On large sets of $K_{1,p}$ -decomposition of complete bipartite graphs*

Yanfang Zhang, Zhijun Wang and Yingwei Chen College of Mathematics and Statistics Hebei University of Economics and Business Shijiazhuang 050061, P.R. China yanfang_zh@163.com

Abstract. Let H and G be two simple graphs, where G is a subgraph of H. A G-decomposition of λH , denoted by $(\lambda H, G)$ -GD, is a partition of all the edges of λH into subgraphs (G-blocks), each of which is isomorphic to G. A large set of $(\lambda H, G)$ -GD, denoted by $(\lambda H, G)$ -LGD, is a partition of all subgraphs isomorphic to G of H into $(\lambda H, G)$ -GDs (called small sets). In this paper, we investigate the existence of $(\lambda K_{m,n}, K_{1,p})$ -LGD and obtain some existence results, where $p \geq 3$ is a prime.

Keywords: large set; $K_{1,p}$ -decomposition; complete bipartite graph

1 Introduction

Let G = (V(G), E(G)) be a graph, where each edge in E(G) is denoted by an unordered pair $\{u, v\}$, $u, v \in V(G)$. The degree $d_G(v)$ of a vertex v in G is $|\{u : \{u, v\} \in E(G)\}|$. A graph G is a subgraph of H if $V(G) \subseteq V(H)$ and $E(G) \subseteq E(H)$. A spanning subgraph of H is a subgraph G with V(G) = V(H). Let G be a spanning subgraph of H. G is called an F-factor if each component of G is isomorphic to a given graph F. Let G be a spanning subgraph of H. If G can be partitioned into some subgraphs isomorphic to F, and the number of times each vertex of H appears in subgraphs isomorphic to F is exactly λ , then G is called a λ -fold F-factor of

^{*}Research supported by NSFC Grant 11401158, NSFC Grant 11171089, NSFHB Grant A2012207001, the YPSR of HED (No.QN20131027) and the YPSR of HUEB (No.2014KYQ04, No.2013KYQ07).

H, denoted by $S_{\lambda}(1, F, H)$. A large set of λ -fold F-factors of G, denoted by $LS_{\lambda}(1, F, G)$, is a partition $\{\mathcal{B}_i\}_i$ of all subgraphs of G isomorphic to F, such that each \mathcal{B}_i is a λ -fold F-factor of G. For $\lambda = 1$, the index 1 is often omitted. About $LS_{\lambda}(1, F, G)$, we have the following result.

Lemma 1.1 [1] There exists an $LS_{\lambda}(1, K_k, K_v)$ if and only if $k|\lambda v$ and $\frac{\lambda v}{k}|\binom{v}{k}$.

Let G be a graph and λ be a positive integer. We use λG to denote the multigraph obtained from G by repeating each edge λ times. In this paper, K_n is the complete graph on n vertices, where any two distinct vertices x and y of K_n are joined by exactly one edge $\{x,y\}$. Also, $K_{m,n}$ is the complete bipartite graph with two parts X and Y of cardinalities m and n, respectively, where any vertex x in X and any vertex y in Y are joined by exactly one edge $\{x,y\}$.

Let H and G be two simple graphs, where G is a subgraph of H. A G-decomposition (or G-design) of λH , denoted by $(\lambda H, G)$ -GD, is a partition of $E(\lambda H)$ into subgraphs (called G-blocks), each of which is isomorphic to G. For $H = K_n$ and some simple graphs of G, such as the cycle C_k , path P_k , star S_k , k-cube and some graphs with fewer vertices and fewer edges, the existence of these G-decompositions has been solved (see [2]). A large set of $(\lambda H, G)$ -GD, denoted by $(\lambda H, G)$ -LGD, is a partition of all subgraphs isomorphic to G of H into $(\lambda H, G)$ -GDs (called small sets). The large set (K_n, C_3) -LGD (that is large sets of Steiner triple systems LSTS(n)) has been completely solved (see [6-8]). There are some other results regarding the existence of $(\lambda H, G)$ -LGD(see [4],[5],[9]). Not a long time ago, the existence spectrums of $(\lambda K_{m,n}, P_3)$ -LGD (that is, large sets of $K_{1,2}$ -decompositions of complete bipartite graphs) and $(\lambda K_{m,n}, K_{2,2})$ -LGD (that is, large sets of $K_{2,2}$ -decompositions of complete bipartite graphs) were obtained (see [10] and [3]).

In this paper, a $K_{1,p}$ which contains p edges $\{a,b_1\}, \{a,b_2\}, \cdots, \{a,b_{p-1}\}$ and $\{a,b_p\}$ is denoted by $[a;b_1,b_2,\cdots,b_p]$. We investigate the existence of $(\lambda K_{m,n},K_{1,p})$ -LGD and obtain some existence results, where $p\geq 3$ is a prime. (Note: In the following content, p is always a prime.)

2 Main Constructions

A $(\lambda K_{m,n}, K_{1,p})$ -GD consists of $\frac{\lambda mn}{p}$ $K_{1,p}$ -blocks. A $(\lambda K_{m,n}, K_{1,p})$ -LGD contains $\frac{\binom{m-1}{p-1}+\binom{n-1}{p-1}}{\lambda}$ pairwise disjoint $(\lambda K_{m,n}, K_{1,p})$ -GDs (small sets). So we have the following result.

Lemma 2.1 There exists a $(\lambda K_{m,n}, K_{1,p})$ -LGD only if $p|\lambda mn$ and $\lambda|[\binom{m-1}{p-1}+\binom{n-1}{p-1}]$.

Therefore, in order to determine the existence spectrum of $(\lambda K_{m,n}, K_{1,p})$ -LGD, it is enough to construct $(K_{pm,pn}, K_{1,p})$ -LGD, $(K_{pm,n}, K_{1,p})$ -LGD (where $n \not\equiv 0 \pmod{p}$ and $(pK_{m,n}, K_{1,p})$ -LGD (where $m \not\equiv 0 \pmod{p}$) and $n \not\equiv 0 \pmod{p}$). In this paper, we obtain the sufficient and necessary conditions of $(\lambda K_{pm,pn}, K_{1,p})$ -LGD and $(\lambda K_{m,n}, K_{1,p})$ -LGD (where $m \not\equiv 0 \pmod{p}$) and $n \not\equiv 0 \pmod{p}$).

Lemma 2.2 There exists a $(K_{pm,pn}, K_{1,p})$ -LGD for any positive integers m and n.

Proof. Let v = pt, by Lemma 1.1, there exists an

$$LS(1, K_p, K_{pt}) = \{(Z_{pt}, T_i): 1 \le i \le {pt-1 \choose p-1}\}.$$

Each \mathcal{T}_i consists of t p-subsets of Z_{pt} , which forms a parallel class on Z_{pt} .

Let the vertex set of $K_{pm,pn}$ be $Z_{pm} \cup \bar{Z}_{pn}$. There exist

$$LS(1, K_p, K_{pm}) = \{(Z_{pm}, \mathcal{P}_i) : 1 \le i \le {pm-1 \choose p-1}\}$$

and

$$LS(1, K_p, K_{pn}) = \{(\bar{Z}_{pn}, Q_j): 1 \le j \le \binom{pn-1}{p-1}\}$$

on Z_{pm} and on \bar{Z}_{pn} respectively, where each \mathcal{P}_i consists of m p-subsets of Z_{pm} , which forms a parallel class on Z_{pm} , and each Q_j consists of p-subsets of \bar{Z}_{pn} , which forms a parallel class on \bar{Z}_{pn} .

Define

$$\begin{split} \mathcal{A}_i &= \{[x;a_1,a_2,\cdots,a_p]:\ x\in \bar{Z}_{pn},\ \{a_1,a_2,\cdots,a_p\}\in \mathcal{P}_i\},\ 1\leq i\leq \binom{pm-1}{p-1}.\\ \mathcal{B}_j &= \{[y;b_1,b_2,\cdots,b_p]:\ y\in Z_{pm},\ \{b_1,b_2,\cdots,b_p\}\in \mathcal{Q}_j\},\ 1\leq j\leq \binom{pn-1}{p-1}.\\ \text{Then each } (Z_{pm}\cup \bar{Z}_{pn},\mathcal{A}_i) \text{ is a } (K_{pm,pn},K_{1,p})\text{-}GD \text{ for } 1\leq i\leq \binom{pm-1}{p-1}.\\ \text{because each } \mathcal{P}_i \text{ is a parallel class on } Z_{pm}. \text{ Similarly, each } (Z_{pm}\cup \bar{Z}_{pn},\mathcal{B}_j) \text{ is a } (K_{pm,pn},K_{1,p})\text{-}GD \text{ for } 1\leq j\leq \binom{pn-1}{p-1} \text{ because each } \mathcal{Q}_j \text{ is a parallel class on } \bar{Z}_{pn}. \text{ So we have } \binom{pm-1}{p-1}+\binom{pn-1}{p-1} \text{ small sets, just as expected.} \end{split}$$

Furthermore, the family $\{A_i\}$ just forms a partition of all $K_{1,p}$ -blocks in the form $[x; a_1, a_2, \cdots, a_p]$ (where $x \in \bar{Z}_{pn}$, $\{a_1, a_2, \cdots a_p\}$ is a p-subset in Z_{pm}) because $\{(Z_{pm}, \mathcal{P}_i)\}$ forms a $LS(1, K_p, K_{pm})$ on Z_{pm} , and the family $\{\mathcal{B}_j\}$ just forms a partition of all $K_{1,p}$ -blocks in the form $[y; b_1, b_2, \cdots, b_p]$ (where $y \in Z_{pm}$, $\{b_1, b_2, \cdots, b_p\}$ is a p-subset in \bar{Z}_{pn}) because $\{(\bar{Z}_{pn}, \mathcal{Q}_j)\}$ forms a $LS(1, K_p, K_{pn})$ on \bar{Z}_{pn} . So $(\bigcup_i \mathcal{A}_i) \cup (\bigcup_j \mathcal{B}_j)$ forms a $(K_{pm,pn}, K_{1,p})$ -LGD on $Z_{pm} \cup \bar{Z}_{pn}$.

Lemma 2.3 Let p be a prime, if $n \not\equiv 0 \pmod{p}$, then $n \mid \binom{n}{p}$.

Proof. $\binom{n}{p} = \frac{n}{p} \binom{n-1}{p-1} = \frac{n\binom{n-1}{p-1}}{p}$. $\binom{n}{p}$ is an integer, so $\frac{n\binom{n-1}{p-1}}{p}$ is an integer. p is a prime and $n \not\equiv 0 \pmod{p}$, so $p \mid \binom{n-1}{p-1}$, that is, $\frac{\binom{n-1}{p-1}}{p} = t$ is an integer, then $\binom{n}{p} = nt$, so we have $n \mid \binom{n}{p}$.

Lemma 2.4 There exists a $(pK_{m,n}, K_{1,p})$ -LGD, where $m \not\equiv 0 \pmod{p}$ and $n \not\equiv 0 \pmod{p}$.

Proof. Let the vertex set of $K_{m,n}$ be $Z_m \cup \bar{Z}_n$. Because $m \not\equiv 0 \pmod{p}$, by Lemma 1.1 and Lemma 2.3, we know there exist

$$LS_p(1, K_p, K_m) = \{(Z_m, \mathcal{P}_i) : 1 \le i \le \frac{\binom{m-1}{p-1}}{p}\},$$

where each \mathcal{P}_i consists of m p-subsets of Z_m , which forms a p-parallel class on Z_m . Similarly, because $n \not\equiv 0 \pmod{p}$, by Lemma 1.1 and Lemma 2.3, we know there exist

$$LS_p(1, K_p, K_n) = \{(\bar{Z}_n, Q_j) : 1 \le j \le \frac{\binom{n-1}{p-1}}{p}\},$$

where each Q_j consists of n p-subsets of \bar{Z}_n , which forms a p-parallel class on \bar{Z}_n . Define

$$\begin{aligned} &\mathcal{A}_i = \{[x;a_1,a_2,\cdots,a_p]:\ x\in\bar{Z}_n,\ \{a_1,a_2,\cdots,a_p\}\in\mathcal{P}_i)\},\ 1\leq i\leq\frac{\binom{m-1}{p-1}}{p}.\\ &\mathcal{B}_j = \{[y;b_1,b_2,\cdots,b_p]:\ y\in Z_m,\ \{b_1,b_2,\cdots,b_p\}\in\mathcal{Q}_j)\},\ 1\leq j\leq\frac{\binom{n-1}{p-1}}{p}.\\ &\text{Then each }(Z_m\cup\bar{Z}_n,\mathcal{A}_i)\text{ is a }(pK_{m,n},K_{1,p})\text{-}GD\text{ for }1\leq i\leq\frac{\binom{m-1}{p-1}}{p}\text{ because each }\mathcal{P}_i\text{ is a }p\text{-parallel class on }Z_m. \text{ Similarly, each }(Z_m\cup\bar{Z}_n,\mathcal{B}_j)\text{ is a }(pK_{m,n},K_{1,p})\text{-}GD\text{ for }1\leq j\leq\frac{\binom{n-1}{p-1}}{p}\text{ because each }\mathcal{Q}_j\text{ is a }p\text{-parallel class on }\bar{Z}_n. \text{ So we have }\frac{\binom{m-1}{p-1}}{p}\text{ small sets, just as expected.} \end{aligned}$$

Furthermore, the family $\{A_i\}$ just forms a partition of all $K_{1,p}$ -blocks in the form $[x; a_1, a_2, \dots, a_p]$ (where $x \in \overline{Z}_n$, $\{a_1, a_2, \dots, a_p\}$ is a p-subset

in Z_m) because $\{(Z_m, \mathcal{P}_i)\}$ forms a $LS_p(1, K_p, K_m)$ on Z_m , and the family $\{\mathcal{B}_j\}$ just forms a partition of all $K_{1,p}$ -blocks in the form $[y;b_1,b_2,\cdots,b_p]$ (where $y \in Z_m$, $\{b_1,b_2,\cdots,b_p\}$ is a p-subset in \bar{Z}_n) because $\{(\bar{Z}_n,\mathcal{Q}_j)\}$ forms a $LS_p(1,K_p,K_n)$ on \bar{Z}_n . So $(\bigcup_i \mathcal{A}_i) \bigcup_j \bigcup_j \mathcal{B}_j$) forms a $(pK_{m,n},K_{1,p})$ -LGD on $Z_m \cup \bar{Z}_n$.

3 Conclusion

Theorem 3.1 There exists a $(\lambda K_{pm,pn}, K_{1,p})$ -LGD if and only if $\lambda | [\binom{pm-1}{p-1}] + \binom{pn-1}{p-1} |$.

Proof. By Lemma 2.1, we only need to prove the sufficiency.

By Lemma 2.2, there exists a

$$(K_{pm,pn}, K_{1,p})-LGD = \{(Z_{pm} \cup \bar{Z}_{pn}, C_i) : 1 \le i \le {pm-1 \choose p-1} + {pn-1 \choose p-1}\}.$$

Define

$$\mathcal{D}_k = \bigcup_{i=k\lambda+1}^{(k+1)\lambda} \mathcal{C}_i, \ 0 \le k \le \frac{\binom{pm-1}{p-1} + \binom{pn-1}{p-1}}{\lambda} - 1,$$

then $\{(Z_{pm}\cup \bar{Z}_{pn}, \mathcal{D}_k): 0 \leq k \leq \frac{\binom{pm-1}{p-1}+\binom{pn-1}{p-1}}{\lambda}-1\}$ is just a $(\lambda K_{pm,pn}, K_{1,p})-LGD$.

Theorem 3.2 There exists a $(\lambda K_{m,n}, K_{1,p})$ -LGD if and only if $p|\lambda$ and $\lambda|[\binom{m-1}{p-1} + \binom{n-1}{p-1}]$, where $m \not\equiv 0 \pmod{p}$ and $n \not\equiv 0 \pmod{p}$.

Proof. By Lemma 2.1, we only need to prove the sufficiency.

By Lemma 2.4, there exists a

$$(pK_{m,n}, K_{1,p})-LGD = \{(Z_m \cup \bar{Z}_n, C_i): 1 \le i \le \frac{\binom{m-1}{p-1}}{p} + \frac{\binom{n-1}{p-1}}{p}\}.$$

Define

$$\mathcal{D}_k = \bigcup_{i=k\frac{\lambda}{n}+1}^{(k+1)\frac{\lambda}{p}} C_i, \ 0 \le k \le \frac{\binom{m-1}{p-1} + \binom{n-1}{p-1}}{\lambda} - 1,$$

then $\{(Z_m \cup \bar{Z}_n, \mathcal{D}_k): 0 \le k \le \frac{\binom{m-1}{p-1} + \binom{n-1}{p-1}}{\lambda} - 1\}$ is just a $(\lambda K_{m,n}, K_{1,p})$ -LGD.

In order to obtain the existence spectrum of $(\lambda K_{m,n}, K_{1,p})$ -LGD, we only need to solve the existence problem of $(K_{pm,n}, K_{1,p})$ -LGD (where $n \not\equiv 0 \pmod p$). About $(K_{pm,n}, K_{1,p})$ -LGD (where $n \not\equiv 0 \pmod p$), we obtain the following result.

Lemma 3.3 There exists a $(K_{pm,p+1}, K_{1,p})$ -LGD for any positive integer m.

Proof. Let the vertex set of $K_{pm,p+1}$ be $Z_{pm} \cup \bar{Z}_{p+1}$. There exist

$$LS(1, K_p, K_{pm}) = \{(Z_{pm}, \mathcal{P}_i): 1 \le i \le {pm-1 \choose p-1}\}$$

on Z_{pm} , where each P_i consists of m p-subsets of Z_{pm} , which forms a parallel class on Z_{pm} .

Let

$$Q_j = \bar{Z}_{p+1} \setminus \{\bar{j}\}, \ 0 \le j \le p,$$

then the family $\{Q_j\}$ just forms a partition of all the p-subsets in \bar{Z}_{p+1} . Define

$$\mathcal{A}_{i} = \{ [x; a_{1}, a_{2}, \cdots, a_{p}] : x \in \tilde{Z}_{p+1}, \{a_{1}, a_{2}, \cdots, a_{p}\} \in \mathcal{P}_{i} \}, 2 \leq i \leq {pm-1 \choose p-1}.$$

$$\mathcal{B}_{j}^{1} = \{ [y; b_{1}, b_{2}, \cdots, b_{p}] : y \in Z_{pm}, \{b_{1}, b_{2}, \cdots, b_{p}\} = Q_{j} \},$$

$$\mathcal{B}_{i}^{2} = \{ [\vec{i}; a_{1}, a_{2}, \cdots, a_{p}] : \{a_{1}, a_{2}, \cdots, a_{p}\} \in \mathcal{P}_{1} \}.$$

$$\mathcal{B}_{j}^{2} = \{ [\bar{j}; a_{1}, a_{2}, \cdots, a_{p}] : \{a_{1}, a_{2}, \cdots, a_{p}\} \in \mathcal{P}_{1} \},$$

Let
$$\mathcal{B}_j = \mathcal{B}_j^1 \cup \mathcal{B}_j^2, \ 0 \leq j \leq p.$$

Then it is easy to verify that each of $(Z_{pm} \cup \bar{Z}_{p+1}, A_i)$ and $(Z_{pm} \cup \bar{Z}_{p+1}, B_j)$ is a $(K_{pm,p+1},K_{1,p})$ -GD for $2\leq i\leq {pm-1\choose p-1}$ and $0\leq j\leq p$. So we have $\binom{pm-1}{p-1} - 1 + (p+1) = \binom{pm-1}{p-1} + p$ small sets, just as expected.

Furthermore, the family $\{A_i : 2 \le i \le {pm-1 \choose p-1}\} \cup \{B_j^2 : 0 \le j \le p\}$ just forms a partition of all $K_{1,p}$ -blocks in the form $[x;a_1,a_2,\cdots,a_p]$ (where $x \in \bar{Z}_{p+1}, \{a_1, a_2, \cdots a_p\}$ is a p-subset in Z_{pm}), and the family $\{\mathcal{B}_j^1 : 0 \leq$ $j \leq p$ just forms a partition of all $K_{1,p}$ -blocks in the form $[y; b_1, b_2, \cdots, b_p]$ (where $y \in Z_{pm}$, $\{b_1, b_2, \cdots, b_p\}$ is a p-subset in \bar{Z}_{p+1}). So $(\bigcup_i \mathcal{A}_i) \cup (\bigcup_i \mathcal{B}_j)$ forms a $(K_{pm,p+1}, K_{1,p})$ -LGD on $Z_{pm} \cup \bar{Z}_{p+1}$.

Theorem 3.4 There exists a $(\lambda K_{pm,p+1}, K_{1,p})$ -LGD if and only if $\lambda | [\binom{pm-1}{p-1}]$ +p].

Proof. By Lemma 2.1, we only need to prove the sufficiency.

By Lemma 3.3, there exists a

$$(K_{pm,p+1},K_{1,p})-LGD=\{(Z_{pm}\cup \bar{Z}_{p+1},\mathcal{C}_i):\ 1\leq i\leq {pm-1\choose p-1}+p\}.$$

Define

$$\mathcal{D}_k = \bigcup_{i=k}^{(k+1)\lambda} \mathcal{C}_i, \ 0 \le k \le \frac{\binom{pm-1}{p-1} + p}{\lambda} - 1,$$

then $\{(Z_{pm} \cup \bar{Z}_{p+1}, \mathcal{D}_k) : 0 \le k \le \frac{\binom{pm-1}{p-1}+p}{\lambda} - 1\}$ is just a $(\lambda K_{pm,p+1}, K_{1,p})$ -LGD.

References

- Zs. Baranyai, On the factorizitions of the complete uniform hypergraph,
 Finite and infinite sets, Colloq. Math. Soc., Janos Bolyai, Vol.10,
 North-Holland, Amsterdam(1975), 91-108.
- [2] C. J. Colbourn and J. H. Dinitz, The CRC Handbook of Combinatorial Designs, CRC Press, Inc., Boca Raton, 2006.
- [3] Guohui Hao, Large sets of $K_{2,2}$ -decomposition of complete bipartite graphs, Ars Combin. 107(2012), 354-360.
- [4] Qingde Kang and Yanfang Zhang, Large set of P_3 -decompositions, J. Combin. Des. 10(2002), 151-159.
- [5] Qingde Kang and Hongtao Zhao, Large sets of Hamilton cycle decompositions of complete bipartite graphs, European J. Combin. 29(2008), 1492-1501.
- [6] Jiaxi Lu, On large sets of disjoint Steiner triple systems I-III, J. Combin. Theory Ser. A 34(1983), 140-182.
- [7] Jiaxi Lu, On large sets of disjoint Steiner triple systems IV-VI, J. Combin. Theory Ser. A 37(1984), 136-192.
- [8] Luc Teirlinck, A completion of Lu's determination of the spectrum for large sets of disjoint Steiner triple systems, J. Combin. Theory Ser. A 57(1991), 302-305.
- [9] Yanfang Zhang, On large sets of P_k -decompositions, J. Combin. Des. 13(2005), 462-465.
- [10] Hongtao Zhao and Feifei Fan, Large sets of P_3 -decompositions of complete multipartite graphs, Ars Combin. 104(2012), 341-352.