Combinatorial Counting Relations of
Cs, Cy—Free Graphs

G.Britto Antony Xavier
Department of Mathematics, Sacred Heart College,
Tirupattur-635601, Tamil Nadu, India.
shcbritto@yahoo.co.in
E.Suresh
Department of Mathematics, Velammal Engineering College,
Surapet, Chennai-600066, Tamil Nadu, India.
sureshkako@gmail. com

Abstract

In this paper, we have calculated the combinatorial counting relations vary-
ing over the 3—vertex paths of a simple graph G, by restricting our attention
to C3,C4— free graphs.

1 Introduction

Mathematical chemistry is a branch of theoretical chemistry using mathe-
matical methods to discuss and predict molecular properties without nec-
essarily referring to quantum mechanics [2, 16, 23]. Chemical graph theory
is a branch of mathematical chemistry which applies graph theory in math-
ematical modeling of chemical phenomena (7).

A molecular graph is a representation of the structural formula of a
chemical compound such that its vertices correspond to the atoms and the
edges to the bonds. Topological indices are the numerical values associated
with chemical structures which are used to study and predict the structure-
property correlations of organic compounds.

The topological indices M,(G) and M;(G) are among the oldest and
most thoroughly examined graph-based molecular structure descriptors and
has been closely correlated with many chemical properties {3, 17]. Recently,
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the Zagreb indices and their variants have been used to study molecular
complexity, chirality, ZE-isomerism and heterosystems etc. The Zagreb in-
dices are also used by various researchers in their QSPR and QSAR studies.
Thus, it attracted more and more attention from chemists and mathemati-
cians. They were defined in 1972 by Ivan Gutman (3, 4] and are given
different names in the literature, such as the Zagreb group indices, the
Zagreb group parameters and most often, the Zagreb indices. They were
eventually named first and second Zagreb indices [1].

Let G = (V, E) be a simple graph with |V| vertices and |E| edges. The
degree of v, denoted by d(v) in G. Then

My=M(@G) = Y d)? (1)
veV(G)

My=MyG) = Y du)d) (2)
w€E(G)

A numerous amount of research articles were published in various scientic
publications on the Zagreb indices. For details of their chemical applications
and mathematical theory see the surveys [6, 8, 12, 13, 24] and the references
cited therein.

Li and Zheng in (9] defined the first general Zagreb index, defined by

Mg =M (G)= > dv)* (3)
veV(G)

The present author’s defined the second general Zagreb index and their
counting relations are established [5] in which, it is defined as

Mg =M3(G)= Y [dud®)® (4)
uw€eE(G)

where o € R. In [14, 11, 15, 18, 5] various properties and relations of the
first general Zagreb index are discussed.

In analogy with Egs. (3) and (4) the first and second general path
Zagreb indices are defined by

PM{ = PM{(G)

Y [d(u)"“ + d(u)“"] (5)

d(u,v)=I-1
PM§=PM$(G) = 3y [(dwd®)® (6)
d(u,v)=[-1

where | € N — 1. Notice that for | = 2 is simply the first and second
general Zagreb indices [5]. This paper deals with the combinatorial counting
relations of general path Zagreb indices in C3, C4— free graphs.
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2 Preliminaries

Throughout the paper we consider e ~ f, where e(= ww) and f(= wv)
are edges which are adjacent, i.e., they share a common end-vertex in G.
In what d(e) denotes the degree of the edge e in G, which is defined by
d(e) = d(u) + d(w) — 2. We denote by P, and C, the n—vertex graph
equals to the path and cycle, respectively. For u,v € V(G), the path
length between u and v are denoted by d(u,v) in G.

Let G and H be graphs. We denote by og(H) the number of distinct
subgraphs of the graph G which are isomorphic to H. Let o, 3 and v be
positive integers. Dy g and Dg 4 g are the double and triple star trees on
a+ B+2, a+v+ B+ 3 vertices respectively. D, g is obtained from Pa, by
attaching a pendent vertices to its one of the vertex and 8 pendent vertices
to its other vertex. Dg 4, g is obtained from Pj, by attaching «, 8 pendent
vertices to its end vertices and « pendent vertices to its middle vertex.

It is easy to see that for a # 8,

d(u) -1 d(v) -1
96 (D) =MZE(G) E( dZ’;L- 1) )( ( d?vl -1) ) @

d(u) -1 d(w) -2 d(v) —
()

o6 (Daqs) = +( da}a_l )(dgw)—-2 ) ( d(v) — 1 )

e~ f

¥ a

whereas
06 (Daya) = Wgs:(a)( d(u‘)l -1 ) ( d(v)a -1 ) (9)
06 (Dama) = Z( d(ul—l ) ( d(w‘)y—2 ) ( d(vl-—l ) (10)

e~f

For {,a = 2 in (5) is the well known relation for the ordinary first Zagreb
index

PME = 20 (Ps)+2|E| (11)
whereas, & = 1 in (6) yields the second Zagreb index

PM} = PM}+oc(Pi)-|E], (12)
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obtained from
or(P)= Y. [dr(w)-1[dr(v) 1],
uveE(T)

which was first established in 2009 [19] and later also in [20, 21, 22]. It is easy to
see that it is a special case for m = 3, of theorem 1 [5].

Theorem 1 Let G be a C;- free graph (2 <i < m). Then

0¢ (Pm+1) = > () —1)[d(v) - 1] (13)
d(u,v)=m-2
= 3 ¥ d@-D+Ew-D. 09
d(u,v)=m-—1
In addition, the extension for triangle containing graphs is also given in (25], as
oc(Pa)+30(Cs)= > [d(w)-1][d(v)-1] (15)
uv€ E(G)

Eq. (15) can be rewritten as
P;M; = o6 (Ps) + 20c (Ps) + 30 (Cs) + |E|. (16)

In [5], the authors have obtained the identities for | = 2 and o > 2 in (5) and
(6) in which the subgraphs are depicted in Fig.1 as follows,

2 D3 é D,
:: Dj3 é ; Dj 3 5

Figure 1: The subgraphs encounterd in Theorems 2 and 3

D,

Theorem 2 Let G be a simple graph. Then

P,M} = 3log(Ki3)+3P.M? —4|E| 7
P:My = 4log (Ki4)+6PaM; — 11PME +12|E| (18)
PaM? = Slog(Kis) + 10P,Mf — 35P M} + 50P. M7 — 48|E|.  (19)

Theorem 3 Let G be a triengle - free graph. Then

P M3 406 (D2,2) + 60 (D12) + 9M3 + M7 — 9M} + 8|E|

P M3 360G (D3,3) + 1440 (Da,2) + 7206 (D2,3) + 4206 (Dh,3)
840 (D1.2) + 49M3 + M — 49M? + 48|E|.

+
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3 Main Results

We now give some significant results relating general path Zagreb indices in
C3,Cy— free graphs.

Lemma 4 Let G be a simple graph. Then
P3sM} = 206 (Ps) + 206 (Ps) + 60c (Cs) (20)

Proof. Comparing, for m = 3 in (14) and (16) yields the identity.

Theorem 5 Let G be a Cs - free graph. Then

PsM} = 2o (D1,2) + 60c (Ps) + 206 (Ps) (21)

PaM{‘ = 3log (Dl,a) + 120¢ (Dl,z) + 140 (Py) + 206 (Pa) (22)

PsM; = 4log (D1,4) + 600 (D1,3) + 500G (Ds,2) (23)
+300G (Ps) + 20¢ (P3)

PiM{ = 5log (D1s) + 3600G (D1,4) + 3800 (D1,3) + 1800c (D1,2)
+620¢ (Pys) + 206 (P3)

PsM{ = 6log(Dis)+ 25200¢ (D1,s) + 33600¢ (D1,4) + 21000 (D1,3)
+6020¢ (D1,2) + 1260¢ (Ps) + 20¢ (P3)

PsM} = Tog (D7) + 373600c (D1,6) + 210000¢ (D1,s) + oG (D1,4)
+102060¢ (D),3) + 193206 (Dh,2) + 2540¢ (Ps) + 20¢ (Ps)

PsM] = 8log(Dy,s)+ 1814400¢ (D1,7) + 3326400¢ (Dy,6)

43175200 (D1,5) + 16682406 (D1,4) + 4662006 (D1,3)
+60500¢ (Dh1,2) + 5100¢ (Ps) + 20¢ (Ps)

P:M{® = 9log (D) + 18144000¢ (Dh,s) + 37800000¢ ( D1,7)
+42336000¢ (D1,6) + 27392400 (D1 ,5) + 102060006 (D1 ,4)
42046300 (D1,3) + 186600 (D1.2) + 102206 (Pa) + 206 (Ps)

Proof. By applying Eqgs. (8), (5) and (20) we get

o6 (Doo2) = Y [( d(u)2—1 >+( d(”)2_1 )]

e~f
= -21-. [E [d(w)? +d(v)?] =3 [d(w) + d(v)} + 40c (Pa)]
Y le~f e~f

obviously og (Do,0,8) = 0 (Dh,8) and oG (Do,+,8) = 0¢ (D14+,8) and using (5)

oG (Dr2) = % [PsM? — 3PsM? + 4o (Py)

% [Pst —3(20¢ (Ps) + 20 (Ps)) + 4oc (Ps3)]
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from which Eq.(21) straightforwardly follows. The remaining equalities are ob-
tained recursively in a fully analogous manner.

Corollary 5.1 Let G be a C3 - free graph. Then

PsM(G) Noc(D1,2) + 3PsME(G) — 4o (Ps)
PsM{(G) 3loG(D1.3) + 6PsMY(G) — 11PsM2(G) + 1206 (Ps)
PsM}(G) = 4log(D14)+ 10M7(G) — 35M3(G)

+50ME(G) — 480c (Ps)

PsM§(G) = 5log(Dis)+ 15PsM3(G) — 85Ps M} (G)
+225Ps M3 (G) — 274Ps M (G) + 2400¢ (Ps3)
PsMI(G) = 6log(Die) +21PsME(G) — 175P3 M7 (G)

+735Ps M (G) — 1624P3s M3 (G)
+1764Ps ME(G) — 14400¢ (P3)

PsMP(G) = Tog(Dy7)+ 28PsM](G) — 322Ps My (G)
+1960Ps M} (G) — 6769P3 M (G) + 13132P; M3 (G)
—~13068P3 M(G) + 100800 (P3)

PsM}(G) = 8log(Di1s)+ 36ME(G) — 546 M7 (G)
+4536 Ps M{(G) — 22449P3 M7 (G) + 67284Ps M1 (G)
—118124Ps M3 (G) + 109584 Ps ME(G) — 806400¢ (P3)

PsM{°(G) = 9log(D1s)+45Ps M} (G) — 870PsM{(G)
+9450Ps MY (G) — 63273P3 M{(G) + 269325Ps M7 (G)
—723680P; M{ (G) + 1172700P; M7 (G)
—1026576 Ps M (G) + 7257600G (Ps) .

Combining Eq.(12) and Theorem 1, we get

Corollary 5.2 Let G be a simple graph. Then
PsM{ = 2P,M; — P, M.

Lemma 6 Let G be a Ci,Cy- free graph. Then
PiM; = oc (Ps) + 20 (Ps) + 06 (Ps)

Proof. For m = 4 in (13) implies,

oG (Ps) = _ [d(u) — 1][d(v) — 1] = PsM>" — PaM{ + oG (Ps).
e~f
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Figure 2: The subgraphs encounterd in Theorem 7.

Theorem 7 Let G be a Cs,Cy-free graph. Then

P3M22 = dog¢ (Dz,o,z) + 6o¢ (DI,O.Z) + 20¢ (Dh,2) (24)
490G (Ps) + 60c (Py) + oG (P3)
PsM} = 360c (Ds03) + 720¢ (D2,0,3) + 14406 (D2,02) (25)

+420¢ (Dh1,0,3) + 840 (D1,0,2) + 60 (Dy,3) + 120¢ (D1,2)
+490c (Ps) + 140 (Ps) + o6 (Ps)

Proof. Using o, f = 2 and v = 0 in (10), we get

o = (1) (41)

e~f
D d(u)’d(v)® - 3 [d(w)’d(v) + d(u)d(v)?]

+~2f 3 [dw)® + d(;):; -6 [d(u) +d(v))
+9 g d(u)d(v) + doc (Ps )Wf

4«: :;2,0,2) +33 [d(w)?d(v) + d(u)d(v)?]
—2P3M? + 6P31;1;f- 9P M} — doc (P3)

406 (D2,0,2)

PsM2

ie, Y [d(u)’d(v) +d(u)d(v)?] = 20c(D1o2)+6PsM; (26)
e~f
+P3 M3 — 5P M? + 4o (Ps)

where we used Eq. (21) and lemma 4, 6.



Using the similar arguments for o, 8 = 3 and v = 0, we obtain

oc (D2,0,2)

360’0 (Da,o,s)

Z( d(ué—l)(d(v%—l )

e~f

PsM3 + 36Ps M + 121Ps M3

+113 [d(w)*d(v) + d(w)d(v)*]
e~f

—66Y _ [d(u)?d(v) + d(u)d(v)’]
e~f

-6 [d(u)*d(v)? + d(u)’d(v)’]
e~f

—6P3s M} + 36 PsM; — 66Ps M} + 360 (Ps)

using Eq.(8) we obtain

> [d(w)*d(v)? + d(u)d(v)*]

e~f

1

> [d(u)*d(v) + d(w)d(v)?]

e~f

120¢ (D2,0,3) + 12Ps M3 + 66Ps M3

+3)_ [d(w)’d(v) + d(u)d(v)’]

e~f

—20 " [d(u)*d(v) + d(u)d(v)’]

e~f

(27)

—2Ps M} + 18P3 M} — 40Ps M} + 240c (P3)

60c (D1,03) — 22PsM;

+6 [d(u)*d(v) + d(w)d(v)’]

e~f

(28)

+PsMf — 6PsM3? + 1TPsM? — 1206 (Ps)

where we used Eq. (21) and combining Eqs. (21), (22), (24), (26), (27),(28) with

lemma 4, 6 yields (25).
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