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Abstract

In this paper we introduce right angle path and layer of an array.
We construct Kolakoski array and study some combinatorial proper-
ties of Kolakoski array. Also we obtain recurrence relation for layers
and special elements.
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1 Introduction

Combinatorics on words are of interesting importance in various fields of
science like computer science, mathematics, biology, physics and crystal-
lography. In this domain the combinatorial properties of infinite words and
devices to generate these words are studied in literature [1, 3, 4]. Our moti-
vation comes from formal language theory and therefore the combinatorial
aspect will be stressed more than algebraic aspect. Formal languages with
special combinatorial and structural properties are exploited in information
processing or information transmission [5]. Moreover the theory has now
developed into many directions and has generated a rapidly growing liter-
ature. In this paper we recall Kolakoski words over the 2-letter alphabet
¥ = {1, 2} which are invariant under the action of the run-length encoding
operator. The widely known run-length encoding is used in many appli-
cations as a method for compressing data. For instance, the first step in
the algorithm used for compressing the data transmitted by fax machines,
consists of a run-length encoding of each line of pixels. In this paper we
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extended some special combinatorial one dimensional word properties to
two dimensional arrays (5, 6].

An one sided infinite word z over the alphabet ¥ = {1,2} is called a
(classical) Kolakoski sequence, if it equals the sequence defined by its run
length that is

z= 22 11 2 1 22 1 22 11 2 11...

2 2 11 2 1 2 2 1 2. =z
Here, a run is a maximal sub word consisting of identical letters. The
sequence 2’ = 1z,
/=122 11 2 1 22 11 2 11 22...

1 2 2 11 2 21 2 2. =2
is the only other sequence which has this property. The paper is structured
as follows. In section 2 we recall some basic definitions and notations.
In section 3 we define Kolakoski array and we give some combinatorial
properties related to Kolakoski array. In addition to that we characterize
the array with C*™-words. In section 4 we present recurrence relation for

special elements.

2 Basic Definitions

Let ¥ be a finite alphabet. The set of all words over ¥ is denoted by X*.
The empty word is denoted by A. Let £+ = ¥* — {A}. An infinite word
w over a finite alphabet ¥ is a mapping from positive integers into X. We
write w = a1a3...a;... where a; € . The set of all infinite words over
Y is denoted by ¥*. An infinite word w is ultimately periodic if w = uv*.
We will use the following convention

r = min{r, s} and s = maz{r, s}.

Let w be a word over £ = {r,s}, r,s € N. The set C*™ contains
the set of factors of any word w having the property that an arbitrary
number of applications of the run-length encoding on w still produces a
word over £ = {r, s}. Such a word is called a smooth word. The definition
of differentiable is chosen such that every sub word of a Kolakoski word
is differentiable. In fact, every sub word of a Kolakoski word is smooth
or a C*-word with respect to this differentiation rule over the respective
alphabet, i.e., it is arbitrarily often differentiable [3, 4].
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3 Kolakoski Array

In this section we introduce Kolakoski array and study the combinatorial
properties of it. We start with some basic definitions which act as tools for
the construction of the array. We also recall the definition of differentiable
and smooth words [4]. Let Wx € £““. The Kolakoski row (column) array
is constructed by the rule:

B DD M= = DD =N
DN NNNDNNND -
—_ NN N = .
— s e e e .
DON = =N N .
NN DN e .
DD DD k=t = BN = N -
NN NN NN -
o NN =N =
DN NN NN -

Figure 1: Kolakoski row array

Wi consists of consecutive blocks in every row (column) of 1’s and 2’s such
that the length of each block is either 1 or 2, and the length of the i** block
in the j** row (column) is equal (4, j)** vertex of Wy. These arrays are an
example of a self reading infinite array.

2 211 2 1 2
11 2 2 1 21
2 211 2 1 2
1 1.1 1 1 11
11 2 2 1 2 1
2 2 2 2 2 2 2
2 211 2 1 2

Figure 2: Kolakoski column array
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Definition 3.1. Let A = (a;;) be an infinite array. The element at (7,1)**
position is denoted by a; and is termed as it* element of A.

Definition 3.2. Let A = (a;;) be an infinite array. A word associated with
Gn1 1O Q15 2lONE Gn2Gn3 . . . Gnn—1@nnGn-1n . - - G2n is called right angle word
and the corresponding position in the array is called a right angle path.

Definition 3.3. Let A = (a;;) be an infinite array. If the elements in a
right angle path are equal then the path is called layer of width 1. If r € N
consecutive right angle paths have same elements then it is treated as a
single layer of width r.

Definition 3.4. For any A € £**, the sub array complexity of A is the
map g4 : N X N = N defined as ga(m,n) = card(S(A) N E™*™) where
S(A) is the collection of all sub arrays of A. Then ga(m,n) counts the
number of distinct sub arrays of A of size (m,n).

Definition 3.5. Let W € X““ such that it consists of consecutive layers
of 1’s and 2’s such that the width of each layer is either 1 or 2, and the
width of the it layer is equal i** special element of W. If we take 2 as
the first element then odd layers consist of 2’s and even ones of 1’s. This
construction produces self reading infinite arrays. These arrays are called
Kolakoski arrays and one of the array is shown in the following figure.

BN = = N = NN
DD = NN N
o N - NN
el C N I
NNNDNDNF NN
[ el e el e S B R
BN DD NN
NN NDDNNN N

Figure 3: Kolakoski array

Definition 3.6. An array A = (a;;) is said to be symmetric if a;; = aj:
for all i,5 € N.

Lemma 3.7. Let A = (a;;) be a Kolakoski array over a binary alphabet.
Then A is a symmetric array.
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Proof. We note that both a;; and a;; lie in a layer and by definition of
layer it follows that AT = A.

Lemma 3.8. Let A = (ai;) be a Kolakoski array over a binary alphabet.
Then ga(m,n) = ga(n, m).

Proof. Lemma 3.7 implies that the set of all sub arrays of size (m,n)
becomes the set of all sub arrays of size (n, m). Hence ga(m,n) = ga(n,m).

Lemma 3.9. Let A = (ai;) be a Kolakoski array over a binary alphabet & =
{1,2} with 2 as its first element. Then the word associated with a1aza3. ..,
is a famous Kolakoski word starting with 2.

Proof. We get the proof from definition of layer and special element. We

see that a; = 2; a3 =2; a3 =1; ... and so
ajazazaq---= 22 11 2 1 22 1 22 11 2 11...
2 211 2 1 2 2 1 2.

which is a famous Kolakoski word starting with 2.

We are interested here in studying the set of factors of smooth words.
For this, we recall some additional definitions. Let w be a word over X.
Then w can be uniquely written as a concatenation of maximal blocks of
identical symbols (called runs), i.e., w = z'1z%2 ...z with 2 € T and
i; > 0. The run-length encoding of w, noted A(w), is the sequence of expo-
nents i;, i.e., one has A(w) = i;43...i,. With respect to this differentiation
rule over the respective alphabet we have the following definitions.

Definition 3.10. A word w € T is differentiable if A(w) is still a word
over X.

Definition 3.11. An infinite word w over X is called a smooth word if for
every integer k > 0 one has that A*(w) is still a word over .

Theorem 3.12. Let A = (a;;) be a Kolakoski array over a binary alphabet
Y. Then every word associated with special element of any sub array is a
C*®-word.

Proof. We start the proof by considering a sub array B = (b;;) of size
(m,n), m,n € N. Then the word associated with b1b2bs...bn (m < n)
is a sub word of a Kolakoski word by Lemma 3.8. Since all sub words
of a Kolakoski word are C*®-words we infer that this result produces the
statement that every diagonal word in a sub array of a Kolakoski array is
a C*-word.



4 Recursive Formula

In this section we use the one dimensional recurrence properties to extend
two dimensional [2]. Let Wy € =% be Kolakoski array. The n** special
element and is denoted by K,.

We will now derive a recursive formula for K,,.

j
Let &k, =min{j:ZK,' Zn}.
i=1

Table 1: K, and ky,
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(]
—
—
[\
[y
(3]
[\
—
[ -]
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—
—
[\-]

n
Kn
kn

kn—l
Lemma 4.1. k, =k, +n — Z K;, wheren > 2.
i=1
kn—l

Proof. We first notice that n — 1 < Z K; <n.

i=1
The left inequality holds by definition and the right one is valid, since if
kn-—l kn—l
ZK,- >n+1wewould haven —1 < ZKiZn—l
i=1 i=1
which is a contradiction to the minimality of k,—1. So, as the first case, we
kn—l kn—l

consider Z K; = n—1 which implies k, = kn_1+1=kp_1+n— Z K;.

i=1 i=1
ku—l kn—l
In the second case Z Ki=nleadsto kp = kn_1 =kn_1 +n— Z K;.
i=1 i=1
We notice that Lemma 4.1 holds in general for every sequence, whose only
values are 1 and 2.

Lemma 4.2.

n
kn=kn_1+|Kn—Knal =1+ |Ki— Ki-1|, where n>2.
=2
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Proof. The following well known construction produces an array which
is identical to Kolakoski array. Start with K; ones as special elements,
continue with K5 twos as special elements, followed by K3 ones and so on.

In this construction, after k,_, steps two cases can appear, as described in
kn-l

the proof of Lemma 4.1. The first possibility is that Z K; =n—1 which

i=1
means that we have constructed n — 1 terms of the sequence. Therefore,
by construction K, must be different from K,_; implying k, — kn—1 =

n—1

|Kn — Kn-1|. In the second case that E K; = n, it is necessary that
i=1
kn—l
Ky, _, =2, for if otherwise Z K; = n — 1, contradicting the miniality of
i=1
kn—1. So our construction has added 2 equal numbers at the Ic,‘,"_1 step,
such that K,, = K,,_; and finally k, — k,—; = |K, — Kn,—1}. The second
equality follows by induction.

Corollary 4.3 is an implication of Lemma 4.2.

Corollary 4.3. K, = (mod2 or K,, = 1_—11;‘—"'1 + 1 respectively.
1 kn—l
Corollary 4.4. k, =n — 3 Z (-1)% +1), where n > 2.
i=1

Corollary 4.4 follows from Corollary 4.3.

Corollary 4.5. k, = k,_; + 1 — %(k -1 - kn_g)((—-l)kk""‘ + 1, where
n > 3.

Theorem 4.6. Forn > 3, we have

475 1K — K-

Kn =Koy + (3= 2Kn1)(n - > K:) (1)
i=1
14775} it
Kn=Kn_)+(3—2Kn_1)(n— > K.) (2)
i=1
Ko = Kno1+(3=2Kn_y) (1= 1 Knm1 =Koz (et E3 it
n = fin-1 n—1 2 3—2Kn—2

(3)
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Proof. From Lemma 4.1 and Lemma 4.2 we obtain
143757 |1Kj=Kj-1]
|Kp — Kn_y| =n— > K;
i=1
and use the fact that |[K, — Kn—1| = %:—;;Ig(ﬁ to complete the proof of (1)
and (2). The third equation (3) follows from Corollary 4.5 and Lemma 4.2.

Definition 4.7. We now define

O,={1<j<n:K;=1} and

Tn={1<j<n:K; =2}

The following table shows the first terms of the sequences defined ahove.

n [1{2}3]4 56| 7]|8]9[|10]j11}12]|13] 14 | 15
K, |1l2[2]J1[1[2]1]2]2]1[]2f2]1 1 2
K 121211217221 ]2[2fj1]1 2 1
O, [1}1]1]8]17[17]30]30]|30[49[49]49] 74101 ] 101
T, [0[3]8] 8] 8[19]19]34[51]51[72[95[95][ 95 | 124
O; |olo]|5]12}12[23[23[23[40)40[40| 73 [ 98] 98 | 127
Té |1]4]4] 4 [13[13]26]41 41608181 |81]108] 108

(Kol [1}3]|5] 7|9 [11]13[15]17{19]|21[23)25] 27 | 29

From the above table we infer Opt1 — On = |Kn41| if Ko = 1 and
Tos1 = Tn = |Kng1| if Kn =2, Opy1 =0, if Kn =2 and Tnyy =T, if
K,=1

Lemma 4.8. The following inequality is true for all positive integers n.

n< S, <2n and g<kn<n

where S, = in.

Jj=1
The following theorem is immediate from Lemma 4.8.

Theorem 4.9. For all positive integers n, we have

4n 5n 3n 3n 3
—=-1< < — — < L — 4 =
3 l_S,,_3 and S_k"_4+2
Theorem 4.10. Kolakoski arrays are not ultimately periodic.

Proof. The proof follows from a reason is that a (minimal) period of length
g in a word of special elements z yields a period of length q < g in its run-
length word. Thus such a word z cannot be equal to its run-length word
(where a word z is called ultimately periodic if there exist m,q such that
Zigl+ - 2i4q = Zi4q+1 - .- Zi+2q for all 4 _>_ m)
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Theorem 4.11. Let w € %% with ||X|] > 2. If gu is not bounded then
gu(myn) >2m+n foralin >1 (1.

Corollary 4.12. Let w € Z*“ with ||Z|| > 2. Then w is ultimately periodic
if and only if g, is bounded.

Theorem 4.13. Let w € Z*“ be a Kolakoski array then g,(m,n) > m+n
for allm,n > 1.

Proof. The proof of the theorem follows from Theorem 4.10, Theorem
4.11, Corollary 4.12.

5 Conclusion

In this paper we defined a self reading infinite array over the 2-letter al-
phabet ¥ = {1,2} which is invariant under the action of the run-length
encoding operator along the special element. Here we investigated inter-
esting properties like recurrence formula, C® sub array and ultimately
periodicity of Kolakoski array and we seek more properties in this array
which has many applications in the field of theoretical computer science
and number theory.
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