On Fuzzy Regular ω -Languages

R. Arulprakasam, V.R. Dare and S. Gnanasekaran, Department of Mathematics, SRM University, Kattankulathur-603 203, Tamilnadu, India.

Abstract

The concept of fuzzy local ω -language and Büchi fuzzy local ω -language are defined in [1, 2]. In this paper, we define Landweber fuzzy local ω -language and study their closure properties and also give an automata characterization for it. Finally, we conclude hierarchy among the subclasses of fuzzy regular ω -languages.

Keywords: Local automaton, Local ω -Language, Fuzzy sets, Fuzzy automaton, Fuzzy regular ω -Language.

1 Introduction

Fuzzy set was introduced by Zadeh [12] and it has application in many fields of science and engineering. To deal with imprecision due to fuzziness in system modeling, fuzzy automata and fuzzy languages have been proposed as a sound extension of classical automata and formal language theory. The mathematical formulation of fuzzy automata was first proposed by Wee [11]. The basic idea is that unlike the classical case, a fuzzy automaton can switch from one state to another with a certain possibility degree. In [11], Wee initiated the studies of fuzzy languages accepted by fuzzy automata. More recent development of algebraic theory of fuzzy

^{*}Part-time Research Scholar in Mathematics, University of Madras, India.

[†]Department of Mathematics, Madras Christian College, Tambaram-600 059, Tamilnadu, India. E-mail: rajkumardare@yahoo.com

[‡]Department of Mathematics, Periyar Arts College, Cuddalore-607 001, Tamilnadu, India. E-mail: sargunam.g.sekaran@gmail.com

automata and fuzzy languages can be found in book by Mordeson and Malik [8]. D.S.Malik et al. [9] and S.Gnanasekaran [6] studied the closure properties of fuzzy regular languages and fuzzy local languages on finitary case. Kamala Krithivasan [7] studied the fuzzy ω -finite state automata which accept fuzzy ω -regular languages with different acceptance criteria. Fuzzy regular language have many important applications including learning systems, pattern recognition, database theory, lexical analysis in programming language compilations and user-interface translations. Roughly speaking, in recent years their application have been further extended to include parallel processing, image generation and compression type theory for object-oriented languages, DNA computing, etc. In [1], we introduced two subclasses of fuzzy regular ω -languages that are fuzzy local ω -languages and Büchi fuzzy local ω -languages and we gave some closure properties of these classes of languages under intersection and union. In [2], we defined the notion of the deterministic fuzzy automata which accept fuzzy ω -languages with different mode of acceptance criteria and we established relationships between the various classes of fuzzy ω -languages. In this paper, we introduce Landweber fuzzy local ω -language and study their closure properties. We give automata characterization for it and we extablish the hierarchy this class with the already defined classes.

2 Preliminaries

Let Σ be a finite alphabet and Σ^* be the set of all finite words over Σ . We define the empty word by ϵ . For each $u \in \Sigma^*$, we denote by $P_1(u)$, the prefix of u of length 1 and by $F_2(u)$, the set of all factors of u of length 2. We denote by $S_1(u)$, the suffix of u of length 1. An infinite word α over Σ is a function $\alpha: N \to \Sigma$ from the set N of all positive integers to Σ . We represent the infinite word α as $\alpha = a_1 a_2 \cdots$ where $\alpha(i) = a_i \in \Sigma$, for all i. We denote by Σ^ω , the set of all infinite words over Σ . For $\alpha \in \Sigma^\omega$, $\inf_2(\alpha)$ denotes the set of all elements of $F_2(\alpha)$, each of which repeats infinite number of times in α . An ω -language (with respect to the alphabet Σ) is any subset of Σ^ω . Fuzzy ω -languages are fuzzy sets of ω -languages. A projection map f is extended in a usual fashion to Σ^ω as follows: $f(\epsilon) = \epsilon$, f(au) = f(a)f(u), for $a \in \Sigma$ and $u \in \Sigma^\omega$.

Definition 2.1 [1] The pair $S = (\lambda_1, \lambda_2)$ is called a fuzzy local system if λ_1 is a fuzzy subset of Σ and λ_2 is a fuzzy subset of Σ^2 . The fuzzy ω -language L over Σ whose membership function is defined by $L(\alpha) = \lambda_1(P_1(\alpha)) \wedge (\wedge_{x \in F_2(\alpha)} \lambda_2(x)), \forall \alpha \in \Sigma^{\omega}$ is called the fuzzy ω -language generated by S and we write $L = L^{\omega}(S)$.

Definition 2.2 [1] The fuzzy ω -language L over Σ is called a fuzzy local ω -language if $L = L_L^{\omega}(S)$ for some fuzzy local system S. The class of all fuzzy local ω -languages is denoted by \mathcal{L}_L^{ω} .

Example 2.3 Consider the fuzzy ω -language whose membership function is given by

$$L(\alpha) = \begin{cases} 0.5 & \text{if } \alpha = a^2 b^{\omega}, \\ 0 & \text{otherwise.} \end{cases}$$

Let us consider $S = (\lambda_1, \lambda_2)$, where

$$\lambda_1(x) = \begin{cases} 0.5 & \text{if } x = a, \\ 0 & \text{otherwise.} \end{cases}$$

and

$$\lambda_2(x) = \begin{cases} 0.6 & \text{if } x = ab, \\ 0.5 & \text{if } x = \{bb, aa\}, \\ 0 & \text{otherwise.} \end{cases}$$

For $\alpha \in \Sigma^{\omega}$,

$$L^{\omega}(S)(\alpha) = \lambda_1(P_1(\alpha)) \bigwedge \left(\wedge_{x \in F_2(\alpha)} \lambda_2(x) \right)$$

Now,

$$L^{\omega}(S)(a^{2}b^{\omega}) = \lambda_{1}(a) \bigwedge (\lambda_{2}(aa) \wedge \lambda_{2}(ab) \wedge \lambda_{2}(bb))$$

$$= 0.5 \wedge (0.5 \wedge 0.6 \wedge 0.5)$$

$$= 0.5 \wedge 0.5$$

$$= 0.5.$$

Then $L = L_L^{\omega}(S)$ and therefore L is a fuzzy local ω -language.

Remark 2.4 The class of all local ω -languages is a proper subset of the class of all fuzzy local ω -languages.

Theorem 2.5 [1] If L_1 and L_2 are fuzzy local ω -languages over Σ , then $L_1 \cap L_2$ is a fuzzy local ω -language over Σ .

Remark 2.6 Union of two fuzzy local ω -languages over Σ needs not be a fuzzy local ω -language.

Theorem 2.7 [1] If Σ_1 and Σ_2 are two disjoint subsets of the alphabet Σ whose union is Σ and if $L_1 \subseteq \Sigma_1^{\omega}$ and $L_2 \subseteq \Sigma_2^{\omega}$ are fuzzy local ω -languages, then $L_1 \cup L_2$ is also fuzzy local ω -language.

Definition 2.8 [1] A fuzzy ω -language L over Σ is called a Büchi fuzzy local ω -language if there exists a triple (fuzzy local system) $S = (\lambda_1, \lambda_2, \lambda_3)$ where λ_1 is a fuzzy subset of Σ , λ_2 and λ_3 are fuzzy subsets of Σ^2 such that $\lambda_3 \leq \lambda_2$ and whose membership function is $L(\alpha) = \lambda_1(P_1(\alpha)) \wedge (\wedge_{x \in F_2(\alpha)} \lambda_2(x)) \wedge (\vee_{x \in \inf_2(\alpha)} \lambda_3(x)), \forall \alpha \in \Sigma^{\omega}$ and we write $L = L_B^{\omega}(S)$. The class of all Büchi fuzzy local ω -languages is denoted by L_B^{ω} .

Example 2.9 Consider a fuzzy ω -language L whose membership function is given by

$$L(\alpha) = \begin{cases} 0.5 & \text{if } \alpha \in \{a^n b^{\omega} : n > 0\}, \\ 0 & \text{otherwise.} \end{cases}$$

Let us consider the fuzzy local system $S = (\lambda_1, \lambda_2, \lambda_3)$, where

$$\lambda_1(x) = \begin{cases} 0.5 & \text{if } x = a, \\ 0 & \text{otherwise.} \end{cases}$$

$$\lambda_2(x) = \begin{cases} 0.6 & \text{if } x = ab, \\ 0.5 & \text{if } x \in \{aa, bb\}, \\ 0 & \text{otherwise.} \end{cases}$$

and

$$\lambda_3(x) = \begin{cases} 0.5 & \text{if } x = bb, \\ 0 & \text{otherwise.} \end{cases}$$

For $\alpha \in \Sigma^{\omega}$,

$$L^{\omega}(S)(\alpha) = \lambda_1(P_1(\alpha)) \bigwedge (\bigwedge_{x \in F_2(\alpha)} \lambda_2(x)) \bigwedge (\bigvee_{x \in inf_2(\alpha)} \lambda_3(x))$$

Now.

$$L^{\omega}(S)(a^{2}b^{\omega}) = \lambda_{1}(a) \bigwedge (\lambda_{2}(aa) \wedge \lambda_{2}(ab) \wedge \lambda_{2}(bb)) \bigwedge (\bigvee \lambda_{3}(bb))$$

$$= 0.5 \wedge (0.5 \wedge 0.6 \wedge 0.5) \wedge (\vee 0.5)$$

$$= 0.5 \wedge 0.5 \wedge 0.5$$

$$= 0.5.$$

Then $L = L_B^{\omega}(S)$ and therefore L is a Büchi fuzzy local ω -language.

Remark 2.10 The class of all fuzzy local ω -languages \mathcal{L}_L^{ω} is a subset of the class of all Büchi fuzzy local ω -languages \mathcal{L}_B^{ω} .

Example 2.11 The language L in Example 2.7 is a Büchi fuzzy local ω language. But L is not a fuzzy local ω -language, otherwise, $a^{\omega} \in L$. Therefore $\mathcal{L}_L^{\omega} \subset \mathcal{L}_B^{\omega}$.

Theorem 2.12 /1/ Every fuzzy ω -regular language is a projection of a Büchi fuzzy local ω -language.

Definition 2.13 [2] A deterministic fuzzy automaton is a tuple $M = (Q, \Sigma, \delta, \delta)$ $q_0, F)$ where

- Q is a finite non-empty set of states,
- Σ is a finite alphabet,
- $\delta: Q \times \Sigma \to Q$ is a transition function,
- $q_0 \in Q$ is the initial state,
- F is a fuzzy subset of Q.

If $\alpha = a_1 a_2 a_3 \cdots \in \Sigma^{\omega}$, the sequence $\rho = \{q_n\}_{n=0}^{\infty}$ of states in Q is called a run or path of M for α , if for $n \geq 1$, $\delta(q_{n-1}, a_n)$. We write $\rho: q_0 \stackrel{a_1}{\to} q_1 \stackrel{a_2}{\to} q_2 \to q_1 \stackrel{a_2}{\to} q_2 \stackrel{a_3}{\to} q_1 \stackrel{a_4}{\to} q_2 \stackrel{a_5}{\to} q_2 \stackrel{a_5}{\to} q_1 \stackrel{a_5}{\to} q_2 \stackrel{a_5}{\to} q_2 \stackrel{a_5}{\to} q_1 \stackrel{a_5}{\to} q_2 \stackrel{a_5}{\to} q_2 \stackrel{a_5}{\to} q_1 \stackrel{a_5}{\to} q_2 \stackrel{a_5$ The range of ρ , denoted by $ran(\rho)$, is the set $\{q_0, q_1, q_2...\}$ and $inf(\rho)$ denotes the set of states which appear infinitely often in ρ . We say that for $i \in \{1,1^{'},2,2^{'}\}$, the acceptance value of ρ on α in i-mode is $acc_{i}(\rho,\alpha)$ where

(a).
$$acc_1(\rho, \alpha) = \bigvee_{q \in ran(\rho)} F(q)$$

(b). $acc_{1'}(\rho, \alpha) = \bigwedge_{q \in ran(\rho)} F(q)$
(c). $acc_2(\rho, \alpha) = \bigvee_{q \in inf(\rho)} F(q)$
(d). $acc_{2'}(\rho, \alpha) = \bigwedge_{q \in inf(\rho)} F(q)$.

(b).
$$acc_{1'}(\rho,\alpha) = \bigwedge_{q \in ran(\rho)} F(q)$$

(c).
$$acc_2(\rho, \alpha) = \bigvee_{q \in inf(\rho)} F(q)$$

(d).
$$acc_{2'}(\rho, \alpha) = \bigwedge_{q \in inf(\rho)} F(q)$$

The fuzzy ω -language accepted by M in i-mode, is the fuzzy subset $L_i(M)$ of Σ^{ω} defined by $L_i(M)(\alpha) = acc_i(\rho, \alpha)$. For $i \in \{1, 1', 2, 2'\}$, we denote the class of all fuzzy ω -languages accepted by deterministic fuzzy automata in i-mode by \mathcal{L}_i . A fuzzy ω -language L is said to be a fuzzy regular ω -language if there exists a deterministic fuzzy automaton M such that $L = L_2^{\omega}(M)$.

Definition 2.14 [2] A deterministic fuzzy automaton $M = (Q, \Sigma, \delta, q_0, F)$ is said to be local if for every $a \in \Sigma$, the set $\{\delta(q,a) : q \in Q\}$ contains at most one element.

Theorem 2.15 /2/

- (i). $\mathcal{L}_{1'} \subseteq \mathcal{L}_2$
- (ii). $\mathcal{L}_{1'} \subseteq \mathcal{L}_{2'}$.

Definition 2.16 [2] A fuzzy Muller automaton is a tuple $M = (Q, \Sigma, \delta, q_0, \mathcal{F})$ where Q, Σ, δ, q_0 are defined as in definition 2.10 and $\mathcal{F} = \{F_1, F_2, \ldots, F_n\}$ where each F_i is a fuzzy subset of Q. The fuzzy ω -language accepted by M is $L_3(M)$ defined by $L_3(M)(\alpha) = \bigvee_{i=1}^m \bigwedge_{q \in inf(\rho)} F_i(q)$ where ρ is a run of M for α . We say that $L_3(M)$ is accepted by M in 3-mode. We denote the class of all fuzzy ω -languages accepted by deterministic fuzzy automata in 3-mode by \mathcal{L}_3 .

Theorem 2.17 [2]

- (i). $\mathcal{L}_2 \subseteq \mathcal{L}_3$
- (ii). $\mathcal{L}_{2'} \subseteq \mathcal{L}_3$.

Theorem 2.18 [2] $L \subseteq \Sigma^{\omega}$ is a fuzzy local ω -language if and only if L is recognized by a fuzzy local automaton in 1'-mode.

Theorem 2.19 [2] $L \subseteq \Sigma^{\omega}$ is a Büchi fuzzy local ω -language if and only if L is accepted by a fuzzy local automaton in 2-mode.

3 Fuzzy local automaton on Landweber fuzzy local ω -language

In this section we define the subclass of fuzzy regular ω -language that is Landweber fuzzy local ω -language and study their closure properties. We prove that if $L \subseteq \Sigma^{\omega}$ is a Landweber fuzzy local ω -language then L is accepted by a fuzzy local automaton in 2´-condition. Finally we conclude hierarchy among the subclasses of fuzzy regular ω -languages.

Definition 3.1 A fuzzy ω -language L over Σ is called a Landweber fuzzy local ω -language if there exists a triple (fuzzy local system) $S = (\lambda_1, \lambda_2, \lambda_3)$, where λ_1 is a fuzzy subset of Σ , λ_2 and λ_3 are fuzzy subsets of Σ^2 such that $\lambda_3 \leq \lambda_2$ and whose membership function is $L(\alpha) = \lambda_1(P_1(\alpha)) \wedge (\bigwedge_{x \in F_2(\alpha)} \lambda_2(x)) \wedge (\bigwedge_{x \in inf_2(\alpha)} \lambda_3(x))$, $\forall \alpha \in \Sigma^{\omega}$ and we write $L = L_{Ln}^{\omega}(S)$. The class of all Landweber fuzzy local ω -languages is denoted by L_{Ln}^{ω} .

Example 3.2 Consider the fuzzy ω -language

$$L(\alpha) = \begin{cases} 0.5 & \text{if } \alpha \in \{a^+b^\omega\}, \\ 0 & \text{otherwise.} \end{cases}$$

Let us consider the fuzzy local system $S = (\lambda_1, \lambda_2, \lambda_3)$, where

$$\lambda_1(x) = \begin{cases} 0.5 & \textit{if } x = a, \\ 0 & \textit{otherwise.} \end{cases}$$

$$\lambda_2(x) = \begin{cases} 0.6 & \text{if } x = ab, \\ 0.5 & \text{if } x = \{bb, aa\}, \\ 0 & \text{otherwise.} \end{cases}$$

and

$$\lambda_3(x) = \begin{cases} 0.5 & \text{if } x = bb, \\ 0 & \text{otherwise.} \end{cases}$$

For $\alpha \in \Sigma^{\omega}$,

$$L^{\omega}(S)(\alpha) = \lambda_1(P_1(\alpha)) \bigwedge (\bigwedge_{x \in F_2(\alpha)} \lambda_2(x)) \bigwedge (\bigwedge_{x \in inf_2(\alpha)} \lambda_3(x))$$

Now,

$$L^{\omega}(S)(a^{2}b^{\omega}) = \lambda_{1}(a) \bigwedge (\lambda_{2}(aa) \wedge \lambda_{2}(ab) \wedge \lambda_{2}(bb)) \bigwedge (\bigwedge \lambda_{3}(bb))$$

$$= 0.5 \bigwedge (0.5 \wedge 0.6 \wedge 0.5) \bigwedge (\wedge 0.5)$$

$$= 0.5 \wedge 0.5 \wedge 0.5$$

$$= 0.5.$$

Then $L = L^{\omega}(S)$ and therefore L is a Landweber fuzzy local ω -language.

Remark 3.3 The class of all fuzzy local ω -languages \mathcal{L}_L^{ω} is a subset of the class of all Landweber fuzzy local ω -languages $\mathcal{L}_{Ln}^{\omega}$.

Example 3.4 The language L in Example 3.2 is a Landweber fuzzy local ω -language. But L is not a fuzzy local ω -language, otherwise, $a^{\omega} \in L$. Therefore $\mathcal{L}_{L}^{\omega} \subset \mathcal{L}_{Ln}^{\omega}$.

Theorem 3.5 If L_1 and L_2 are Landweber fuzzy local ω -languages over Σ , then $L_1 \cap L_2$ is a Landweber fuzzy local ω -language over Σ .

Proof: If L_1 and L_2 are fuzzy local ω -languages, then $L_1 = L^{\omega}(S_1)$ for some fuzzy local system $S_1 = (\lambda_1', \lambda_2')$ and $L_2 = L^{\omega}(S_2)$ for some fuzzy local system $S_2 = (\lambda_1'', \lambda_2'')$. Consider the fuzzy local system $S = (\lambda_1, \lambda_2, \lambda_3)$ where $\lambda_1 = \lambda_1' \wedge \lambda_1'', \lambda_2 = \lambda_2' \wedge \lambda_2''$ and $\lambda_3 = \lambda_3' \wedge \lambda_3''$. We show that $L_{Ln}^{\omega}(S) = L_{Ln}^{\omega}(S_1) \cap L_{Ln}^{\omega}(S_2) = L_1 \cap L_2$. For $\alpha \in \Sigma^{\omega}$,

$$L^{\omega}(S)(\alpha) = \lambda_{1}(P_{1}(\alpha)) \bigwedge (\bigwedge_{x \in F_{2}(\alpha)} \lambda_{2}(x)) \bigwedge (\bigwedge_{x \in inf_{2}(\alpha)} \lambda_{3}(x))$$

$$= \left(\lambda_{1}^{'}(P_{1}(\alpha)) \wedge \lambda_{1}^{''}(P_{1}(\alpha))\right) \bigwedge \left(\wedge_{x \in F_{2}(\alpha)} (\lambda_{2}^{'}(x) \wedge \lambda_{2}^{''}(x))\right)$$

$$\wedge \left(\wedge_{x \in inf_{2}(\alpha)} (\lambda_{3}^{'}(x) \wedge \lambda_{3}^{''}(x))\right)$$

$$= \left((\lambda_{1}^{'} \wedge \lambda_{1}^{''})(P_{1}(\alpha))\right) \bigwedge \left(\wedge_{x \in F_{2}(\alpha)} (\lambda_{2}^{'} \wedge \lambda_{2}^{''})(x)\right) \bigwedge \left(\wedge_{x \in inf_{2}(\alpha)} (\lambda_{3}^{'} \wedge \lambda_{3}^{''})(x)\right)$$

$$= \left(\lambda_{1}^{'}(P_{1}(\alpha)) \wedge (\wedge_{x \in F_{2}(\alpha)} \lambda_{2}^{'}(x)) \wedge (\wedge_{x \in inf_{2}(\alpha)} \lambda_{3}^{'}(x))\right)$$

$$= \left(\lambda_{2}^{'}(P_{1}(\alpha)) \wedge (\wedge_{x \in F_{2}(\alpha)} \lambda_{2}^{''}(x)) \wedge (\wedge_{x \in inf_{2}(\alpha)} \lambda_{3}^{''}(x))\right)$$

$$= L^{\omega}(S_{1})(\alpha) \wedge L^{\omega}(S_{2})(\alpha)$$

$$= L_{1}(\alpha) \wedge L_{2}(\alpha)$$

$$= (L_{1} \cap L_{2})(\alpha)$$

Thus $L_{Ln}^{\omega}(S) = L_1 \cap L_2$.

Therefore $L_1 \cap L_2$ is a Landweber fuzzy local ω -language.

Remark 3.6 Union of two Landweber fuzzy local ω -languages over Σ needs not be a Landweber fuzzy local ω -language.

Example 3.7 Consider the Landweber fuzzy local ω -languages L_1 and L_2 over $\Sigma = \{a, b, c\}$ with membership function,

$$L_1(\alpha) = \begin{cases} 0.3 & \text{if } \alpha = a(bc)^{\omega}, \\ 0 & \text{otherwise.} \end{cases}$$

and

$$L_2(\alpha) = \begin{cases} 0.4 & \text{if } \alpha = a^{\omega}, \\ 0 & \text{otherwise.} \end{cases}$$

Therefore

$$(L_1 \cup L_2)(\alpha) = \begin{cases} 0.4 & \text{if } \alpha = a^{\omega}, \\ 0.3 & \text{if } \alpha = a(bc)^{\omega}, \\ 0 & \text{otherwise.} \end{cases}$$

If $L_1 \cup L_2$ is Landweber fuzzy local ω -language, then there exists a fuzzy local system $S = (\lambda_1, \lambda_2, \lambda_3)$ such that $L_1 \cup L_2 = L_{Ln}^{\omega}(S)$. Here $\lambda_1(a)$, $\lambda_2(aa)$, $\lambda_2(ab)$, $\lambda_2(bc)$, $\lambda_2(cb)$, $\lambda_3(bc)$ and $\lambda_3(aa)$ are all greater than zero and therefore $L_1 \cup L_2(a^n(bc)^{\omega}) \neq 0$, $n \geq 1$. But $L_1(a^n(bc)^{\omega}) = 0$ and $L_2(a^n(bc)^{\omega}) = 0$ which is a contradiction.

Theorem 3.8 If $L \subseteq \Sigma^{\omega}$ is a Landweber fuzzy local ω -language then L is accepted by a fuzzy local automaton in 2'-mode.

Proof: Let L be a Landweber fuzzy local ω -language. Then there exists a triple $S = (\lambda_1, \lambda_2, \lambda_3)$ where λ_1 is a fuzzy subset of Σ and λ_2 , λ_3 are fuzzy subset of Σ^2 such that $\lambda_3 \leq \lambda_2$ and $L(\alpha) = \lambda_1(P_1(\alpha)) \wedge (\wedge_{x \in F_2(\alpha)} \lambda_2(x)) \wedge (\wedge_{x \in Inf_2(\alpha)} \lambda_3(x)), \forall \alpha \in \Sigma^{\omega}$. Consider the deterministic fuzzy automaton $M = (Q, \Sigma, \delta, q_0, F)$ where

- $Q = \{\{[\epsilon]\} \cup \{[a] : \lambda_1(a) \neq 0\} \cup \{[u] : \lambda_2(u) \neq 0\}\},\$
- $q_0 = \{ [\epsilon] \},$
- δ is defined as follows:

For all
$$a, b \in \Sigma$$
,
$$\delta([\epsilon], a) = [a] \quad if \quad \lambda_1(a) \neq 0,$$

$$\delta([a], b) = [ab] \quad if \quad \lambda_2(ab) \neq 0,$$
 For all $u = ab \in Q$ and $c \in \Sigma$,
$$\delta([ab], c) = [bc] \quad if \quad \lambda_2(bc) \neq 0 \text{ and }$$

• F is the fuzzy final state, defined by

$$F([u]) = \begin{cases} \lambda_3(u) & \text{if } u \in \Sigma^2, \\ 0 & \text{otherwise.} \end{cases}$$

Then M is local and therefore $L = L_{2'}^{\omega}(M)$.

4 Conclusion

The following Figure 1, represents hierarchy among the subclasses of fuzzy regular ω -languages.

Figure 1

Acknowledgment

A preliminary version of this work appeared in the Proceedings of the International Conference on Mathematics in Engineering and Business Management (ICMEB 2012) [1]. We thank the referees of a preliminary version of this paper for their very valuable comments and suggestions.

References

- R. Arulprakasam, V.R. Dare and S. Gnanasekaran, On Fuzzy Regular ω-Languages, Proc. International Conference on Mathematics in Engineering and Business Management (ICMEB), Vol-II (2012), pp. 299-301.
- [2] R. Arulprakasam, V.R. Dare and S. Gnanasekaran, Fuzzy local ω-systems, Journal of Discrete Algorithms (2013), http://dx.doi.org/10.1016/j.jda.2013.07.007.
- [3] J. Berstel and J.-E. Pin, Local languages and the Berry Sethi algorithm, *Theoretical Computer Science*, 155 (1996), pp. 439-446.
- [4] M.P. Béal, Codes circulaires, automates locaux et entropie, *Theoretical Compute Science*, 57 (1988), pp. 283 302.
- [5] P. Caron, Families of locally testable languages, *Theoretical Computer Science*, 242 (2000), pp. 361-376.
- [6] S. Gnanasekaran, Fuzzy local languages, International Mathematical Forum, 5 (2010), no.44, pp. 2149-2155.
- [7] Kamala Krithivasan, K. Sharda, Fuzzy ω -automata, Information Sciences, 138 (2001), pp. 257-281.

- [8] J.N. Mordeson and D.S. Malik, Fuzzy automata and languages, Chapman and Hall, CRC, 2002.
- [9] D.S. Malik, John N. Mordeson, On Fuzzy regular languages, *Information Sciences*, 88 (1996), pp. 263-273.
- [10] D. Perrin and J.-E. Pin, Infinite Words, Automata, Pure and Applied Mathematics, Vol 141, Elsevier, 2004.
- [11] W.G. Wee and K.S. Fu, A Formation of Fuzzy Automata and its application as a model of learning system, *IEEE Transactions on In Systems Science and Cybernetics*, Vol. 5, No. 3. (1969), pp. 215-223.
- [12] L.A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), pp. 338-353.