On cycle frames with cycles of length 8
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Abstract

Let M(b,n) be the complete multipartite graph with b parts
By, ..., By—1 of size n. A 2z-cycle system of M(b,n) is said to be
a cycle-frame if the z-cycles can be partitioned into sets Si,.... Sk
such that for 1 < j < k, S; induces a 2-factor of M(b,n) \ B: for
some i € Zy. The existence of a C:-frame of M(b,n) has been set-
tled when z € {3,4,5,6}. Here, we completely settle the case of
C.-frames when z is 8, and we give some solutions for larger values
of z.
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1 Introduction

Let M(b,n) be the complete simple multipartite graph with b parts B, ...,
By_; of size n. The vertex set, V(M (b,n)), is always chosen to be Zpx
Z,, with parts {j} x Z, for each j € Z,. The edge set, E(M(b,n)), is
{{G,s),(5,8)} | i, € Zp,i < j, and s,t € Z,}. Let C, denote a cycle of
length z. ‘

An H-decomposition of a graph G is a partition of E(G), each element
of which induces a copy of H. A 2-cycle system of a graph G is a set of z-
cycles that partition the edges of G. A z-cycle system is a C;-decompostion
of G. There has been considerable interest in 4-cycle systems of bipartite
and multipartite graphs. Sotteau has shown in [11] that a complete bi-
partite graph can be decomposed into cycles of even length under certain
conditions. This result has been extended to multipartite graphs in [3] by
Billington and Cavenagh. Billington and Hoffman produced a gregarious
4-cycle-system of multipartite graphs in [4] (a gregarious 4-cycle has each
vertex in a different part).

A 2-factor of a graph G is a spanning 2-regular subgraph of G. A 2-
factorization of G is a set of edge-disjoint 2-factors, the edges of which parti-
tion E(G). A C,-factorization is a 2-factorization such that each component
of each 2-factor is a cycle of length z; each 2-factor of a C,-factorization
is known as a C,-factor. C,-factorizations are also known as resolvable
C, -decompositions.

A frame of the multipartite graph M (b,n) is a collection of sets of
edges, S, ..., Sk, that partition E(M(b,n)) such that for 1 < j < k, §;
induces a 2-factor of M(b,n) \ B; for some ¢ € Zy. A C,-frame is a frame
such that each component of each 2-factor is a z-cycle. The existence of a
C.-frame of M (b, n) been settled when z € {3,4,5,6} [6, 12, 13]. In this
paper, we completely settle the case when z is 8, we give some solutions for
larger values of z.

2 Preliminary Results

We begin by finding some necessary conditions for the existence of a C.-
frame of M(b,n).

Lemma 2.1 If there exists a C,-frame of M(b,n), then
1. b#2,
2. |E(M(b,n))| =0 (mod z),
3. (b-1)n=0 (mod z), and
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4. at least one of b and n is even.

Proof If b = 0 or b = 1, then there are no edges to partition in M (b,n).
There are no edges joining vertices in the same part in M (b, n). So in order
to produce 2-factors of M(b,n)\ ({d} x Z,,), it must contain more than one
part. If b = 2, then M(b,n) \ ({d} % Z,,) contains only one part. So b # 2.

Since a C,-frame of M (b,n) is a z-cycle-system, the number of edges in
M(b,n), (g) n2, must be divisible by z. Also, in order to produce C,-factors
of M(b,n)\({d} x Z,) for d € Zj, the number of vertices of M (b,n)\ ({d} x
Zy) for d € Zp must be divisible by 2. So (b— 1)n =0 (mod z).

Each of the C,-factors consists of (b — 1)n edges. In the multipartite
graph M(b,n), there are (g)n2 edges. So the number of C,-factors in a
C,-frame of M (b,n) is

by, 2
(2)"’ — lbn,
b-1n 2
which implies that at least one of b and n is even. ]

Lemma 2.2 [7] Suppose z # 6 with z > 4. Then K, . has a C,-factorization
for all z = 0(mod 2).

Lemma 2.3 (2] Suppose (b — 1)n > 2 is even. Then M(b,n) is the union
of w Hamilton cycles.

Lemma 2.4 /5] Suppose b = 1(mod 4). Then near Cy-factorizations of
MK, ezist for all even .

Lemma 2.5 [13] There exists a Cyq-frame of M(b,n) for all M(b,n) that
satisfy Lemma 2.1.

Lemma 2.6 [6/ There exists a Cs-frame of M(b,n) for all M(b,n) that
satisfy Lemma 2.1.

Lemma 2.7 [1f (Fundamental Cycle Frame Construction) If there exists a
(K, 1,b)-Pairwise Balanced Design of the complete graph K, and C.-frame
of M(m,2) for each m € K, there exists a C,-frame of M(b,2).

3 Some General Constructions

In this section, we give some general constructions of C.-frames. Unfor-
tunately, these gencral constructions often do not completely settle the
existence of C,-frames for a given z. So we must also use additional tech-
niges for given values of z,b, and n, but they are good beginnings. We
begin when b is odd and n is a multiple of z/2.
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Theorem 3.1 Let b be odd and z = 0(mod 4). There ezxists a C.-frame of
M(b,mz/2).

Proof Let F’ be a near 1-factorization on the vertex set Z;, and for each
d € Zy let F} be the near 1-factor in F with deficiency d; so each vertex in
Zy \ {d} occurs in exactly one edge in F}.

Let F be a 1-factorization on the vertex set Z,, X Z,,, and for each
t € Zy,, let F; be a 1-factor in F. Let K(B;, By) be the complete simple
bipartite graph on the parts By = {2} X Z,,,,/2 and By = {y} X Zp, /2, 0 <
z <y <b-1. Let K(B;k,By,:) be the complete simple bipartite graph
on parts By = {x} x {kz/2,kz/2+1,kz/2+2,...,kz/2 + (z/2 - 1)} and
By = {y} x {€2/2,0z/2+1,82/2+2,..,2/2+ (z/2-1)}, 0 <z <y <
b-1, kte€Z,.

Notice that

K(B:,By)= |J K(Bex Bye)

{k.L}eE(F)
tEZLn,

Notice also that the size of each part of K(B;k,By.) is 2/2, and
the graph is an example of M(2,z/2), which can be decomposed into
Hamilton cycles of length z by Lemma 2.3. So for each {k,¢} € E(F}),
define a C,-factorization of K (B, By,e), consisting of z/4 C;-factors,
Tukye(0), Mok ye(l), ..., Tzr,ye(2/4 — 1), as prescribed in Lemma 2.3.

For each d € Z, let

Ms= |J K(B:B,),
{z.y}eE(F))

which has a C,-factorization, Py, consisting of the mz/4 C.-factors:

Ma(i,t) = |J  Makye(d) for each j € Z,/q, t € Zn.
{r.u}eE(F)})
(k.L}eE(F)
Notice that
M(b,mz/2) = | ) Ma,
deZ,

each edge of which therefore occurs in exactly one cycle in

U MuGit)

dez,
J 6Z:/-l
"ez'"
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Notice also that each My(j,t) is a C,-factor of M (b, mz/2)\ ({d} X Zp,.2)
so the z-cycles in
U Pda

deZy
form a C,-frame of M(b,mz/2). [ ]

If z = 2p where p is a prime greater than 3, then there are several cases
depending on the values of b and n. If b is odd, then n must be a multiple
of 2p, and a construction is given here. If b is even, then there are two cases
depending on if b is or is not equivalent to 1 modulo p. If b = 1(mod p),
then n may be any even integer, but it suffices to solve the case when n = 2.
If b # 1(mod p), then n = 2mp.

Theorem 3.2 Let b be odd and z = 2p where p is a prime greater than 3.
There there exists a C,-frame of M(b,n) for n = 2mp.

Proof Let F' be a near 1-factorization on the vertex set Z;, and for each
d € Zy let F; be the near 1-factor in F’ with deficiency d; so each vertex in
Zy \ {d} occurs in exactly one edge in F).

Let F be a 1-factorization on the vertex set Z,, x Z,,, and for each
t € Zn, let Fy be a 1-factor in F. Let K(B;, By) be the complete simple
bipartite graph on the parts B; = {&} X Zamp and By = {y} X Zymp, 0 <
z <y <b-1. Let K(By i, By¢) be the complete simple bipartite graph
on parts By x = {z} x {2kp,2kp+1,2kp+2,...,2kp+ (2p—1)} and By ¢ =
{y} x{2¢p,2¢p+1,2¢p+2,...,.2¢p+ (2p-1)}, 0<z <y < b-1, kL€ Z,,.

Notice that

K(By:,By)= |J K(Bek Bye).
{k.EYEE(F:)
LEZ.,

For each {k,¢} € E(F), define a C.-factorization of K(B;,x,By.e),
consisting of 2/2 C.-factors, Tk 4e(0), T2k ye(1), ..., Tzk.ye(2/2 — 1), as pre-
scribed in Lemma 2.2.

For each d € Zy, let

My= |J K(B:,By),
{z.y}EE(F)

which has a C,-factorization, Py, consisting of the mz/2 C;-factors:

Md(j9t) = U ka,y@(j) for each j € Zz/‘Z; t € Zn.

{z.y}€E(Fy)
{kvE)EE(Ft)
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Notice that
M(b,2mp) = | | Ma,
deZy

each edge of which therefore occurs in exactly one cycle in

U MaGit).
de€Z,
jez:/Z

teZ,.

Notice also that each My(j,t) is a C,-factor of M(b,2mp) \ ({d} x Zamp)
so the z-cycles in
U F, ds

deZ;,
form a C,-frame of M (b, 2mp). [ |

In the next theorem, we show how a Cy-frame of M(b,n) can be extrap-
olated to a C,-frame of M(b,nz/4) where z = 0(mod 4); it is particularly
useful for producing C,-frames when b is even. This allows for the con-
struction of infinitely many C,-frames of M (b,n), but it does not settle
every case of cach specific cycle length 2. Those leftover cases must then
be solved. An example of the extrapolation is given in Figures 1 and 2.

. H

. ®

(a) A Cga-factor of (b) To be 2 Cg-factors

M@4,49)\ {Bo} of M(4,8)\ {Bo}
Figure 1

Theorem 3.3 Let z = O(mod 4). If there exists a Cy-frame of M (b,n),
then there exists a C.-frame of M(b,nz/4).

Proof We assume that we do in fact have a Cy-frame of M (b,n) as pro-
duced in [13]. In [13], it is shown that every C4-frame can be constructed
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z v z v

(a) First Cs- (b) Second Cs-

factor of M(2,4) factor of M(2,4)
Figure 2

such that each cycle of each factor consists of vertices in only two parts.
This arrangement is what allows this extrapolation to work.

To begin, replace each vertex u in M (b, n) with t = z/4 vertices u,, uo, ...,
u;. Then for each 4-cycle (v, w, z, y) in a Cy-factor of the Cy-frame, produce
a complete simple bipartite graph, M(2, z/2), with parts {vy, va, ..., vy, 21, Z2.
o 2t} and {wy, Wo, ooy W, Y1, Y25 -y Yt }-

By Lemma 2.3, there exists a C,-factorization of M(2, z/2) into z/4 C.-
factors. If we create the bipartite graphs M (2, z/2) from each 4-cycle in a
Cy-factor of the Cy-frame and then decompose those bipartite graphs into
C.-factorizations, we yield z/4 C.-factors of M(b,nz/4) \ {B;} for some
i € Zp.

If we repeat this process for each Cy-factor of the Cy-frame, we have
produced a C,-frame of M(b,nz/4). ]

It is worth repeating that while Theorem 3.3 does allow for the con-
struction of a great many cycle-frames, much of the work is in producing
cycle-frames for the graphs it omits. The rest of the paper provides results
for some of these small cases. In the next section, we completely settle the
remaining cases for z = 8.

4 The Main Result - Cg-Frames

First, we must consider the values of b and n for which a Cy-frame of
M(b,n) is possible. Since (b — 1)n = 0(mod 8), the values of b # 2 and n
that satisfy Lemma 2.1 are the following:

i) if b is cven, then n must be a multiple of 8, and
ii) if b is odd, then n must be even.

Notice that if b is either even or odd, we may use Theoremn 3.3 to extrapolate
a Cy-frame of M(b,4) to a Cs-frame of M (b, 8m).
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Now we must consider M (b,n) when b is odd and n = 2 or 4. Notice
that we need not consider n = 6 since that would imply b = 1(mod 4),
which is also implied when n = 2. We produce a construction for M (b, 2)
that can be used to form Cg-frames of M(b,n) when b = 1(mod 4) and
n = 2m. When b is odd and n = 4m, we use Theorem 3.1 to produce the
Cs-frame of M (b, n).

The proceeding construction completely settles the existence of Cy-
frames of M (b, n).

Theorem 4.1 Let b = 1(mod 4). There ezists a Cg-frame of M(b,2m).

Proof Let N’ be a near Cy-factorization of 2Kj on the vertex set Z;, (5],
and for each d € Z;, let Nj be the near Cy-factor in N’ with deficiency d;
so each vertex in Z; \ {d} occurs in exactly one 4-cycle in N;. Each N}
contains b—;-l 4-cycles, (v,w,z,y), with v < w,z,y. For s € Zb_:_l., let cq(s)
be the s** 4-cycle in N). So N/, = {ca(s) = (v,w,z,y) | v,w, 2,y € Zy,v <
w,T,y, and s € Z:,+1}.

Let F be a 1-factorization on the vertex set Zop, X Zay,, and for cach
t € Zom, let F; be a 1-factor in F.

Given cq(s) € Nj and {f, g} € E(F}), define an 8-cycle on the vertices

{v,w,z,y} x {f} and {v,w,z,y} x {g} as follows:
74(s, f,9) = {((v, f), (w, ), (9, f), (w, 9), (x, f), (v, 9), (v, 9), (=, 9))

|(v,w,z,y) € Nj, f,9 € Zam }.

Figure 3 shows an example of the 8-cycle.

f e
9 o
d v w x v

(a) An example 8-cycle

Figure 3

Letd € Zy, s € Za.;dx, and t € Zs,,,. Notice that

Pd(s,t) = U ”ll(saf’ g)

{f.9}eE(F)
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is a Cg-factor on the vertices {v,w,z,y} X Zay, for v,w,z,y € Zs. Notice
also that for each cq(s) € Nj,

Paty= |J Puist)

ca(8)EN]
is a Cg-factor of M (b,2m) \ ({d} x Zom).

For each d € Z,, ca(s) = (v,w,7,y) € N} and t € Zzp,, let My(s,t)
be the multipartite graph on vertices {v, w,z,y} x Zy,, for v,w.xz,y € Z,
induced by the edges of the Cs-factor Py(s,t).

Let
Mat)y= |J Muas,t)

s€Zy_)
-3

be the multipartite graph on vertices (Zp X Za,,) \ ({d} X Z2,,) induced by
the edges of the Cy-factor Py(t).

Let
My= | M),

tez’hu
which has a Cg-factorization,

Pi= | Pu),

t€Zz2,n

consisting of ¢ Cs-factors.
Notice that
M(b,2m) = | My,
d€Z,

each edge of which occurs in exactly one cycle in
U Pals,0).

dGZb
SE€EZLp_1

q
tez’lm

Notice also that each Py(s.t) is a Cs-factor of M (b,2m) \ ({d} x Zap,) so
the 8-cycles in
U~

deZy
form a Cg-frame of M (b, 2m). ]
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5 C 12-Frames

In this section, we consider z = 12. Again, we consider the values of b and
n for which a Cya-frame of M (b, n) is possible. The factors of 12 are 1, 2, 3,
4, 6, and 12. We begin by examining the possibilites of the part size with
respect to these factors.

i) if n were to be 1, then b must also be odd, which contradicts Lemma
2.1;

ii) if n were to be 2, then b = 1(mod 6);

iii} if n were to be 3, then b must again be odd, which is again a contra-
diction;

iv) if » were to be 4, then all b = 4(mod 6) are possible;

v) if n were to be 6, then b must be odd; and

vi) if n were to be 12, then b may be any value other than 2.

Notice that we may use Theorem 3.3 to extrapolate a Cy-frame of M (b, 4) to
a Cyo-frame of M(b,12m). When b is odd and n = 6m, we use Theorem 3.1
to produce a Cja-frame of M(b,6m). So we have two cases left to consider.

We produce a construction to form Cjo-frames of M(b,n) when b =
4(mod 6) and n = 4m. For the case when n = 2 and b = 1(inod 6), we are
able to produce frames for several small examples and recursively for very
large values of b.

So the existence of Cia-frames of M (b, n) is not completely settled, but
much progress has been made.

Theorem 5.1 There exist Ci-frames of M(7,2), M (13,2), M(19,2), and
M (25,2).

Proof For each of these graphs, label the vertices Zy, with parts {{v,v +
1} | v € Zgy, and v is even}. For each of the given base cycles, generate the
rest of the cycles in the frame by adding two modulo 2b to each vertex.
For a Cjo-frame of M(7,2), use the base cycle:

(2,12,3,7,8,6,9,11,4,10,5,13)
For a Cja-frame of M(13,2), use the base cycles:

(2,24, 3,13,14, 12, 15,7, 20, 6, 21, 25) and
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(4,22,5,19,8,18,9,11,16, 10, 17, 23).
For a Cio-frame of M(19,2), use the base cycles:

(2,36,3,19,20,18,21,11,28, 10, 29, 37),

(4,34,5,25,14, 24, 15,17, 22, 16, 23, 35), and
(6,32,7,31,8,30,9,13, 26,12, 27, 33).

For a Cjo-frame of M(25,2), use the base cycles:
(2,48,3,25,26,24,27,13, 38,12, 39, 49),

(4,46,5,29, 22, 28, 23,21, 30, 20, 31, 47),
(6,44, 7.37,14, 36,15, 19, 32,18, 33, 45), and
(8.42.9,41,10,40,11,17, 34, 16, 35, 43).

By the Fundamental Cycle Frame Construction, if there exists a (X, 1, b)-
Pairwise Balanced Design of the complete graph K and C,-frame of M (m, 2)
for each m € K, there exists a C,-frame of M (),2). So we can produce a
Ciz-frame for M (b, 2) if there exists a (K, 1,b) — PBD of K, with blocks of
size K = {7,13,19,25}. The values of b for which this is guaranteed begin
at quite a large number, and there are quite a few possible exceptions for
values less than the guaranteed value. We leave the work of solving the
possible exceptions as further research.

Theorem 5.2 Let b = 4(mod 6). There exists a Cya-frame of M (b,4m).

Proof By Lemma 2.6, there exists a Cg-frame of M(6k + 4,2m). We
extrapolate it to produce a C)o-frame of M (6k + 4,4m). For each 6-cycle,
(t,u,v,w, x,y), of each Cg-factor of the frame, replace each vertex by a
pair of vertices. Replace each edge of the cycle with M(2,2) such that the
resulting graph looks like Figure 4.
This graph can be decomposed into the two 12-cycles:

(1, w1,v1, w1, 1, Y1, b2, U2, Vo, wo, T2, ¥2) and (ty, ug, vy, wa, 1, Y2, t2,u1,v2,
wy, T3, y1). Doing so for all 6-cycles of each factor of the C¢-frame produces
a Cigp-frame of M{(6k + 4,4m). [ ]
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Figure 4

Unfortunately, it seems that constructing C)2-frames for M (b, 2) is much
more difficult than we had hoped. All of the techniques described here
have no general extrapolation. If there existed Cjo-frames of M(k,2) for
k € {31,37,43}, then we would have something more interesting to say
about exactly when a C)a-frame of M(b,2) would exist since we could then
invoke the Fundamental Cycle Construction.

6 Further Research & Acknowledgments

While the existence of C,-frames of M (b, n) is settled when zis 8, 2 = 12 is
still unfinished. In order to settle the existence of Cjo-frames, the question
of M(b,n) must be answered. At this time, we are still searching for a
general construction.

Most of the constructions in this paper concern values of z that are 0
modulo 4. Much work can be done when z is 2 modulo 4.

The authors would like to thank the referee for their time and attention
to detail in their review. Their comments greatly added to the conciseness
of the paper.
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