent.

Definition 5. A recurrent state is null recurrent if the number
of transitions (n) that the process takes to return to i is infinite.
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Definition 6. A state ¢ is transient iff there is an intuitionistic
possibility for the process that are not returning to state ¢, i.e., B;; <
(1,0).

From the Example 1, it is clear that B, Pas are less than (1,
0). Hence the states ‘2’, ‘3’ are transient states.

The theorem proved in 7] states that “the powers of the fuzzy
matrix A either converge to idempotent A™ where m is a finite
number or oscillate with a finite period v starting from some finite
power”. Since the intuitionistic transition possibility matrix P is
a fuzzy matrix using composition of intuitionistic fuzzy relations
we can find its higher powers therefore this theorem holds for P.
Aperiodic IMC is defined as follows.

Definition 7. If the powers of the intuitionistic transition
possibility matrix P converge in n steps to a non-periodic solution,
then the associated IMC is said to be aperiodic.

Example 2: Consider the IMC with state space {A, B,C} as
follows.

P= (0.0,1.0) (0.4,0.3) (1.0,0.0)
(0.2,0.6) (0.0,1.0) (1.0,0.0)
A B c
A [ (03,04) (0.4,0.3) (1.0,0.0)
[ (1000)}
(

A B C

A [(03,04) (1.0,0.0) (0.2,0.6)
B
c

PP=P*=...= B | (0.2,06) (0.4,0.3)
C | (0.2,0.6) (0.2,0.3)
Hence the corresponding IMC is aperiodic.
Definition 8. A state i is said to be an absorbing state iff
P = (1,0) and p;; = (0,1) for i # 5.
Example 3: Let the transition possibility matrix of a IMC with
state space {1,2 3} be

1 3
[(1000)(0503)(0404)}

1.0,0.0)

ﬁ_2 (0.0,1.0) (1.0,0.0) (0.0,1.0)
3 | (1.0,0.0) (0.1,04) (0.3,0.2)

Since pay =(1.0, 0.0) and Pg; = Pz =(0.0, 1.0), thus the state ‘2’ is
an absorbing state.

Definition 9. An IMC is said to be irreducible, if for every
pair %, j, there exist an integer n > 1, such that p7; > 0.
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Consider the IMC in Example 2 in which the state space is {A,
B, C}. From the entries of P, it is observed that there is link
between every pair of states except BA and CB. But in P?, we get
BA=(0.2, 0.6) and CB=(0.2, 0.6). Hence every state is reached
from every other state and the corresponding IMC is irreducible.

To know the performance of the system we need to know its
long-run behavior. Hence in the following section we have analyzed
the system’s behavior during long-run.

3 Long—Run Behavior of IMC

Consider the intuitionistic transition possibility matrix P and let 7
be the long-run behavior of states of the system. If the composmon
of P and 7 gives P’ and when P’ equals 7, then we say that 7
is an eigen fuzzy set associated with the given tramsition matrix
P. By using composition of intuitionistic fuzzy relation we can
compute the greatest and least eigen fuzzy set associated with P
for membership and non-membership degree respectively.

Algorithm:

Consider P C X x X with membership function p 5(z,2’) and non-
membership function vz(z,z') are given.

1. Find the set A,, B, defined by
pa,(z') = mea}‘l‘ﬁ(x’x')’v eX
v, (z') = mip ve(z,z'),Vaz' € X

2. Set theindex n =1
3. Calculate A,y = A, 0 P and B,.1=B,o0 P

—+Non=n+1, gotostep 3
— Yes A4y = An

—+Non=n41, gotostep 3
— Yes B,y =By

The above greatest and least eigen vectors for membership and non-
membership degree function are independent of the initial vector
and these vectors help us to know the steady state behavior of the
system after long—run.

4. Apy1 = An Similarly,

Bn+1 = Bn
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Example 1:
1

2

3

4

(0.3,0.1) (0.4,0.2) (0.0,0.9) (0.4,0.3)

P=

1
2| (0.6,0.3) (0.7,0.3) (0.5,0.2) (0.5,0.3)
3| (05,02) (0.6,0.2) (0.4,0.4) (0.8,0.1)

4| (0.8,01) (0.2,0.2) (0.6,0.3) (0.3,0.0)

The membership degree matrix pp and non-membership degree

matrix vp is given below

1 2 3

1] 03 04 00

2| 06 07 05

HE= 3| 05 06 04

4| 08 02 06

1 2 3

1[ 01 02 0.9

L. _ 2| 030302

~ 3] 02 02 04

Forn=1, 4] 01 02 03

A = [08 07

A=A 0P = [08 07

As=A,oP = [0.6 0.7

A;j=As0P = [06 07

B, = [01 02

By=BioP = [01 02
which implies As = As
B, = B

4
0.4
0.5
0.8
03

4
0.3
0.3
0.1
0.0

0.6
0.6
0.6
0.6

0.2
0.2

-

0.8 ]
0.6 ]
0.6 ]
0.6 ]

0.0 ]
0.0 ]

Combining these two eigen vectors we get the steady state vector

of IMC to be

#= ((0.6,0.1) (0.7,0.2) (0.6,0.2) (0.6,0.0))
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4 Conclusion

In this paper, we have classified the states of an IMC and presented
an algorithm to find greatest and least eigen vector for membership
and non-membership degree matrix to analyze long-run behavior
of the system.
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