Further remarks on long monochromatic cycles in edge-colored complete graphs

Shinya Fujita; Linda Lesniak; Ágnes Tóth

Abstract

In [Discrete Math., 311 (2011), 688-689], Fujita defined f(r,n) to be the maximum integer k such that every r-edge-coloring of K_n contains a monochromatic cycle of length at least k. In this paper we investigate the values of f(r,n) when n is linear in r. We determine the value of f(r,2r+2) for all $r \ge 1$ and show that f(r,sr+c) = s+1 if r is sufficiently large compared with positive integers s and c.

1 Introduction

The circumference c(G) of a graph G is the length of a longest cycle in G. In [4] Faudree et al. showed that for every graph G of order $n \geq 6$ we have $\max\{c(G), c(\overline{G})\} \geq \lceil 2n/3 \rceil$, where \overline{G} denotes the complement of G. Furthermore, this bound is sharp.

Fujita [5] introduced the following concept and notation. Let f(r,n) be the maximum integer k such that every r-edge-coloring of K_n contains a monochromatic cycle of length at least k. (For $i \in \{1,2\}$, we regard K_i as a cycle of length i.) Thus, Faudree et al. [4] showed, in effect, that $f(2,n) = \lceil 2n/3 \rceil$ for $n \geq 6$. Furthermore, they showed that $f(r,n) \leq \lceil n/(r-1) \rceil$ for infinitely many r and, for each such r, infinitely many n and conjectured that $f(r,n) \geq \lceil n/(r-1) \rceil$ for $r \geq 3$. However, Fujita [5] showed that this

^{*}Department of Integrated Design Engineering, Maebashi Institute of Technology, Maebashi 371-0816 Japan, Email: shinya.fujita.ph.d@gmail.com. Supported by the Japan Society for the Promotion of Science Grant-in-Aid for Young Scientists (B) (20740068).

[†]Department of Mathematics and Computer Science, Drew University, Madison, NJ 07940 USA & Department of Mathematics, Western Michigan University, Kalamazoo, MI 49008 USA, Email: lindalesniak@gmail.com.

[‡]Department of Computer Science and Information Theory, Budapest University of Technology and Economics, 1521 Budapest, P.O. Box 91 Hungary, Email: tothagi@cs.bme.hu. The results discussed in the paper are partially supported by the grant TÁMOP - 4.2.2.B-10/1-2010-0009.

conjecture is not true for small n and r and then established the following lower bound for f(r, n).

Theorem 1 ([5]). For $1 \le r \le n$ we have $f(r, n) \ge \lceil n/r \rceil$.

He also showed that if $1 < n \le 2r$ then f(r,n) = 2, while if n = 2r + 1 then f(r,n) = 3 for $r \ge 1$. Motivated by his results we investigate the values of f(r,n) when n is linear in r. In Section 2 we will consider the values of f(r,2r+2) for $r \ge 1$. In Section 3 we will show that f(r,sr+c) = s+1 if r is sufficiently large with respect to s and c. For terminology and notation not defined here we refer the reader to [2].

2 The value of f(r, 2r + 2)

In this section we determine the exact value of f(r, 2r+2) for all $r \ge 1$. By Theorem 1 we have that $f(r, 2r+2) \ge 3$. To show the reverse inequality for $r \ge 3$ we will use the following result of Ray-Chaudhuri and Wilson (see [6]) regarding Kirkman Triple Systems. We handle the cases r = 1, 2 separately.

Theorem 2 ([6]). For any $t \ge 1$, the edge set of K_{6t+3} can be partitioned into 3t+1 parts, where each part forms a graph isomorphic to 2t+1 disjoint triangles.

Theorem 3. For $r \ge 3$, we have f(r, 2r + 2) = 3. For r = 1, 2, we have f(r, 2r + 2) = 4.

Proof. Firstly, we consider the case $r \geq 3$, and proceed according to the residue of r modulo 3.

Claim 4.
$$f(r, 2r+2) \le 3$$
 for $r = 4, 7, 10, 13, ...,$ that is, $r = 3k+1, k \ge 1$.

Proof. For r=3k+1 we have n=6k+4. We start with a coloring of the edges of K_{6k+3} on the vertices $v_1, v_2, \ldots, v_{6k+3}$ with colors $c_1, c_2, \ldots, c_{3k+1}$ according to Theorem 2. It remains to color the edges incident with vertex v_{6k+4} . Without loss of generality we may assume that color c_{3k+1} contains the triangles on the vertices $\{v_1, v_2, v_3\}, \{v_4, v_5, v_6\}, \ldots, \{v_{6k+1}, v_{6k+2}, v_{6k+3}\}$. We color the edges from v_{6k+4} to the vertices $v_3, v_6, \ldots, v_{6k+3}$ with c_{3k+1} . The edges from v_{6k+4} to v_{3i-1} and v_{3i-2} will be colored with c_i for $i=1,2,\ldots,2k+1 \ (\le 3k)$. As the edges from v_{6k+4} colored with c_i ($i=1,2,\ldots,2k+1$ or i=3k+1) go to different c_i -colored triangles on the vertices $v_1, v_2, \ldots, v_{6k+3}$, the coloring so obtained does not contain a monochromatic cycle of length more than three.

Claim 5. $f(r, 2r+2) \le 3$ for r = 5, 8, 11, 14, ..., that is, $r = 3k+2, k \ge 1$.

Proof. For r=3k+2 we have n=6k+6. As in the previous case we start with a coloring of the edges of K_{6k+3} on the vertices v_1,v_2,\ldots,v_{6k+3} with colors c_1,c_2,\ldots,c_{3k+1} according to Theorem 2. Now it remains to color the edges incident with three vertices, $v_{6k+4},v_{6k+5},v_{6k+6}$, and we have one unused color, c_{3k+2} . Without loss of generality we may assume that color c_{3k+1} contains the triangles on the vertices $\{v_1,v_2,v_3\},\{v_4,v_5,v_6\},\ldots,\{v_{6k+1},v_{6k+2},v_{6k+3}\}$. We color the edges from v_{6k+6} to v_3,v_6,\ldots,v_{6k+3} with c_{3k+1} . We give color c_i for $i=1,2,\ldots,2k+1 (\leq 3k)$ to the edges from v_{6k+4} to v_{3i} and to v_{3i-1} , from v_{6k+5} to v_{3i-1} and to v_{3i-2} , from v_{6k+6} to v_{3i-2} . (See Figure 1.)

Figure 1: The edge between $v_{3i-2}, v_{3i-1}, v_{3i}$ and $v_{6k+4}, v_{6k+5}, v_{6k+6}$, in color c_{3k+1} and in color c_i $(i \in \{1, 2, \dots, 2k+1\})$, respectively. The dashed edges are missing.

We left one edge from each of the vertices $v_1, v_2, \ldots, v_{6k+3}$ (from v_{3i-2} to v_{6k+4} , from v_{3i-1} to v_{6k+6} , from v_{3i} to v_{6k+5} , for $i=1,2,\ldots,2k+1$) and the 3 edges between $v_{6k+4}, v_{6k+5}, v_{6k+6}$. We color these edges with color c_{3k+2} . It is easy to check that in this coloring every monochromatic cycle is a triangle.

In the third case we prove the following stronger statement.

Claim 6. $f(r, 2r + 3) \le 3$ for r = 3, 6, 9, 12, 15, ..., that is, $r = 3k, k \ge 1$.

As $f(r, n_1) \le f(r, n_2)$ if $n_1 \le n_2$ this implies f(r, 2r + 2) = 3 for $r = 6, 9, 12, 15, \ldots$, that is, $r = 3k, k \ge 1$.

Proof. For r = 3k we have n = 6k + 3. We start with a coloring of the edges of K_{6k+3} on the vertices $v_1, v_2, \ldots, v_{6k+3}$ with colors c_1, c_2, \ldots, c_{3k}

and c_{3k+1} according to Theorem 2. In contrast with the previous cases now we have to get rid of one color. We may assume that color c_{3k+1} contains the 2k+1 triangles on the vertices $\{v_1, v_2, v_3\}, \{v_4, v_5, v_6\}, \ldots, \{v_{6k+1}, v_{6k+2}, v_{6k+3}\}$. We recolor the edges of the *i*th triangle to color c_i for $i=1,2,\ldots, 2k+1 (\leq 3k)$ and obtain the desired coloring of the edges of K_{6k+3} .

It remains to deal with the small values of r.

Claim 7. f(r, 2r + 2) = 4 for r = 1, 2.

Proof. f(1,4) = 4 is trivial. (In general, f(1,n) = n.)

We get $f(2,6) \ge 4$ from the fact that a graph of order 6 without a cycle of length at least four can have at most 7 edges (see [3] for the general result) while K_6 has 15 edges. The reverse inequality follows from the construction $E(K_6) = E(K_{2,4}) \cup E(\overline{K_{2,4}})$.

This completes the proof of Theorem 3.

3 On the value of f(r, sr + c) for positive constants s and c

In the previous section we determined f(r, 2r+2) for every $r \geq 1$. This suggests the more general problem: determine f(r, sr+c) for positive constants s and c. Of course, $f(r, sr+c) \geq s+1$ by Theorem 1. In Theorem 9 we show that f(r, sr+c) = s+1 for r sufficiently large with respect to s and c. In order to do so, we will exhibit an r-edge-coloring of K_{sr+c} in which the longest monochromatic cycle has length s+1. The edge-colorings used in the proof of Theorem 3 depended heavily on Theorem 2. The proof of Theorem 9 will, in an analogous manner, depend on Theorem 8. This is an immediate consequence of a result by Chang [1] on resolvable balanced incomplete block designs. For information on such designs, see [7].

Theorem 8 ([1]). Let $q \geq 3$. Then for sufficiently large t (namely if $q(q-1)t+q > \exp\{\exp\{q^{12q^2}\}\}$ is satisfied), the edge set of $K_{q(q-1)t+q}$ can be partitioned into qt+1 parts, where each part is isomorphic to (q-1)t+1 disjoint copies of K_q .

Observe that the case q=3 in Theorem 8 is Theorem 2 (where t sufficiently large is simply $t \geq 1$).

Theorem 9. For any pair of integers s, c with $s, c \ge 2$, there is an R such that f(r, sr + c) = s + 1 for all $r \ge R$.

Proof. As f(r,n) is monotone increasing in n we may assume that sr+c=(s+1)st+(s+1) for some t. First we color the edges of $K_{(s+1)st+(s+1)}$ with $(s+1)t+1=r+\frac{c-1}{s}$ colors using Theorem 8 for q=s+1. Then we reduce the number of colors by $\frac{c-1}{s}$ in the following way. Considering two colors c_1 and c_2 we want to recolor as many c_1 -colored K_{s+1} 's to c_2 as we can (without creating a monochromatic cycle of length at least s+2). Every color class consists of $st+1=\frac{s}{s+1}r+\frac{c}{s+1}$ disjoint K_{s+1} 's and every c_1 -colored K_{s+1} intersects s+1 copies of c_2 -colored K_{s+1} 's. If we recolor such c_1 -colored K_{s+1} 's which do not share intersecting c_2 -colored K_{s+1} 's then we cannot create new monochromatic cycles. Hence recoloring a c_1 -colored K_{s+1} can exclude at most s(s+1) others. Therefore we can recolor at least $\frac{1}{s(s+1)+1}$ th of the c_1 -colored K_{s+1} 's can be recolored with c_3 , and so on. Finishing with the c_1 color class we continue with another one.

To remove one color class we need at most $\log_{\frac{s(s+1)+1}{s(s+1)}}\left(\frac{s}{s+1}r+\frac{c}{s+1}\right)$ other classes. Thus we can avoid $\frac{c-1}{s}$ color classes with the remaining r class if $\left(\frac{c-1}{s}\right)\log_{\frac{s(s+1)+1}{s(s+1)}}\left(\frac{s}{s+1}r+\frac{c}{s+1}\right)\leq r$, which is true for sufficiently large r compared with s and c.

References

- [1] Y. Chang, The existence of resolvable BIBD with $\lambda = 1$, Acta Math. Appl. Sinica., 16 (2000), 373-385.
- [2] G. Chartrand, L. Lesniak and P. Zhang, *Graphs & Digraphs*, 5th edition, Chapman & Hall/CRC, Boca Raton, FL 2011.
- [3] P. Erdős, T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar., 10 (1959), 337-356.
- [4] R. J. Faudree, L. Lesniak, I. Schiermeyer, On the circumference of a graph and its complement, Discrete Math., 309 (2009), 5891-5893.
- [5] S. Fujita, Some remarks on long monochromatic cycles in edge-colored complete graphs, Discrete Math., 311 (2011), 688-689.
- [6] D. K. Ray-Chaudhuri, R. M. Wilson, Solution of Kirkman's schoolgirl problem, Proc. Sympos. Pure Math., 19, Combinatorics, Amer. Math. Soc., Providence, R. I., 1971, 187-203.
- [7] W. D. Wallis, Introduction to Combinatorial Designs, Chapman & Hall/CRC, 2007.