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Abstract

In [Discrete Math., 311 (2011), 688-689], Fujita defined f(r,n)
to be the maximum integer k such that every r-edge-coloring of K,
contains a monochromatic cycle of length at least k. In this paper we
investigate the values of f(r,n) when n is linear in 7. We determine
the value of f(r,2r+2) for all r > 1 and show that f(r,sr+c¢) = s+1
if » is sufficiently large compared with positive integers s and c.

1 Introduction

The circumference ¢(G) of a graph G is the length of a longest cycle in
G. In [4] Faudree et al. showed that for every graph G of order n > 6 we
have max{c(G),c(G)} > [2n/3], where G denotes the complement of G.
Furthermore, this bound is sharp.

Fujita [5] introduced the following concept and notation. Let f(r,n) be
the maximum integer k such that every r-edge-coloring of K, contains a
monochromatic cycle of length at least k. (For ¢ € {1,2}, we regard K; as a
cycle of length i.) Thus, Faudree et al. [4] showed, in effect, that f(2,n) =
[2n/3] for n > 6. Furthermore, they showed that f(r,n) < [n/(r —1)] for
infinitely many r and, for each such r, infinitely many n and conjectured
that f(r,n) > [n/(r — 1)] for r > 3. However, Fujita [5] showed that this
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conjecture is not true for small n and r and then established the following
lower bound for f(r,n).

Theorem 1 ([5]). For 1 <r <n we have f(r,n) > [n/r].

He also showed that if 1 < n < 2r then f(r,n) =2, whileif n =2r +1
then f(r,n) = 3 for r > 1. Motivated by his results we investigate the values
of f(r,n) when n is linear in 7. In Section 2 we will consider the values of
f(r,2r +2) for r > 1. In Section 3 we will show that f(r,sr +¢) =s+1if
r is sufficiently large with respect to s and ¢. For terminology and notation
not defined here we refer the reader to [2].

2 The value of f(r,2r +2)

In this section we determine the exact value of f(r,2r+2) for all » > 1. By
Theorem 1 we have that f(r,2r +2) > 3. To show the reverse inequality
for r > 3 we will use the following result of Ray-Chaudhuri and Wilson
(see [6]) regarding Kirkman Triple Systems. We handle the cases r = 1,2
separately.

Theorem 2 ([6]). For anyt > 1, the edge set of Ket+3 can be partitioned
into 3t+1 parts, where each part forms a graph isomorphic to 2t+1 disjoint
triangles.

Theorem 3. Forr > 3, we have f(r,2r +2) = 3. Forr = 1,2, we have
f(r,2r +2)=4.

Proof. Firstly, we consider the case r > 3, and proceed according to the
residue of r modulo 3.

Claim 4. f(r,2r+2) <3 forr =4,7,10,13,..., thatis,r = 3k+1,k > 1.

Proof. For » = 3k + 1 we have n = 6k + 4. We start with a coloring of the
edges of Kgr+3 on the vertices vy, ve, ..., Usk+3 With colors ¢1,c¢a, ..., C3k41
according to Theorem 2. It remains to color the edges incident with vertex
Usk+4. Without loss of generality we may assume that color ¢3x4; contains
the triangles on the vertices {vy, v, v3}, {v4,Vs, %6}, ... ,{VUsk+1, Vok+2) Vok+3}-
We color the edges from vgr+4 to the vertices va,vs,. .., Vek+3 With car4y.
The edges from vgk+4 to vzi—y and vz;—2 will be colored with ¢; for i =
1,2,...,2k + 1(< 3k). As the edges from wvgry4 colored with ¢; (i =
1,2,...,2k+1 or i = 3k + 1) go to different ¢;-colored triangles on the ver-
tices vy, vg, ..., Usk4+3, the coloring so obtained does not contain a monochro-
matic cycle of length more than three. O

Claim 5. f(r,2r+2) <3 forr =5,8,11,14,..., that is, r = 3k+2,k > 1.
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Proof. For r = 3k +2 we have n = 6k + 6. As in the previous case we start
with a coloring of the edges of Kgr+3 on the vertices vy, v2,. .., Vekt+3 with
colors ¢1,¢z,. .., Caks1 according to Theorem 2. Now it remains to color
the edges incident with three vertices, vsk+4, Vor+s, Usk+s, and we have
one unused color, cary2. Without loss of generality we may assume that
color c3x41 contains the triangles on the vertices {vy, v2,vs}, {va, vs,v6},. ..
{Vek+1, Vek+2, Vek+3}. We color the edges from vext6 to v3, Vs, ..., Usk+3
with egx+1. We give color ¢; fori =1,2,...,2k+1(< 3k) to the edges from
Usk+4 tO v3; and to vz;_1, from ver+s to vs;—1 and to vs;_g, from vsk4e tO
v3i—go. (See Figure 1.)

color c3p41: color ¢;:

aaaaa
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S

Figure 1: The edge between w3;_2,v3i—1,v3: and
Vsk+4,U6k+5, Vek+6, in color ec3x41 and in  color ¢
(¢ € {1,2,...,2k + 1}), respectively. The dashed edges are
missing.

We left one edge from each of the vertices vy,vs,...,ver43 (from va;_s to
Usk+4, from v3;_; to verte, from vz, to verss, for i = 1,2,...,2k + 1) and
the 3 edges between vgk44, Usk+5, Usk+6- We color these edges with color
Cak+2. It is easy to check that in this coloring every monochromatic cycle
is a triangle. O

In the third case we prove the following stronger statement.
Claim 6. f(r,2r +3) <3 forr=3,6,9,12,15,..., that is, r = 3k, k > 1.
As f(r,my) < f(ryn2) if n; < ng this implies f(r,2r +2) = 3 for

r=6,9,12,15,..., that is, » = 3k, k > 1.

Proof. For r = 3k we have n = 6k + 3. We start with a coloring of the
edges of Kgk+3 on the vertices vy, vs,...,vsr+3 With colors ¢;,co,...,cak
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and c3g41 according to Theorem 2. In contrast with the previous cases now
we have to get rid of one color. We may assume that color cax+1 contains the
2k + 1 triangles on the vertices {v,v2,v3}, {va,¥s,v6}, ..., {Vek+1, Vok+2,
vek+3}. We recolor the edges of the ith triangle to color ¢; fori =1,2,...,
2k + 1(< 3k) and obtain the desired coloring of the edges of Ke43. a

It remains to deal with the small values of r.
Claim 7. f(r,2r+2) =4 forr=1,2.

Proof. f(1,4) = 4 is trivial. (In general, f(1,n) =n.)

We get f(2,6) > 4 from the fact that a graph of order 6 without a cycle
of length at least four can have at most 7 edges (see (3] for the general
result) while K¢ has 15 edges. The reverse inequality follows from the
construction E(Kg) = E(K24) U E(K>,4). a

This completes the proof of Theorem 3. O

3 On the value of f(r,sr+c) for positive con-
stants s and ¢

In the previous section we determined f(r,2r + 2) for every r > 1. This
suggests the more general problem: determine f(r, sr + ¢) for positive con-
stants s and ¢. Of course, f(r,sr +c¢) > s+ 1 by Theorem 1. In Theorem 9
we show that f(r, sr4c) = s+1 for r sufficiently large with respect to s and
¢. In order to do so, we will exhibit an r-edge-coloring of K., . in which
the longest monochromatic cycle has length s+ 1. The edge-colorings used
in the proof of Theorem 3 depended heavily on Theorem 2. The proof of
Theorem 9 will, in an analogous manner, depend on Theorem 8. This is
an immediate consequence of a result by Chang [1] on resolvable balanced
incomplete block designs. For information on such designs, see [7].

Theorem 8 ([1)). Let ¢ > 3. Then for sufficiently large t (namely if
glg—1)t+q > exp{exp{qmq’}} is satisfied), the edge set of Kg(q—_1)t+4 can
be partitioned into gt +1 parts, where each part is isomorphic to (q—1)t+1
disjoint copies of K.

Observe that the case ¢ = 3 in Theorem 8 is Theorem 2 (where ¢ sufficiently
large is simply ¢ > 1).

Theorem 9. For any pair of integers s,c with s,c > 2, there is an R such
that f(r,sr +c)=s+1 for allT > R.
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Proof. As f(r,n) is monotone increasing in n we may assume that sr+c¢ =
(s+1)st+(s+1) for some ¢. First we color the edges of K (s 1)st+(s+1) With
(s+1)t+1 = r+ <=1 colors using Theorem 8 for ¢ = s+ 1. Then we reduce
the number of colors by 9—;—1 in the following way. Considering two colors
¢1 and ¢; we want to recolor as many c¢j-colored K, ,,’s to co as we can
(without creating a monochromatic cycle of length at least s + 2). Every
color class consists of st + 1 = {77 + 747 disjoint K,4,’s and every ¢;-
colored K, intersects s+ 1 copies of cp-colored K.’s. If we recolor such
c1-colored K,;1’s which do not share intersecting cp-colored K,4,’s then
we cannot create new monochromatic cycles. Hence recoloring a c¢;-colored
K41 can exclude at most s(s+1) others. Therefore we can recolor at least
s(_s+lTFp-_1th of the ¢;-colored K,,’s with color ¢;. At least mth of the
remaining c¢;-colored K,;’s can be recolored with c3, and so on. Finishing
with the c; color class we continue with another one.

To remove one color class we need at most log.(.+ e (33r+557) other

classes. Thus we can avoid €21 color classes with the remaining r class if
(1) log sza iy (3357 + Wcls < r, which is true for sufficiently large r
compared with s and c. O
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