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An area of graph theory that has received increased attention during recent
decades is that of domination. Two books (8, 9] by Haynes, Hedetniemi
and Slater are devoted to this subject. In 1999 a new way of looking at
domination was introduced by Chartrand, Haynes, Henning and Zhang (2]
that encompassed several of the best known domination parameters in the
literature. This new view of domination was based on a concept introduced
by Rashidi [20] in 1994. A graph G whose vertex set V(G) is partitioned
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Abstract

A red-blue coloring of a graph G is an edge coloring of
G in which every edge of G is colored red or blue. Let F be
a connected graph of size 2 or more with a red-blue coloring,
at least one edge of each color, where some blue edge of F' is
designated as the root of F. Such an edge-colored graph F'
is called a color frame. An F-coloring of a graph G is a red-
blue coloring of G in which every blue edge of G is the root
edge of a copy of F in G. The F-chromatic index x#(G) of
G is the minimum number of red edges in an F-coloring of G.
A minimal F-coloring of G is an F-coloring with the property
that if any red edge of G is re-colored blue, then the resulting
red-blue coloring of G is not an F-coloring of G. The maximum
number of red edges in a minimal F-coloring of G is the upper
F-chromatic index x%(G) of G. In this paper, we study the two
color frames Y7 and Y> that result from the claw K, 3, where Y}
has exactly one red edge and Y has exactly two red edges. For
a graph G, let ¢/(G) and a”(G) denote the matching number
and lower matching number of G, respectively. It is shown that
if T is a tree of order at least 4 having no vertex of degree 2,
then xY, (T) = o’(T) while x¥,(T") < 3a”(T') and this upper
bound is sharp. For a color frame F of a claw, sharp bounds
are established for x%#(G) in terms of the matching number and
a generalized matching parameter of a graph G. Other results
and questions are also presented.
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is a stratified graph. If V(G) is partitioned into k subsets, then G is k-
stratified. In particular, the vertex set of a 2-stratified graph is partitioned
into two subsets. Typically, the vertices of one subset in a 2-stratified graph
are considered to be colored red and those in the other subset are colored
blue. A red-blue coloring of a graph G is an assignment of colors to the
vertices of G, where each vertex is colored either red or blue. In a red-blue
coloring, all vertices of G may be colored the same. A red-blue coloring in
which at least one vertex is colored red and at least one vertex is colored
blue thereby produces a 2-stratification of G. Let F be a 2-stratified graph
in which some blue vertex p is designated as the root of F. The graph F
is then said to be rooted at p. Since F is 2-stratified, F' contains at least
two vertices, at least one of each color. There may be blue vertices in F in
addition to the root. By an F-coloring of a graph G, we mean a red-blue
coloring of G such that for every blue vertex u of G, there is a copy of F' in
G with p at u. Therefore, every blue vertex u of G belongs to a copy F’ of
F rooted at u. A red vertex v in G is said to F-dominate a vertex u if u = v
or there exists a copy F’ of F rooted at u and containing the red vertex
v. The set S of red vertices in a red-blue coloring of G is an F'-dominating
set of G if every vertex of G is F-dominated by some vertex of S, that is,
this red-blue coloring of G is an F-coloring. The minimum number of red
vertices in an F-dominating set is called the F-domination number yp(G) of
G. An F-dominating set with vg(G) vertices is a minimum F-dominating
set. The F-domination number of every graph G is defined since V(G) is
an F-dominating set. This concept provides a generalization of domination
and has been studied in many articles (see [6, 7} and [10] - [14] for example).

An edge version of this concept was introduced by Chartrand in 2011
and studied in [15, 16]. In this context, we refer to a red-blue coloring of a
nonempty graph G as an edge coloring of G in which every edge is colored
red or blue. Let F be a connected graph of size 2 or more with a red-blue
coloring, at least one edge of each color. One of the blue edges of F is
designated as the root edge of F. The underlying graph of F is the graph H
obtained by removing the colors assigned to the edges of F. In this case,
F' is called a color frame of H. The simplest example of this is the unique
color frame Fp of the path P; in which one edge is red, the other is blue
and the blue edge is its root edge shown in Figure 1, where a red edge
is labeled r and a blue edge is labeled b. The five (distinct) color frames
F\,F,, ..., Fs of the path Py of size 3 are also shown in Figure 1, where
each root edge is indicated by a double-line edge.

For a color frame F, an F-coloring of a graph G is a red-blue coloring
of G in which every blue edge of G is the root edge of a copy of F in G.
The F-chromatic index xw(G) of G is the minimum number of red edges
in an F-coloring of G. An F-coloring of G having exactly x’»(G) red edges
is called a minimum F-coloring of G. Although these concepts are related
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Figure 1: Color frames of P; and Py

to the vertex concepts discussed earlier through the line graph of a graph,
this fact, as with proper colorings, has provided no benefit in the study
of F-colorings. It was shown in [16] that F-colorings and the F-chromatic
indexes of graphs, where F is one of color frames Fy, Fi,...,Fs shown in
Figure 1, provide a new framework for studying both edge independence
(or matchings) and edge domination in graphs.

The graph K 3 is often referred to as a claw. There are two color frames
of a claw, which are denoted by Y; and Y2 and shown in Figure 2. The color
frame Y7 of a claw has exactly one red edge while Y has exactly two red
edges. In Y], there are therefore two blue edges and in Y5 only one blue edge.
By symmetry, we can choose either of the two blue edges in Y7 as the root
edge, while in Y3, the only blue edge is the root edge of Y2. The F-colorings
where F is a color frame of a claw were studied by Chartrand, Johnston
and Zhang in the paper [3]. A vertex version of F-colorings, where F' is a
2-stratified graph of a claw were studied by Chartrand, Haynes, Henning
and Zhang in the paper [1].

NS :

T
Yl : 1”' Y2 : Ib
(e]

Figure 2: The two color frames of the claw K, 3

It was observed in [3] that if G is a nonempty graph of size m, then
Xy,(G) = Xy, (G) = m if and only if A(G) < 2.

An edge e in a graph G is referred to as a non-claw edge if e belongs to no
claw in G. Thus, if e = uv is a non-claw edge, then max{degu,degv} < 2.
Necessarily, every non-claw edge must be colored red in every Y;-coloring
of G for i = 1,2. The relationship among the Yj-chromatic index, the
Y;-chromatic index and the number of non-claw edges in a graph was es-
tablished in [3].
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Theorem 1.1 If G is a nontrivial connected graph containing € non-claw

edges, then
Xy, (G) £ xy,(G) < 3xy,(G) —2¢.

By Theorem 1.1, if G is a connected graph of order at least 4 with
Xy, (G) = a and x4,(G) = b, then a < b < 3a and b > 2. It was shown in
[3] that every pair a,b of positive integers with a < b < 3a and b > 2 can
be realized as x}, (G) and x},(G), respectively, for some connected graph
G of order at least 4.

Theorem 1.2 For a pair a,b of positive integers, there exists a connected
graph G of order at least 4 such that xy, (G) = a and xy,(G) = b if and
only if witha < b < 3a and b > 2.

Among the concepts that are fundamental in graph theory is that of
matchings. Lovész and Plummer have written a book [18] devoted to the
theory of matchings. A set of edges in a graph G is independent if no two
edges in the set are adjacent in G. The edges in an independent set of
edges of G form a matching in G. A matching of maximum size in G is
a maximum matching. The matching number ¢/ (G) of G is the number of
edges in a maximum matching of G. The number o/(G) is also referred to
as the edge independence number of G. A matching M in a graph G is a
mazimal matching of G if M is not a proper subset of any other matching
in G. While every maximum matching is maximal, a maximal matching
need not be a maximum matching. The minimum number of edges in
a maximal matching of G is called the lower matching number (or lower
edge independence number) of G and is denoted by o”’(G). Necessarily,
o'(G) < a/(G) for every graph G.

The concepts of matching number and lower matching number can be
generalized as follows. For a positive integer k&, a set X of edges of a graph
G is a Ag-set if A(G[X]) = k, where G[X] is the subgraph of G induced
by X. A maximum Ag-set in G is a Ag-set of maximum size and this size
is denoted by a}.(G). A Ag-set is mazimal if for every edge e € E(G) — X,
A(G[X U {e}]) > k. A maximal Ag-set of minimum size in G is denoted
by o(G). In particular, of(G) = a'(G) is the matching number of G and
af(G) = a"(G) is the lower matching number of G. Since every maximum
Ag-set is maximal, o} (G) < a}(G). As indicated in [3], the concept of F-
colorings, where F is a color frame of a claw, provides a new frame work
of studying matchings in graphs. Among the results obtained in [3] is the
following.

Theorem 1.3 If G is a connected graph of order at least 4 having no
vertez of degree 2, then xy, (G) < o”(G) and xy, (G) = o3(G).
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It is conjectured that if G is a connected graph of order at least 4
having no vertex of degree 2, then xy, (G) = a”(G). In Section 2, we verify
this conjecture for trees. In Section 3, sharp lower bounds for x¥,(G) are
established in terms of o}(G) for i = 1,2 for a connected graph G of order
at least 4 having no vertex of degree 2 and open questions are presented
in Section 4. Before beginning this study, it is useful to establish some
additional definitions and notation. For an F-coloring c of a graph G, let
E.,- denote the set of red edges of G and E.; the set of blue edges of G.
(We also use E, and Ej, for E.  and E,p, respectively, when the coloring ¢
under consideration is clear.) Thus {E,, F}} is a partition of the edge set
E(G) of G. Furthermore, let G, = G[E,] denote the red subgraph induced
by E, and G, = G[FE,| the blue subgraph induced by Ey. Thus {G,,Gp} is a
decomposition of G. If G is a disconnected graph with components G, G2,
...y Gi where k > 2, then x=(G) = x7(G1)+xr(G2)+- - - + x»(Gk). Thus,
it suffices to consider only connected graphs. We refer to the books (4, 5|
for graph theory notation and terminology not described in this paper.

2 Color Frames of Claws in Trees

In this section, we first study Y;-colorings in trees and show that if T is a
tree of order at least 4 having no vertex of degree 2, then xy, (T") = o"(T).
In order to show this, we first present an additional definition and a lemma.
Let C be a caterpillar of order at least 4 and let (21, o, ...,z4) be the spine
of C. For each i with 1 < 7 < d, let X; be the set of end-vertices that are
adjacent to z;. Suppose that |X;| > 1for 1 <i < dand d > 3. Define a
red-blue coloring ¢ of C such that

(1) e(zizit1) is red for an odd integer ¢ with 1 <i < d—1 and ¢(z;zit1)
is blue for an even integer ¢ with 2 < i< d—1 and

(2) e(ziz)isred for all z € X; ifiisodd and 1 €1 < d—1 and ¢(z;z) is
blue forallz € X;ifiisevenand 2 <i<d-1.

This edge-colored caterpillar C is then called a red-blue caterpillar rooted
at xy.

Lemma 2.1 LetT be a tree of order at least 4 having no vertex of degree 2.
If ¢ is a minimum Yi-coloring of T such that the red subgraph G, has the
largest edge independence number among all minimum Y)-colorings of T,
then every non-end-vertex of T is incident with at least two blue edges.

Proof. Assume, to the contrary, that there is a non-end-vertex u such that
u is incident at most one blue edge. Suppose that N(u) = {u1,u2,...,uq}
where a > 3. We consider two cases.
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Figure 3: A red-blue caterpillar rooted at z; ford =5

Case 1. u is incident with exactly one blue edge. First, suppose that
there is u; (1 <4 < a) such that u; is an end-vertex. Note that uu; cannot
be colored blue, for otherwise, this blue edge does not belong to any copy
of Y;. Thus uu; must be red. However then, since u is incident with a
blue edge, we can change the color of uu; to blue and the resulting coloring
is also a Yj-coloring. This is impossible since ¢ is a minimum Y;-coloring.
Therefore, no vertex u; (1 <1 < a) is an end-vertex of T

For each i with 1 < i < a, let N(w;) = {u,ui1,%i2,...,Uia; } Where
then a; > 2. We may assume, without loss of generality, that uu, is blue
and uu; and uu; are red. If there is p (1 < p < a1) such that uwyu,; is
red, then we can change the color of uu; to blue and the resulting coloring
is also a Yj-coloring. This is impossible since ¢ is a minimum Yj-coloring.
Thus u11;,p is blue for all p with 1 < p < a;. Similarly, upus 4 is blue for all
g with 1 < ¢ < as. If there is some p (1 < p < a;) such that u; p is incident
with no red edge, then we can interchange the colors of uu; and wyu,;,,
to obtain a minimum Yj-coloring whose red subgraph has a larger edge
independence number, a contradiction. Thus each u;, (1 < p < a;) must
be incident with at least one red edge. (Similarly each u34 (1 < g < a2)
must be incident with at least one red edge.)

If every vertex u1p (1 £ p < ay) is incident with two or more blue edges,
then we can change the color of uu; to blue and the resulting coloring is
also a Yj-coloring with fewer red edges, which is impossible since ¢ is a
minimum Y)-coloring. Thus, there is some u; p, (say ui,;) such that u;;
is incident with exactly one blue edge (namely, the blue edge uju;,1). We
now have a red-blue caterpillar C rooted at u with the spine (z; = u,z, =
uy, T3 = uy,1) such that

(i) X1 = {uz,...,uqe—1} where a > 3 is the set of end-vertices adjacent to
z1in C, Xy = {u1,2,...,U1,q, } where a; > 2 is the set of end-vertices
adjacent to z2 in C and X3 = N(uy,1)— {u,} is the set of end-vertices
adjacent to z3 in C;

(ii) each vertex in X; U X is not an end-vertex of T, that is, each end-
vertex of C that is adjacent to z; (i = 1,2) is not an end-vertex
of T
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(iii) each edge incident with z; = u in C is red, each edge incident with
z2 = uy is blue (except for z;z2) and each edge incident with z3 =
uy, is red (except for zpx3).

If there is an end-vertex of C adjacent to z3 that is an end-vertex of T,
then this procedure stops. Otherwise, we consider u;,; in the same way as

we consider u, that is, let u;,; = v and let N(v) = {uy,v;,va,...,vp} Where
b > 2. We may assume that vv; and vvy are red.
For each 7 with 1 < i < b, let N(v;) = {v,vi1,vi2,...,Vip, } Where

b; > 2. Repeating the procedure as above, we may assume that vjv; p is
blue for all p with 1 < p < b; and vova 4 is blue for all ¢ with 1 < ¢ < vs.
Furthermore, there is a vertex vy, (say v1,1) that is incident with exactly
one blue edge. We now have a red-blue caterpillar rooted at u with the spine
(v = z1,u1 = T2,u1,; = Z3,V) = Tq,V1,1 = Tp), which is also denoted by
C, such that no end-vertex of C adjacent to z; (1 < ¢ < 4) is an end-vertex
of T. If there is an end-vertex of C adjacent to x5 that is an end-vertex of
T, then this procedure stops. Otherwise, we continue and until we obtain
a red-blue caterpillar C rooted at v with the spine (z1,z2,...,zq4) (where
T) = u, T3 = U1, T3 = u1,1 and so on) and d > 3 is odd. For each i with
1 €1 < d, let X; be the set of end-vertices of C that are adjacent to x;.
Thus X; contains no end-vertex of T for 1 < ¢ < d — 1 and Xy contains
at least one end-vertex of T', say ¢ € X4 is an end-vertex of T. Since the
edge z47 is red, we can change the color of x4z to blue and the resulting
coloring is also a Yj-coloring with fewer red edges, a contradiction.

Case 2. u is incident with no blue edge. If u is adjacent to at least two
end-vertices, say u; and us, then the coloring obtained from ¢ by changing
the color of uuy and uus to blue is a Y)-coloring with fewer red edges than
¢, which is impossible. Thus u is adjacent to at most one end-vertex. First,
suppose that there is a vertex u; (1 £ ¢ < a) such that w;u; s is red and
u;u;,¢ is blue for some s,t with 1 < s,t < a;. Then the coloring obtained
from ¢ by changing the color of uu; to blue is a Yj-coloring with fewer red
edges than ¢. This is impossible since ¢ is a minimum Yj-coloring. Thus for
all 2 with 1 < ¢ < a, if u; is not an end-vertex, then either all edges u;u; ;
are red for 1 <i < a; or all edges u;u;; are blue for 1 <i < a;.

First, suppose that there are two vertices u; and u; (1 < i # j < a) such
that all edges u;u;p, and uju;, arered for 1 <p < a; and 1 < g < aj, say
i =1 and j = 2. Then the coloring obtained by changing the colors of uwu;
and uuy to blue is a Y)-coloring with fewer red edges, which is impossible.
Hence, there is at most one vertex u; (1 < i < a) such that all edges u;u;p
are red for 1 < p < a;. Thus, there is at least one vertex u; (1 <i# j <a)
such that all edges u;u; , are blue for 1 < p < a;.

We claim, in fact, that there are two vertices u; and u; (1 < ¢ # j < a)
such that all edges u;u;, and all edges uju;, are blue for 1 < p < a; and
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1 < ¢ < a;. This is certainly the case if u is adjacent to no end-vertex.
Thus, we may assume that u is adjacent to exactly one end-vertex, say u,
is an end-vertex. Thus u; and u; are not end-vertices and wu; and uwuy are
red. If there is p with (1 < i < a;) such that uju; , is red, then we can
change the colors of uwu; and uu, to blue and the resulting coloring is a
Y)-coloring with fewer red edges. Since this is impossible, all edges uju;
are blue for all p with 1 < p < a;. Similarly, all edges usuz 4 are blue for
all ¢ with 1 < ¢ < ap. Therefore, as claimed, all edges uju; , and uguzq
are bluefor 1 <p<a; and1<q<as.

With an argument similar to the one used in Case 1, we obtain a red-
blue caterpillar C rooted at u such that the spine of C is (z1,%2,...,%q)
(where z; = u, 3 = u; and z3 = u; ; and so on) and d > 3 is odd. For each
i with 1 < i < d, let X; be the set of end-vertices of C that are adjacent to
x;. Thus X; contains no end-vertex of T for 1 < ¢ <d—1 and X, contains
at least one end-vertex of T, say x € Xq4 is an end-vertex of T'. Since z4z
is red, we can change the color of 4z to blue and the resulting coloring is
also a Y;-coloring with fewer red edges, a contradiction. .

Theorem 2.2 IfT is a tree of order at least 4 having no vertex of degree 2,
then
Xy, (T) = "(T).

Proof. By Theorem 1.3, it remains to show that x4, (T) > o”(T). As-
sume, to the contrary, that x}, (T') = k¥ < &”(T) — 1. Let c be a mini-
mum Yj-coloring of T such that the edge independence number of the red
subgraph G,,, is maximum. By Lemma 2.1, every non-end-vertex of T
is incident with at least two blue edges. We claim that E. . is an inde-
pendent set of edges of T. For otherwise, suppose that uv and vw are
adjacent edges in E.,. By Lemma 2.1, v is incident with two blue edges.
If u is an end-vertex of T, then the coloring obtained from ¢ by chang-
ing the color of wv to blue is an Y;-coloring with fewer red edges than
c. This is impossible since ¢ is a minimum Yj-coloring. Thus u is not
an end-vertex. Similarly, w is not an end-vertex of T. Thus, we may as-
sume that N(u) = {v,uj,uz,...,ua}, N(v) = {u,w,vy,vs,...,v5} and
N(w) = {v,w,ws,...,wy}, where o, 8,7 > 2. By Lemma 2.1, we may
assume that wuy, uus, vvy, vve, ww;, wwy are blue. If there exists i with
1 £ 1 < asuch that uu; is red, then the coloring obtained from ¢ by chang-
ing the color of uv to blue is an Yj-coloring with fewer red edges than c,
which is impossible. Hence all edges uu; (1 < i < ) are blue. Similarly,
all edges ww; (1 < 7 < «) are blue. If there is 2 (1 £ 7 < @) such that
u; is not incident with any red edge, then the coloring ¢’ obtained from ¢
by interchanging the colors uu; and uv is a minimum Yj-coloring with a
larger number of independent edges in ., which contradicts the defining
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property of c. Thus each vertex u; (1 < i < @) is incident with at least
one red edge. Similarly, each vertex w; (1 < ¢ < @) is incident with at
least one red edge. By Lemma 2.1, each u; (1 < i < a) is incident with
at least two blue edges. Thus, the coloring obtained from ¢ by changing
the color of wv to blue is a Y)-coloring with fewer red edges than ¢, which
is impossible. Thus, as claimed, E. . is an independent set of edges of T.
Since |E.r| = k < o”(T) — 1, it follows that E,, is not a maximal inde-
pendent set of edges of T. Thus there is a blue edge e ¢ E., such that
E.rU{e} is an independent set of edges of T. However then, the blue edge
e is not incident with any red edge and so c is not an Y;-coloring, which is
a contradiction. (]

The condition in Theorem 2.2 that T has no vertex of degree 2 is nec-
essary. For example, let k£ be an arbitrary positive integer and let T be
the tree obtained from Psry; = (v1,v2,...,03k+1) by adding the pendant
edge v, at the vertex vz. Then xy,(T) = 3k — 1 and &”(T’) = k and so
Xy, (T)—<a"(T) = 2k —1, which can be arbitrarily large. In fact, this is also
true for trees without non-claw edges. To see this, we first construct the
tree Tp from the subdivision graph S(K 3) of K 3 by adding two pendant
edges at each end-vertex of S(Kj3). Suppose that the central vertex of
K3 is t and t is adjacent to three vertices u,v,w of degree 2. Further-
more, suppose that u is adjacent to z, v is adjacent to y and w is adjacent
to z. Thus each of z,y, z is adjacent to two end-vertices in T. Observe
that o”(Tp) = 3 and {uz,vy,wz} is a maximal matching in Tp. Since To
has four edge-disjoint copies of K 3, any two of which have only an end-
vertex in common, a Y;-coloring of Tp must assign red to at least one edge
in each of these four copies of K, 3 and so XIY; (To) = 4. On the other
hand, the red-blue coloring ¢ with E, = {tu,uz,vy, wz} is a Y;-coloring
and so xy, (To) = 4. Let T1,T3,..., Tk be k copies of Ty. For each ¢ with
1 <i<k,let v; be a vertex of degree 2 in T; that corresponds to v in Tg.
The tree T is then construed from Ty, 75, . .., Tk by adding the edges v;viy)
for 1 <i <k —1 (see Figure 4 for k¥ = 3). Although T contains vertices of
degree 2, it contains no non-claw edges. It can be shown that xy, (T) = 4k
and o'(T) = 3k. Therefore, x, (T) — &"'(T') = k, which can be arbitrarily
large.

Theorems 1.1 and 2.2 provide us an upper bound for x3,(T') of a tree
T in terms of o (T).

Corollary 2.3 IfT is a tree of order at least 4 having no vertex of degree 2,

then
XY, (T) < 30"(T).

The upper bound in Corollary 2.3 is sharp. In fact, for each positive
odd integer k, there is a tree T} having no vertex of degree 2 such that
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Figure 4: A tree T with x}, (T') —o"(T) =3

Xy, (Tx) = 3k and XS« (Tk) = k, as we show next. For each i with1 < i <k,
let S; = S3,4 be the double star with central vertices u; and v;, where u; is
adjacent to the two end-vertices and v; is adjacent to the three end-vertices
one of whichisw;. If k =1, let T; = S;; whileif &k > 3, let k =20+ 1
where ¢ > 1 and we construct T} in the following two steps: (1) For each
1 with 1 < 7 < ¢, identifying w; in S; with w;4 in S;4+1 and labeling the
identified vertex by z;, resulting in a tree T” in which each z; has degree 2
for 1 <i < ¢; (2) For each i with 1 < ¢ < ¢, identifying we414i in Set14:
with the vertex z; in 7" constructed in (1), producing the tree Tj. The tree
T7 containing seven copies of S3 4 is shown in Figure 5. Then T has the
desired properties for each k > 3.

})

Figure 5: The tree T7 with x4, (T7) = 21 = 3x}, (T7)

If G is a connected graph of order at least 4 having no vertex of degree 2
and ¢ is a minimum Yj-coloring of G, then the structure of the red subgraph
induced by ¢ can be determined. A graph H is a galazy if each component
of H is a star of order 2 or more.

Theorem 2.4 Let G be a connected graph having no vertices of degree 2.
If ¢ is a minimum Y] -coloring of G, then the red subgraph induced by c is
a galazy in G.
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Proof. Let ¢ be a minimum Y;-coloring of G and let G, be the red
subgraph induced by c¢. Assume, to the contrary, that G, , is not a galaxy.
We then have the following two cases.

Case 1. G, contains a path P of length 3, say P = (u,v,z,y). If
vz is adjacent to a blue edge in G, then the red-blue coloring obtained
from ¢ by re-coloring vz blue is a Y;-coloring with fewer red edges. This
is a contradiction. Thus, we may assume that all edges adjacent to vz
are red. Let N(z) = {v} U {z), = y,22,...,2,}, where then p > 2 and
TI1,2T2,...,TTp are all red edges in G. Hence z is incident with at least
three red edges.

If there is some z; (1 < ¢ < p) such that z; is an end-vertex of G,
say x; = Z, then the red-blue coloring obtained from ¢ by re-coloring vz
and zz) blue is a Yj-coloring with fewer red edges, a contradiction. Thus
degg z; > 3 for each ¢ with 1 < ¢ < p. If there is some z; (1 < i < p) such
that degcm z; > 2, say z; = 1. Then the red-blue coloring obtained from
¢ by re-coloring vz and zz; blue is a Y;-coloring with fewer red edges. This
is a contradiction. Thus degg_  z; =1 for 1 <4 < p. For each integer 7
with 1 <7 < p, let N(z;) = {:1:} U{Zi1,%i2,...,Tiq }, Where then g; > 2
and z;%;1, TiTi2,. .., TiTiq are all blue for each i with 1 <i < p.

Consider the vertex z;. First, suppose that there is some j with 1 <
J £ q1 such that all edges incident with z, ; are blue, say z,; = x,.
Then the red-blue coloring ¢* obtained from ¢ by (1) interchanging the
colors of zz, and z;x;,; and (2) re-coloring vz to blue is a Y;-coloring
with fewer red edges, which is a contradiction. Next, suppose that every
vertex x,; is incident with at least one red edge for all j with 1 < j < ¢;.
If there is jo with 1 < jo < ¢1 such that z; j, is incident with exactly
one blue edge (namely ;) j,), then the red-blue coloring obtained by (1)
interchanging the colors of zx; and ;1) and (2) re-coloring vz to blue
is a Y;-coloring with fewer red edges, which is a contradiction. Thus each
vertex z1,; (1 £ j < q1) is incident with at least two blue edges. Then the
red-blue coloring obtained by re-coloring vz and zz,; to blue is a Y;-coloring
with fewer red edges, which is a contradiction.

Case 2. G, contains a 3-cycle C, say C = (u,v,w,u). Then each of
u, v, w has degree at least 3. If one of u, v, w is incident with a blue edge,
say, u is incident with a blue edge, then the red-blue coloring obtained
from ¢ by re-coloring uv blue is a Yj-coloring with fewer red edges. This
is a contradiction. Thus each of u, v, w is only incident with red edges and
so each of u,v,w is incident with at least three red edges. However then,
the red-blue coloring obtained from ¢ by re-coloring uv, vw, vw to blue is a
Y}-coloring with fewer red edges, a contradiction.

By Cases 1 and 2, it follows that G, contains no path of length 3 and
no 3-cycle, which implies that each component of G, is a star. Therefore,
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G, is a galaxy. ]

3 Minimal Y-Colorings

For a given color frame F, an F-coloring ¢ of a graph G is a minimal
F-coloring of G if no proper subset of E. , is the set of red edges of an F-
coloring of G. Thus a minimal F-coloring has the property that if any red
edge of G is re-colored blue, then the resulting red-blue coloring of G is not
an F-coloring of G. For example, a minimal Yj-coloring of a tree with 7 red
edges is shown in Figure 6, where each red edge is drawn in a bold line. The
maximum number of red edges in a minimal F-coloring of G is the upper F-
chromatic indezx x%(G) of G. Since every minimum F-coloring of a graph
G is minimal, x7(G) < x%(G). For the tree T of Figure 6, xy,(T) = 7
and it follows by Theorem 2.2 that xy, (T') = a”'(T') = 6. The concepts of
minimal F-colorings and upper F-chromatic indexes were introduced and
studied in {16).

OV

Figure 6: A minimal Y;-coloring of a tree T

By Theorem 2.4, the red subgraph induced by a minimum Y¥;-coloring in
a connected graph having no vertices of degree 2 is a galaxy; while this may
not be the case for a minimal Yj-coloring. For example, the red subgraph
induced by the minimal Y;-coloring shown in Figure 6 is a double star.

By Theorem 1.3, if G is a connected graph of order at least 4 having
no vertex of degree 2, then xy, (G) < o(G). We now show that xy, (G) >
o' (QG) for such a graph G.

Theorem 3.1 If G is a connected graph having no vertices of degree 2,
then
Xy, (G) 2 &(G).

Proof. Let M be a maximum matching. Then |M| = o/(G). Consider a
red-blue coloring ¢ of G that assigns the color red to every edge in M and
the color blue to all other edges of G. Let e = uv be a blue edge in G.
Since M is a maximum matching, M U {e} is not a matching and so either
u or v is incident with at least one red edge in M, say v is incident with a
red edge vw. Since G has no vertices of degree 2, it follows that degv > 3
and so v is incident two or more blue edges. Thus ¢ is a Yj-coloring. Next,
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we show that ¢ is minimal. Let ¢’ be a red-blue coloring obtained from ¢
by changing the color of an edge f € M to blue. However then, the blue
edge f in ¢’ is not adjacent to any red edge in M — {f} and so ¢’ is not a
Y)-coloring. Therefore, ¢ is minimal Yj-coloring with o/(G) red edges and
so xy, (G) = |M| = &/(G). n

The lower bound in Theorem 3.1 is sharp. In order to show this, we
determine the upper Yj-chromatic index of the corona of n-cycle. It is
shown in (3] that x},(G) = [n/2] if G is the corona of an n-cycle where
n > 3.

Proposition 3.2 If G is the corona of an n-cycle where n > 3, then
Xy, (G) = o/ (G).

Proof. Let G = cor(C,) where C,, = (v1,vg,...,vn,v1) for some integer
n > 3. Suppose that u;v; is a pendant edge of G at v; for 1 < ¢ < n. Since
the order of G is 2n and {u;v; : 1 < ¢ < n} is a matching in G, it follows
that o’(G) = n. By Theorem 3.1, x¥, (G) > o/(G) = n. It remains to show
that x¥, (G) < n. Let c be a minimal Y;-coloring of G with |E, -| = x¥, (G)
and let G, be the red subgraph induced by ¢. We claim that each vertex of
C, is incident with exactly one red edge in G,. First, suppose that there
is v; € V(Cy) where 1 < ¢ < n such that v; is incident with no red edge of
G,. Then the blue edge v;u; does not belong to any copy of Y;, which is
impossible. Next, suppose that there is v; € V(C,) where 1 < j < n such
that v; is incident with at least two red edges of G,, say j = 1. If the two
red edges are v,v; and vyvs, then the blue edge v;u; does not belong to any
copy of Y}, a contradiction. If, on the other hand, one of these two red edges
is viu;, then the red-blue coloring obtained from ¢ by changing the color
of vyu; to blue is a Yj-coloring of G with fewer red edges, which is again
a contradiction. Therefore, as claimed, every vertex of C,, is incident with
exactly one red edge in G,. This implies that E, , is an independent set of
edges in G and so xy, (G) = |E,,r| < &/(G) = n. Therefore, xy, (G) =n. =
The value of x¥, (G) —/(G) can also be arbitrarily large for a connected
graph G, as we show next. For each positive integer k, let Wy, = Cgr + K
be the wheel of order 6k + 1, where the vertex v of W is adjacent to
every vertex of Cery1 = (v1,V2,...,V6k,Vek+1 = v1) in Wer. Let G be
the graph obtained from Wg;. by adding edges k edges v;v;43r for each
integer ¢ with ¢ = 2 (mod 3) and 2 < i < 3k — 1. The order of G, is
6k+ 1. The graph G» of order 13 is shown in Figure 7. Since M = {v;v;4+1 :
iis odd and 1 < i £ 6k — 1} is a maximum matching in Gk, it follows that
o'(Gk) = 3k. The red-blue coloring ¢ of Gy defined by

Ec,r = {v,-vi+1,v,-+1v,-+2 i=1 (mod 3) and 1 <i<6k— 2}
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is a minimal Y]-coloring of Gx. (The coloring c is shown in Figure 7 for
k = 2.) Thus x¥,(Gx) > |E.r| = 4k. Therefore, xy, (Gx) — &'(Gk) = k,
which can be arbitrarily large.

v

vio

v9

Figure 7: The graph G2 and a minimal Yj-coloring of G

The argument employed in the proof of Proposition 3.1 also shows that
a mazimal matching M in a graph G gives rise to a minimal Y;-coloring c

of G such that E,, = M.

Corollary 3.3 IfG is a connected graph order at least 4 having no vertices
of degree 2 and M is mazimal matching, then the Yi-coloring ¢ of G with
E., = M is a minimal Y1-coloring.

The converse of Corollary 3.3 is not true in general; that is, there are
minimal Yj-colorings ¢ of a connected graph order at least 4 having no
vertices of degree 2 such that E, , is not even a matching, as the graph of
Figure 7 shows.

By Theorem 1.3, if G is a connected graph of order at least 4 having no
vertex of degree 2, then x},(G) = o5(G). By an argument similar to the
proof of Theorem 3.1, we now show that xy,(G) > a5(G) for every such
connected graph G.

Theorem 3.4 If G is a connected graph having no vertices of degree 2,
then

Proof. Let X be As-set of maximum size where then | X| = a3(G). Con-
sider a red-blue coloring ¢ of G that assigns the color red to every edge
in X and the color blue to all other edges of G. Let e = uv be a blue

edge in G. Since X is a maximum Aj-set, X U {e} is not a Az-set and so
either u or v is incident with at least two red edge in X and e belongs to
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a copy of Ya. Thus ¢ is a Y-coloring. Next, we show that ¢ is minimal.
Let X’ be a proper subset of X and let ¢’ be the red-blue coloring of G
such that E, = X’. Now let f € X — X’ be a blue edge in ¢’. Since
A(G[X]) = 2, it follows that the blue edge f in ¢’ is not adjacent to two
red edges in X — {f} and so f does not belong to a copy of Yz. Hence ¢’ is
not a Ys-coloring. Therefore, ¢ is minimal Y5-coloring with a5(G) red edges
and so Xy, (G) > |X| = a5(G). n

To show that the lower bound in Theorem 3.4 is sharp, we determine
the upper Y;-chromatic index of the corona of n-cycle. It is shown in (3]
that x¥,(G) = n if G is the corona of an n-cycle where n > 3.

Proposition 3.5 If G is the corona of an n-cycle where n > 3, then
Xy, (G) = a3(G) = 2n — [n/2].

Proof. Let G = cor(C,) where C,, = (v1,v2,...,Vn, Uny1 = v1) for some
integer n > 3. Suppose that u;v; is the pendant edge of G at v; for 1 < i <
n. We first show that x¥, (G) = 2n — [n/2]. First, we show that there is
a minimal Ya-coloring ¢ of G having exactly 2n — [n/2] red edges. For an

even integer n > 4, let
E.r={vivip1: tisodd, 1 £i<n—-1}U{uv;: 1 <i < n} (1)
and so E.p = {v;vi4; : 1is even, 2 < i < n}. For an odd integer n > 3, let
Ecr ={viviz1: iisodd, 1 £i<n}U{uyw;:2<i<n} (2)

and so Ecp = {v;viy1 : tiseven, 2 <i<n—1} U {uyv;}. (This coloring
is shown in Figure 8 for n = 8 and n = 9.) Then |E. ;| = [n/2] and so
X'}”,(G) 2 |E;r| = 2n — [n/2].

v V4
5 s

(o]

Figure 8: Illustrate the coloring ¢ for cor(Cs) and cor(Cy)

Next, we show that xy, (G) < 2n—[n/2]. Assume, to the contrary, that
Xy,(G) =t >2n—[n/2] +1. (3)
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Let ¢* be a minimal Y3-coloring of G having exactly ¢ red edges and let
G, be the red subgraph induced by c*. Thus the size of G, is t. First,
suppose that G, contains a vertex v such that degg_= 3, say v = v2 and
V12, V2uz and vovs are red. Then the red-blue coloring obtained from c*
by changing the color of vaus to blue is an Y3-coloring, which is impossible.
Thus degg_v < 2 for every vertex v of G,. Since (i) the order of G, is at
most 2n and (ii) at most n vertices in G, have degree 2 and the remaining
vertices of G, are end-vertices, the size t of G, is at most 1/2(2n + n) =
n+n/2. By (3), 2n — [n/2'| +1<t<n+n/2orn/2+1< [n/2], which
is impossible. Therefore, x¥,(G) = 2n — [n/2].

It remains to show that ay(G) = 2n — [n/2]. If n is even, then the
subgraph induced by the set E. , described in (1) is a Az-set in G; while
is n is odd, then the subgraph induced by the set E, described in (2) isa
Ag-set in G. Thus a5(G) 2 |E.r| =2n — |'n/2'| Since a3(G) < x¥,(G) =
2n — [n/2] by Theorem 3.4, it follows that x¥, (G) = a5(G). n

The value of xy, (G)—a3(G) can also be arbxtranly large for a connected
graph G, as we show next. For each integer k > 3, let H and H’ be two

copy of Ky, where
V(H) = {uy,ua} U {v1,v2,..., v} and V(H') = {u],up} U {v],v5,..., v}

Let U = {u1,uz}, V = {v1,vg,..., v}, U = {u},up} and V' = {v], v3, ...,
v} }. The graph Hy is obtained from H and H' by adding k new vertices in
W = {w;,ws,...,wx} and joining each w; (1 < i < k) to every vertex in
V UV’ The order of Hy is 3k + 4. (The graph Hj is shown in Figure 9.)
Define a red-blue coloring ¢ with E., = E(H) U E(H'). The coloring ¢
is shown in anure 9 for k = 3. Since ¢ is a minimal Y>-coloring of Hy, it
follows that xy, v, (Hi) > |Ec,r| = 4k. Next, let X = {viwg,wivi : 1 < i < k}
and let

Y, = X U {uyv1, uyve, ugvs, ujvl, ujvh, upvy} ifk=3
Xk U {uyvy, uyva, ugvs, ugvs, ujv], ujvy, upvy, upvy}  if k > 4.

Since Yi is a maximal Az set of Hk, it follows that af(Hg) < |Yi|
2(k + min{k,4}). Thus xy,(Hk) — o5(Hx) = 4k — 2(k + min{k, 4})
2(k — min{k, 4}), which can e a.rbltrarlly large.

4 Closing Statements

It was shown in [17] that if G is a graph and k is an integer with o’(G) <
k < o/(G), then G contains a maximal matching with k edges. It can be
shown that if Y € {Y7, Y} is a color frame of a claw and G is the corona of
an n-cycle where n > 3, then for each integer k with x}(G) < k < xy(G),



Figure 9: The graph H; and a minimal Ys-coloring of Hj

there is a minimal Y-coloring of G using exactly k red edges. It gives rise
to the following question.

Problem 4.1 Let Y € {Y1,Y2} be a color frame of a claw. If G is a
connected graph of order at least 4 and k is an integer with xy (G) < k <
xy (G), is there a minimal Y -coloring of G using exactly k red edges?

For a connected graph G and a color frame F, if x%(G) = a and
X#(G) = b, then a < b by the definitions of the F-chromatic index and
upper F-chromatic index of G. Thus we conclude this paper with another
question.

Problem 4.2 Let Y € {Y},Y2} be a color frame of a claw. For which
pairs a, b of positive integers with a < b, does there ezist a connected graph
G such that X} (G) = a and xy(G) = b?
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