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Abstract

A kernel in a directed graph D(V, E) is a set S of vertices
of D such that no two vertices in S are adjacent and for every
vertex u in ¥/ S there is a vertex v in S, such that (4, v) is an
arc of D. The problem of existence of a kernel itself is NP-
complete for a general digraph. But in this paper we solve
the strong kernel problem of certain oriented networks in
polynomial time.

1 Introduction

The concept of kernel is widespread and appears in diverse fields such as logic,
computational complexity, artificial intelligence, graph theory, game theory,
combinatorics and coding theory [3, 4]. Efficient routing among a set of mobile
hosts is one of the most important functions in ad hoc wireless networks.
Dominating-set-based routing to networks with unidirectional links is proposed in
[1, 14]. A few years ago a new interest for these studies arose due to their
applications in finite model theory. Indeed variants of kernel are the best
properties to provide counter examples of 0 — 1 laws in fragments of monadic
second order logic [13].

A kernel [8] in a directed graph D(V, E) is a set S of vertices of D such that no
two vertices in S are adjacent and for every vertex # in ¥\ S there is a vertex v in
S, such that (¥, v) is an arc of D. The minimum cardinality of all possible kernels
in a directed graph D is denoted by x(D) and is called the kernel number. The
concept of kernels in digraphs was introduced in different ways [15]. Von
Neumann and Morgenstern [21] were the first to introduce kernels when
describing winning positions in 2 person games. They proved that any directed
acyclic graph has a unique kernel. Not every digraph has a kernel and if a digraph
has a kernel, this kernel is not necessarily unique. For example, the directed 3-
cycle (with vertices x, y, = and arcs (x, ¥), (3, 2), (2, x)) has no kernel. All odd
length directed cycles and most tournaments have no kernels [3, 4]. If D is finite,
the decision problem of the existence of a kernel is NP-complete for a general
digraph {7, 16, 20] and for a planar digraph with indegrees < 2, outdegrees < 2 and
degrees < 3 [9]. Finding kernels in special classes of digraphs seems to be an open
field of study. It has been shown [5] that the kernel problem is solvable in
polynomial time for locally semicomplete digraphs, in which the out-neighbours
(in-neighbours) of every vertex are adjacent. Kernels in some classes of planar
digraphs were investigated in [6]. It is further known that a finite digraph all of
whose cycles have even length has a kernel [18], and that the question of the
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number of kernels is NP-complete even for this restricted class of digraphs [19]. It
is somehow related to finding a maximum clique in graphs {11, 12], which is
known to be difficult for random dense graphs. This sufficient condition for a
digraph to have a kernel has been generalized by several authors [4, 5].

In this paper we view the kernel problem from a different perspective. In the
literature, only the existence of kernel of a digraph G and its applications are
extensively studied. Qur aim in this paper is to investigate all strong orientations
of a graph G and to determine the strong kernel number of G. This number is
different from the independent domination number y; for undirected graphs where
y; is the cardinality of a minimum independent dominating set [2]. For the graph in
Figure 1 (a) I' = {3, 4} is an independent dominating set. Thus y; = 2 where as it is
easy to verify that the kernel number is 3.

17
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Figure 1: (2) y; = 2; (b): Kernel number =3

2 Kemel in Oriented Graphs

An orientation of an undirected graph G is an assignment of exactly one direction
to each of the edges of G. There are 2™ orientations for G. An orientation O of an
undirected graph G is said to be strong if for any two vertices x, y of G(O), there
are both (x, y)-path and (y, x)-path in G(O) [22].

Let G be an undirected graph. Let O,(G) denote all possible orientations of a
graph G and O(G) denote the set of all strong orientations of G. For an orientation
O€0,, let G(O) denote the directed graph with orientation O and whose
underlying graph is G. The kernel number of G(O) is denoted by x(G(0)). For
convenience we write as x(0).

Definition 2.1[8]: A kernel in a directed graph D(V, E) is a set S of vertices of D
such that no two vertices in S are adjacent and for every vertex u in V| Sthere is a
vertex v in S, such that (¥, v) is an arc of D. The minimum cardinality of all
possible kernels in a directed graph D is called the kernel number and is denoted

by x(D).

Definition 2.2: The kernel number «; of G is defined as x(G) = min{x(0): O €
0.(G)} where k(0) = min{|K]|, K is a kernel of G(0)}.

Definition 2.3: The strong kernel number «; of G is defined as x,(G) = min{x(O):
O € O(G)} where kx(0) = min{|K]|, K is a kernel of G(0O)}.

The strong kernel problem: The strong kernel problem of an undirected graph G
is to find a kernel X of G(O) for some strong orientation O of G such that |K| = k.

An optimal lower bound for x,(G) when G is a regular graph has been obtained in
[17] and it is the key result used throughout this paper.

Theorem 2.1[17]: Let G be an r — regular graph on n vertices. Then x> [n/r].
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3 Strong Kernel in Oriented Mobius Ladder M,

In this section we determine the strong kernel number of Mobius Ladder M,

Definition 3.1[10]: The Mobius Ladder M, is the graph obtained from the ladder
P, x P, by joining the opposite end points of the two copies of P,.

Remark 3.1: For convenience, we label the vertices of one copy of P, as 1, 2, ...,
n and the other copy of P, as nt1, n+2, ..., 2n. |V] = 2n. See Figure 2.

2 3 4 n-1 n
// \N
ntl 2 a3 nHd 2n-1  2n

Figure 2: Mobius Ladder M,

Lemma 3.1: Let G be the Mobius Ladder M,. Let thecycle C=1, 2, 3, ..., n-1, n,
2n, 2n-1, ..., n+2, n+1, 1 be oriented in the clockwise direction. All the other edges
are oriented arbitrarily. Then G is strongly connected.

Proof: For u, v € V(G), 1 <u, v <2n, we claim that G is strongly connected. Since
C is oriented in the clockwise direction, there exist directed paths from u to v and
v to u. Thus G is strongly connected.

Theorem 3.1: Let G be M, n> 4. For n=1(mod3), «, = [%’1] )

Proof: Consider an orientation O of G satisfying the following condition.
I. Orient the cycle C in the clockwise direction.

2. Let g _ {2,5,8,1 13[% J-l} U{n,n+3,n+6,...,n+3[§ J}

By Lemma 3.1, the orientation O is a strong orientation of G. Since G is strongly
connected, there is at least one incoming and one outgoing edge at every vertex of
K. Thus to prove that X is a kernel, it is enough to prove that X is independent.
Two vertices r and s of G are adjacent if and only if
@) r-sl=1,(rs) e (i,i+l), 1 <i<2n-1
(ii) |r— s| = 2n-1, (r, 5) € (1, 2n)
(iii) r—s|=n, (r,s) € (i, n+i), 1 <i<n

Choose any two vertices from K. Suppose we choose u=3i~1andv =n+3;,

n

1<is [;J 0<j< EJ Since|(n+3/)-@Gi-1)|=|n+3(j-)+]#n, uand v

are not adjacent.

We next claim that |K|= [%n_] We verify the claim when X is as in 2. Since n=1

(mod 3), n=3k+ 1 for some £.
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Let k=K, UKk, where K, = {2,5,8,1 l""'?{ﬁj- 1} and
3
Ky= {n, n+3,n+6,. . .n+ 3[§J} . The cardinality of' K,is l%J .

Similarly |K;| =[§] . See Figure 3.

Hence |K] = |K| +|K2| = [—}j - m = [3321 .

3
‘Q% el > Ll Ll <
'\
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/
by N ) 11 12 4

Figure 3: Encircled vertices form a kernel

Theorem 3.2: Let G be My, n = 4. Forn #1(mod3), there exist a kernel X of M,

such that |K| = x, (M”)+]=[%-‘+l.

Proof: Let M, be oriented as in Lemma 3.1. Since G is strongly connected regular
graph, by theorem 2.1, x 2 [2331 i

Case 1: n=0(mod3)
The independent set K ={1,4,7,....n-2} U {n+2,n+5,n+8,...2n -1} U{n)

forms a kernel for M,. Thus |K] =§+—;’-+1 = —3—+1 )

Case 2: n=2(mod3)
The independent set g _ {2'5'8'11""’3[£J - l} U {n-1, n+1, 2n}
3

v {n +3,n+6,., n+ 3{%‘” forms a kernel for M,. Thus |K| =P3ﬂ]+l.

The proofs for both the cases are similar to that of Theorem 3.1.
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4 Strong Kernel in Oriented Circular Ladder CL(n)

In this section we determine the strong kernel number of Circular Ladder CL(»).

Definition 4.1[10]: A circular ladder CL(n) is the union of an outer cycle ['o= {u,,
Uy, ..., Uy, w1} and an inner cycle I = {vy, v, ..., Vo, |} With additional edges (u;,
v), i= 1,2, ..., ncalled spokes.

Remark 4.1: For convenience u;, uy, ..., #¥nare represented by 1, 2, ..., nand v;, vy,
vy Vo by m+1, 042, ..., 2n respectively. For 1 <, j < n, we call the oriented spoke
(t,n + 1), an inward spoke and the oriented spoke (n + J,) an outward spoke. See
Figure 4.

Inward spoke

Outer cyclelg

Inner cycle [

>0 d spoke

Figure 4: CL(9), (2,11) and (14,5) represent inward spoke and outward spoke
respectively

Lemma 4.1{10]: Let G be the circular ladder CL(n), n > 4 with an inward spoke
and an outward spoke. Let the outer cycle I'g and the inner cycle I} be oriented in
the clockwise and anticlockwise direction respectively. All other spokes are
oriented arbitrarily. Then G is strongly connected.

Theorem 4.1: Let G be CL(n), n> 4. For n#1(mod3), x_ = [2_”] .
: 3

Proof: Consider an orientation O of G satisfying the following condition.

1. Orient the outer cycle I'o and the inner cycle I in the clockwise and

anticlockwise direction respectively.

2(a)Let K = {14,7,..,n=2} U{n+2,n+5,n+8,..2n—1} when n=0(mod3).
(b)y Let K= {1,4,7, ., n-1} U {n+2,n+5 n+38, .. 2n} when

n=2(mod3).

By Lemma 4.1, the orientation O is a strong orientation of G. Since G is strongly

connected, there is at least one incoming and one outgoing edge at every vertex of

K. Thus to prove that K is a kernel, it is enough to prove that X is independent.

Two vertices r and s of G are adjacent if and only if

D r-sl=L1<r,s<nn+tl<r,s<2n

@ii) Jr—s|=n-1,(r,s) € (n, 1) & 2n, n+1)

(iii) Jr—s|=n,(r,s) € (i,nt), 1<i<n
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Choose any two vertices, one vertex on the outer cycle I'p and another vertex
on the inner cycle I't. Suppose we choose ¥ =3i—2andv=n+3j-1,15i,j<

[—;l.l when n=2(mod3). Since|(n+3/-1)-(3i-2)|=|n+3(j-i)+1|=n, u and
v are not adjacent. Similar arguments hold for the case 2(a). See Figure 5.
We next claim that|K| = (%] We verify the claim when X is as in 2(b). Since

n=2 (mod 3), n=3k+ 2 for some k. Let K =K, UK, where K, ={1,4,7,.,n-
l1}and K, ={n+2,n+5,n+8, ..., 2n}.

The cardinality of K|is given by |K;| = [ -;1] . Similarly, the cardinality of K; is

: 2
given by |K,| = H . Hence |K] = |Ki| + K2 = [—ﬂ + H = [T”]

Figure 5: Encircled vertices form a kernel in CL(9)

Theorem 4.2: Let G be CL(n), n> 4. For n=1(mod 3), there exist a kernel X of
CLU such tat |-, (CLn) +1=| 2 +1

Proof: Let CL(n) be oriented as in Lemma 4.1. Since G is strongly connected
regular graph, by theorem 2.1, x > {2] .
! 3

The independent set K = {1,4,7,...,n-3} V{nt2, n+5, nt8, ..., 2n-2} L {n-1,
2n} forms a kernel for CL(n). Thus |K|= { &’_“ +1-
3

The proof is similar to that of Theorem 4.1.



5 Strong Kernel in Oriented Chordal Graphs CH(n)
In this section we obtain the strong kernel number of chordal graphs CH{(n).

Definition 5.1: A chordal graph CH(n), 122 is a graph with the vertex set
WCH() = {V,,V,, ...V, } and E(CH(m) = {(v;v, 11 Si <n-1}U

n . .
v,V )tV (v,v,_..),l1 <i<—>, nbeing an even integer. We name the
1°7n i n—i+l 2

parallel edges as chords. See Figure 6.

Figure 6: Chordal Graph CH10)

Lemma 5.1: Let G be CH(n), n> 2. Letthecycle C=1,2,...,n—1,n, 1in G on
n vertices be oriented in the clockwise direction. The chords are oriented
arbitrarily. Then G is strongly connected.
Proof: For u, v e V, we claim that G is strongly connected. Since C is oriented in
the clockwise direction, our claim is true.

Theorem 5.1: Let G be CH(n), n>2. Then k, = B-l .

Proof: Consider an orientation O of G satisfying the following condition.
1. Orient the cycle C in the clockwise direction.

2(a). Let K= {3,6,9, ..., n} when »n = 0(mod3).
(b).Let K = {2, 581 13[—31 j—l}u{n} when »=1(mod3)

(c). Let K = {1} u{4,7,10,...,3[§ J + 1} when n=2(mod3)

By Lemma 5.1, the orientation O is a strong orientation of G. Conditions 2(a),
(b) and (c) imply that there are at least two incoming edges and one outgoing edge
at every vertex of K. Thus to prove that X is a kernel, it is enough to prove that K
is independent. Two vertices » and s of G are adjacent if and only if
@ r-si=1,1Zr,s<n

(i) r=sl=n-2i+1,(r,s) € ,n—i+1),i=1, 2%

(iii) |r=sl=n-1,(s)en 1)
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Choose any two vertices from K. Suppose we choose u=3i—landv = 3j-1,
i#j,1<i,j< ng , when n=1 (mod 3). Clearly no two vertices are adjacent to

each other. Similar arguments hold in the remaining cases. See Figure 7.

We next claim that IK | = [g] We verify the claim when K is as in 2(b). Since

n=l(mod 3), n = 3k + 1 for some k Let K=K,UK, where
K, = {2,5,8,...,3[§J - 1} and K, = {n}.

The cardinality of X, is given by 3[§J-1 =2+3(k,|-1) = Bj . Similarly (K| =

n n

1. Hence |K] = |K)| + |K3| = {EJ +1= —].

3

Figure 7: Encircled vertices form a kernel

6 Strong Kernel in Oriented ¢t H — Graph

Definition 6.1: A ¢ H — graph is a graph with vertex set {(i, j):1<i <3,
1<j<n}and  edgeset {((i,)),(i,j+1)),i=1 and 3} U {((2,)), (2, /+1):j
odd, 1< j <n—13 U1, 1), (1, A (G35 1), B, m)} VAU, ), (i+1, ), i= 1 and
2, 1< j < n}and is denoted by H,(f) where ¢ denotes the number of copies of A.

Remark 6.1: For convenience (1, 1), (1, 2), ..., (1, n) are represented by 1, 2, ...,
n;(2,1),(2,2), ..., (2, n) are represented by n+1, n+2, ..., 2nand (3, 1), (3, 2), ...,
(3, n) are represented by 2n+1, 2n+2, ..., 3n. The number of vertices of t H -
graph is 3».

Lemma 6.1: Let G be H,(f), t>2. Let the cycles 1,2, ..., n,2n,3n,3n~-1,...,2n+
I,n+11land2i-1,2i,n+2i,2n+2i,2n+2i-1,n+2i-1,2i-1,1<i<n/2,
of H,(f) on 3n vertices be oriented in the clockwise direction. All the remaining
edges are oriented arbitrarily. Then G is strongly connected.
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Proof: For u, v € ¥, we claim that G is strongly connected. Since cycles of H,(f)
are oriented in the clockwise direction, our claim is true.

Theorem 6.1: Let G be the ¢ H - Graph on 3n vertices. Then k& =n.

Proof: Consider an orientation O of G satisfying the following condition.
1. Orient the cycles 1,2, ..., n,2n,3n,3n—-1,...,2n+ 1, n+ 1 1and 2i - 1, 2i, n +
2i,2n+2i,2n+2i—1,n+2i-1,2i-1,1<i<n/2, in the clockwise direction.
2. LetK={1,3,5, .,n—-1} U {2n+2,2n+4,2n+6, ..., 3n}.
By Lemma 6.1, the orientation O is a strong orientation of G. Since G is strongly
connected, there is at least one incoming and one outgoing edge at every vertex of
K. Thus to prove that X is a kernel, it is enough to prove that X is independent.
Two vertices r and 5 of G are adjacent if and only if
@DIr-sl=L,1<rs<n2ntl <r,s<3n,(r,s) € (n+2i-1,n+2i), 1 <i<n/2
i) |r - s| = n-1,(r, s) € (n, 1) & (3n, 2n+1)
(iii) [r— s} = n, (r, 5) € (i, n+i) & (n+i, 2n+i) 1 Si<n

Choose any two vertices. Suppose we choose u=2i— 1 andv =2n+2j, 1 i, j
<nf2. Since|(zn +2j)-(2i- |)| #n, uand v are not adjacent. See Figure 8.

We next claim that |&| = n- We verify the claim when K is as in 2. Let
K=K UK, where K, = {1,3,5, .,n—-1}and K, ={2n+2,2n+4,2n+6,
..., 3n}. The cardinality of X, is given by |K;] = . Similarly, the cardinality of K

2

is given by |Kz] = 2. Hence [K]=|K)| +|K3|= 2 +2 =p.
2

2 2

- [€R a . (Y 6 (T 8
= > \ g > N
h A 1 ¥ h 1
9 > 10 11 > 12 1 a 15 > 16
A n 7 y N /

< A N A <

\18/" 19 20) 21 - 22)" 23 )

Figure 7: Encircled vertices form a kernel.

Theorem 6.2: The strong kernel problem is polynomially solvable for certain
oriented networks such as Mobius Ladder, Circular Ladder, Chordal graphs and ¢
H - graph.

7 Conclusion

In this paper we have determined the strong kernel number for oriented Mobius
Ladder M(n), Circular Ladder CL(n), chordal graphs CH{(n) and 1 H — graph H,(¢).
And also proved that the strong kernel problem is polynomially solvable for M(n),
CL(n), CH(n) and H,(?). It would be interesting to characterize regular graphs for
which the kernel problem is polynomially solvable.
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