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Abstract

A function f : V(G) — {0, 1, 2} is a Roman dominat-
ing function (or just RDF) if every vertex u for which
f(u) = 0 is adjacent to at least one vertex v for which
f(v) = 2. The weight of a Roman dominating func-
tion is the value f(V(G)) = X ,cv () f(u). The Roman
domination number of a graph G, denoted by yr(G), is
the minimum weight of a Roman dominating function
on G. A graph G is Roman domination critical upon
edge subdivision if the Roman domination number in-
creases whenever an edge is subdivided. In this paper
we study the Roman domination critical graphs upon
edge subdivision. We present several properties, bounds
and general results for these graphs.
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1 Introduction

For notation and graph theory terminology, we in general fol-
low [8]. Specifically, let G be a graph with vertex set V(G) =V
of order |V| = n and size |E(G)| = m, and let v be a vertex in
V. The open neighborhood of v is Ng(v) = {u € V |uv € E(G)}
and the closed neighborhood of v is Ng[v] = {v} U N(v). The
degree of v is degg(v) = |Ng(v)|. If the graph G is clear from
the context, then we simply write N(v) and deg(v) rather than
N¢(v) and dg(v), respectively. For a set S C V, its open neigh-
borhood is the set N(S) = U,esN(v), and its closed neighbor-
hood is the set N[S] = N(S)US. A set of vertices S in G is a
dominating set, (or just DS), if N[S] = V(G). The domination
number, 7(G), of G is the minimum cardinality of a DS of G.
If S is a subset of V(G), then we denote by G[S] the subgraph
of G induced by S. A set of vertices S in G is an independent
dominating set, if S is a DS and the induced subgraph G[S] has
no edge. The independent domination number, i(G), of G is the
minimum cardinality of an independent dominating set of G. A
set S C V(G) is a 2-packing if for every two different vertices
z,y €S, Nz]N N[y] = 0.

A function f : V(G) — {0,1,2} is a Roman dominating func-
tion (or just RDF) if every vertex u for which f(u) = 0 is ad-
jacent to at least one vertex v for which f(v) = 2. The weight
of a Roman dominating function f is the value f(V(G)) =
Zuev(G) f(u). The Roman domination number of a graph G,
denoted by yr(G), is the minimum weight of a Roman dominat-
ing function on G. A Roman dominating function f: V(G) —
{0,1,2} can be represented by the ordered partition (Vo, V4, V3)
of V(G), (or (V{¢,V{,V{) to refer to f), where V; = {v €
V(G)| f(v) = i} for i = 0,1,2. A function f = (Vp, V1, V)
is called a yg-function (or yr(G)-function to refer to G), if it is
a Roman dominating function and f(V(G)) = yr(G). Roman
domination has been studied, for example, in [1, 2, 4, 5, 6, 9].
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Independent Roman domination in graphs was studied by Adabi
et al. in [1]. An RDF f = (Vp,V},V,) in a graph G is an
independent RDF, or just IRDF, if V} UV, is independent. The
independent Roman domination number, ig(G), is the minimum
weight of an IRDF of G. An IRDF with minimum weight is
called an ig-function.

Unique response Roman domination in graphs was studied by
Ebrahimi et al. in [5]. A function f : V(G) — {0, 1,2} with
ordered partition (Vp, V3, V3) is a unique response Roman func-
tion if x € V, implies that [N(z)NVy] < land z € ViUV,
implies that |N(z) N V5| = 0. A function f: V(G) — {0,1,2} is
a unique response Roman dominating function if it is a unique
response Roman function and a Roman dominating function.
The unique response Roman domination number of G, denoted
by ur(G), is the minimum weight of a unique response Roman
dominating function.

A cycle on n vertices is denoted by C,,, while a path on n vertices
is denoted by P,. We denote by K, the complete graph on n
vertices. An r-partite graph G is a graph whose vertex set V(G)
can be partitioned into r sets of pair-wise non-adjacent vertices.
For positive integers p;, po,. .., Pr, the complete r-partite graph
... UV, such that |Vi] = p; for 1 < 7 < r and such that every
two vertices belonging to different partition sets are adjacent to
each other. A star is a complete bipartite graph of the form
Ki ., and a double star is a graph obtained from two stars by
joining their centers. A vertex of degree one is called a leaf, and
its neighbor is called a support vertex. A strong support vertex
is a vertex which is adjacent to at least two leaves.

The subdivision of an edge uv is the operation of replacing uv
with a path uwv through a new vertex w. Given a graph G and
an edge e € E(G), we denote by G° the graph obtained from G
by subdividing the edge e.
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Roman domination vertex critical graphs were studied by Hans-
berg et al. [6]. A graph G is Roman domination verter crit-
ical, or just vyp-vertex critical, if for any vertex v of V(G),

Yr(G — v) < 1r(G).

Theorem 1 [6] For a vertez v in a graph G, Yyr(G—v) < Yr(G)
if and only if there is a yr(G)-function f = (Vo, V1, Vo) such that
v EW.

The concept of Roman domination critical graphs upon edge
addition, edge removal and edge contraction has been studied,
[3, 6, 7, 9, 10]. In this paper we will study Roman domina-
tion critical graphs upon subdivision of an edge. A graph G is
Roman domination critical upon edge subdivision if the Roman
domination number increases whenever an edge is subdivided.
We present several properties, bounds and general results for
these graphs.

The corona cor(G) of a graph G is a graph obtained from G
by attaching a leaf to each vertex. The 2-corona of a graph H,
denoted by H o P,, is the graph of order 3|V (H)| obtained from
H by attaching a path of length 2 to each vertex of H so that
the resulting paths are vertex-disjoint.

2 General results and bounds

We begin by investigating which effects the subdivision of an
edge has on the on the Roman domination number.

Proposition 2 For any edge e in a graph G, yr(G) < vr(G*) <
vr(G) + 1.

Proof. Let e = zy € E(G), and zwy be the subdivision of e. If
f is any yr(G)-function, then let g be the function defined by
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g(w) =1 and g(u) = f(u) for u # w. Clearly, g is an RDF for
G¢, implying that yr(G*) < 7r(G) + 1. Now let g be a Yr(G*)-
function. If g(w) # 2, then g|v(c) is an RDF for G implying that
Yr(G) < Yr(G®). Thus assume that g(w) = 2. Then h defined
on V(G) by h(u) = max{g(u), 1} if u € {z,y} and h(u) = g(u)
if u € {z,y} is an RDF for G, implying that vr(G) < vr(G®).
[

We call a graph G Roman domination critical upon edge sub-
division, or just -ygse-critical, if Yr(G®) > yr(G) for any edge
e € E(G). Thus if G is <ypse-critical, then for any edge e,
Yr(G®) = vr(G)+1. If G is a ygsq4-critical graph and vr(G) = k,
then we call G, k — ygsq-critical. In the case that a graph G has
no edge, we define it to be ygyq-critical.

Observation 3 A disconnected graph G is 7ypsq-critical if and
only if every component of G is Yrsq-critical.

Proposition 4 Any connected graph G of order n > 3 with
Yr(G) € {2,3} is yRrsa-critical.

Proof. Let G be a connected graph of order n > 3, and f =
(Vi ,V{,V{) be a yr(G)-function. Assume that yr(G) = 2.
Then V{ = 0 and |V{| = 1. Let Vi = {z}. Then deg(z) =
n—1. Let e € E(G). If e = zy, where y € N(z), and zwy
is the subdivision of e in G¢, then for any yr(G®)-function g,
g(z) + g(y) + g(w) > 2, and since n > 3, we find that w(g) > 3.
Similarly if e = yz, where y,z € N(z), then 7(G¢) > 3. By
Proposition 2, yg(G¢) = 3 and thus G is 7ygsg4-critical.

Next assume that 7z(G) = 3. Then,JVIf | = |Vi/| = 1, and clearly
AG) < n—1. Let Vff = {2}, V/ = {y}, and e € E(G). If
e = zz, where z € N(z), and zwz is the subdivision of e in G,
then for any yg(G®)-function g, g(z) + g(z) + g(w) > 2, and
since deg(z) < n—1 and deg(z) < n—1, we find that w(g) > 4.
Similarly, if e = 2y or e = 2t, where z € N(z)NN(y) and t €
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N(z), then for any yg(G®)-function g, w(g) > 4. Consequently,
v(G®) > 4. By Proposition 2, yr(G¢) = 4 and thus G is Ygs4-
critical. m

Corollary 5 For any n > 3, K,, is Yrsq-critical.

However a graph G of order n with yp(G) = 4 is not necessarily
Yrsa-critical. Let G be a double star with z, y as its two central
vertices such that deg(z) > 3 and deg(y) > 3. Then vg(G) =
Yr(G™) = 4.

Proposition 6 For any k > 4, there is a ypsq-critical graph G
with yr(G) = k.

Proof. Let m = |%]. Let G be a graph obtained from K,
by adding at least three leaves to each vertex of K,,, and then
subdividing a pendant edge if k is odd. Then it can be easily
seen that yr(G) = k, and G is not «yps4-critical. m

Lemma 7 [4] For paths P, and cycles Cn, Yr(P.) = Yr(Cr) =
1.

In the next lemma we present some classes of 7;4-critical graphs.

Lemma 8 (1) A path P, is ypsq-critical if and only if n £ 2
(mod 3).

(2) A cycle C,, is ypeq-critical if and only if n Z 2 (mod 3).

(3) If ny < ng < ... < ng, then Kpnjny....n. S YRsa-CTitical if and
only if n, < 2.

Proof. (1) and (2) follow from Lemma 7. Note that [$] =
[22£1] if and only if n # 2 (mod 3).
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(3) Assume that G = Kjy, n,,...n, 15 Yrsa-Critical. Let X1, Xy, ...,
Xy be the partite sets of G = Ky n,,. n,- Suppose that n; >
3. Thus 7r(G) = 4. Let e = xy be an arbitrary edge of G.
Then (V(G) — {z,y},0, {z,y}) is an RDF for G* implying that
Yr(G) = vr(G®), a contradiction. Thus n; < 2. Conversely,
assume that n; < 2. If ny = 1 then v(G) = 2, and if ny = 2
then vp(G) = 3. By Proposition 4, G is ygsa-critical. =

In the following we give a characterization for yg,4-critical graphs.

Theorem 9 A graph G is «ypsq-critical if and only if for every
Yr(G)-function (Vo, V1, Vo), Vi is independent and V, is a 2-
packing.

Proof (=>) Let f = (V{,V{,V{) be a va(G)-function. If
Vl is not independent then we let x,y be two adjacent vertices
in G[V{], and zwy be the subdivision of zy in G*¥. Then g
defined on G*¥ by g(w) = 2, g(z) = g(y) = 0, and g(u) =
f(u) if u & {z,y,w}, is an RDF for G*¥ with weight 7R(G) a
contradiction. Thus V7 is independent. Next assume that V2 is
not a 2-packing. Then there are two vertices z,y € V2 such that
N[z]NNy] # 0. If £ € N(y), then g defined on G*¥ by g(w) =

and g(u) = f(u) if u # w, is an RDF for G*, a contradlctlon
Thus z € N(y). Let z € N(z) N N(y). Then g defined on G**
by g(w) = 0 and g(u) f(u) if u # w, is an RDF for G**, a
contradiction. Thus V2 is a 2-packing.

(«<=) Suppose that G is not ygsq-critical. Then there is an edge
e = zy such that yr(G®) = vr(G). Let f = (V{,V/,V{) be a
Yr(G®)-function, and let zwy be the subdivision of zy in G*. If
f(w) = 1, then fly(c) is an RDF for G with weight less than
vr(G), a contradiction. If f(w) = 2, then g defined on G by
9(x) = max{1, f(z)}, 9(y) = max{1, £(y)} and g(u) = f(u) if
u & {z,y}, is an RDF for G with weight less than yr(G®), a
contradiction. Thus f(w) = 0. Without loss of generality we
may assume that f(z) = 2. If f(y) =1, then f|y(c) is a vr(G)-
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function such that f(z) = 2 and f(y) = 1, a contradiction. If
f(y) = 2, then g = fly() is a Yr(G)-function such that V7
is not a 2-packing. Thus f(y) = 0. Since there is a vertex
v € N(y) — {z} with f(v) = 2, we find that h = fly(g) is a
vr(G)-function such that V;* is not a 2-packing, a contradiction.
[

If f = (VJ,V{, V) is a vr(G)- functlon then a vertex z eV
is a private neighbor of a vertex y € V' if N(z)NVy{ = {y}. As
a consequence we have the following.

Corollary 10 If f = (%f,Vlf,VQf) is a vr(G)-function in a
~YRsd-Critical graph G then:

(1) Any vertez of V2 has at least two private neighbors in V, ?
(2) Any vertezx of Vof is adjacent to at most one vertex of V; .

Proof. (1) If a vertex z of V2f has no private neighbor in Vof ,
then replacing f(z) by 1 produces an RDF with welght less
than ygr(G), a contradiction. Assume that a vertex z of V2 has
precisely one private neighbor y in V. Then replacing f(z)
and f(y) by 1 produces a yr(G)-function g such that V is not
independent, a contradiction to Theorem 9.

(2) If a vertex z of Vof is adjacent to at least two vertices of
Vl , then replacmg f(z) by 2 and f(y) by 0 for each vertex y €
N(z) NV{, produces an RDF g such that either w(g) < yr(G)
or V4 is not a 2-packing, a contradiction to Theorem 9. =

It is shown in [5] that for any graph G, 7r(G) < ir(G) < ugr(G).
Let G be a ~ygsqe-critical graph. By Theorem 9 any vg(G)-
function is also a ugr(G)-function, and thus vgr(G) = ip(G) =
uR(G).

It is well-known that for an isolate-free graph G of order n,
vr(G) = n if and only if n is even and G = 7K.

Observation 11__/_1 graph G of order n is n — ~ypsq-critical if
and only if G = K,,.
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Proof. Let G be a n — ypyq-critical graph of order n. Let A be
the set of isolated vertices of G, and A; = V(G) — A. Suppose
that A; # 0. Let G; be the subgraph induced by A;. Then G,
is isolate-free. Now vg(G1) = |V(G1)| and so any component of
G is a K. Since K is not «ygsg-critical, by Observation 3, G is
not yrsq-critical, a contradiction. Thus A, = §. Consequently,
G = K,,. The converse is obvious. m

Chambers et al. [2] proved the following.

Theorem 12 [2] If G is a connected graph of order n > 3, then
r(G) < 2.

Proposition 13 A connected graph G of order n is (n — 1) —
Yrsd-critical if and only if G € {Ps, Py, C3,Cy}.

Proof. Let G be a graph of order n with 75(G) = n — 1.
From Theorem 12 we find that n < 5. If A(G) > 3, then
(N(z),V(G) — Nl[z], {z}) is an RDF for G, where z is a vertex
of maximum degree, and thus Ygr(G) < n —deg(z) +1 < n -2,
a contradiction. Thus A(G) = 2 and so G is a path or a cycle.
Now by Lemma 8 we obtain that G € {Ps, P;,C3,C4}. The
converse is obvious.

Let S(K,3) be the subdivided graph obtained from K; 3 by sub-
division of all its edges. Let £ be the set

g = {COT(K.?)a Pﬁa -P77 CG, 07) S(Kl,.'})) S(Kl,2)) S}’

where S is the graph obtained from S(K 3) by identifying two
leaves.

Proposition 14 A connected graph G of order n with yg(G) >
3 is (n — 2) — ypsa-critical if and only if G € £.
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Proof. It is a routine matter to see that every graph in & is
(n — 2) — «ypsa-critical. Let G be a (n — 2) — yrsq-critical graph
of order n with yr(G) > 3. If A(G) > 4, then, for any vertex
z of maximum degree, (N(z), V(G) — N|z], {z}) is an RDF for
G of weight n — A(G) + 1 < n — 3, a contradiction. Thus
A(G) < 3. Since G is connected and yr(G) > 3, we find that
A(G) > 2. If A(G) = 2, then G is a path or a cycle, and
by Lemma 8, G € {Ps, Pr,Cs,Cr}. Thus assume that A(G) =
3. Let z be a vertex of maximum degree, N(z) = {y, z,w},
and H = G — N[z]. Clearly |V(H)| > 2, since vr(G) > 3.
Since f(N(z),V(G) — N[z], {z}) is a yr(G)-function, Theorem
9 implies that V(G) — N[z] is independent. If there are two
vertices a,b € V(H) with a common neighbor in N(z), say ¥,
then f = (N(z)—{y}, V(G) — (N[z]U{a, b}),{z,9}) is 2 7r(G)-
function, a contradiction to Theorem 9, since {z,y} is not a
2-packing. Thus no pair of vertices in V(H) have a common
neighbor. In particular, 2 < |[V(H)| £ 3. We consider the
following cases.

Case 1. N(z) is not independent. Without loss of generality
assume that y is adjacent to 2. Since ygr(G) > 3, there is a
vertex of V(H) which is adjacent to y or 2. Let y; € V(H) N
N(y). If w is adjacent to some vertex in V(H) — {y1}, then f =
(N(y), V(G)—N[yl, {y}) is a 7r(G)-function, where V(G)—N[y]
is not independent, a contradiction to Theorem 9. So w is not
adjacent to any vertex of V(H) — {y:1}. Since |V(H)| = 2, we
find that |V (H)| = 2 and there is a vertex 2; € V(H) such that
z1 € N(2). If w € N(y1), then g = (N(2),V(G) — N[z, {z})
is a yp(G)-function, where V(G) — N|z] is not independent, a
contradiction. Thus deg(w) = 1. Consequently G = cor(K3) €
£

Case 2. N(z) is independent. Since yr(G) > 3, we observe that
Ge {S(K1,3),CO7'(K1,2), S} cé. nm

We say that ygr(G) and up(G) are strongly equal for G, denoted
by Yr(G) = ur(G), if every vr(G)-function is a ur(G)-function.
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Similarly we say that yg(G) and ig(G) are strongly equal for G,
denoted by yr(G) = ir(G), if every yr(G)-function is a ig(G)-
function. We observe that if G is -yg4-critical, then yg(G) =
ir(G) and Yr(G) = ur(G).

Let ao(G) denote the independence number of G, that is, the
maximum cardinality of an independent set of G.

Proposition 15 If G is a yrsq-critical graph of order n > 2,
then vr(G) < 2ayp(G), and this bound is sharp.

Proof. Let f = (V{,V{, V) be a yr(G)-function. Then V{/ U
Vy is an independent set in G. Now vr(G) = |V{| + 2JV{| <
oo(G) + |V | < ao(@) + 1&%9, and so the result follows. To see
the sharpness consider a complete graph. m

Proposition 16 If a graph G with yr(G) > 4 is yrsa-critical,
then diam(G) > 3.

Proof. Let G be a yrsq4-critical graph with yg(G) > 4. Let f be
a vr(G)-function, and let z be a vertex with f(z) = 2. Assume
that diam(G) < 2. Since yg(G) > 4, we find that diam(G) = 2.
Let A = N(z) and B = V(G) — N[z]. By Theorem 9, for
any vertex b € B, f(b) = 1 and B is an independent set. If
there are two vertices by, b, € B such that N(b) N N(b) # 0,
then we replace f(b;) and f(bg) by 0, and f(z) by 2, where
z € N(by) N N(by), to obtain a yr(G)-function g in which VJ
is not a 2-packing, a contradiction. Thus no two vertices of B
have a common neighbor. Now if by, by, € B, then d(b, b)) > 4,
a contradiction. m

Proposition 17 For any m > 4, there is a m — ~yrqq-critical
graph of diameter 3.
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Proof. Let m > 4, and G = cor(K,,—1). Then it is straightfor-
ward to see that G is m — ~ypsg-critical of diameter 3. m

Theorem 18 There is no induced subgraph characterization of
YRsd-critical graphs.

Proof. Let G be a graph of order n with vertex set V(G) =
{vi,v2,...,0,}, and H = G o P,. Let V(H) = {v1,v2,...,Un} U
{zijli = 1,2,...,n,5 = 1,2}, where z; is adjacent to v;, and z;,
is adjacent to z;; fori = 1,2, ..., n. It is easy to see that yr(H) =
2n and (V(G)U {2 : i = 1,2,...,n},0,{zi : 1 = 1,2,...,n}) is
the only yr(H)-function, and then H is ypsg-critical. m

A graph G is called Roman graph if yr(G) = 27(G). Next we
study Roman vgsg4-critical graphs.

Theorem 19 [4] A gmph G' zs Roman if and only if there is a
vr(G)-function f = (V§, V{, V) such that V{ = 0.

Let 6*(G) = min{deg(v) : v € V(G) — L(G)}, where L(G) is the
set of all leaves of G.

Theorem 20 IfG is aypsq-critical Roman graph, then yp(G) <
ﬂ—g_ﬁ(g). FEquality holds if and only if there is a yr(G)-function

= (V{, V!, V{) such that Vi = 0 and every vertez of Vil is of
degree 6*(QG).

Proof. Let G be a -yps-critical Roman graph By Theo-
rem 19 there is a vgr(G)-function f = (V¢ VI, V{) such that

= (. By Corollary 10, any vertex of V2f has at least two
prlvate neighbors in V. So Vf N L(G) = 0. Since V{ is a 2-
packing by Theorem 9, every vertex of V2 domlnates at least
8*(G) + 1 vertices of G, and therefore V;/ dominates at least
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IVS1(1 + 6*(G)) = 22(1 + §*(G)) vertices of G. This implies
that 7r(G) < 1+g.(G)

Next assume that equality holds. Let f = (V§,V/, V) be a
vr(G)-function such that Vi = 0. Thus |V}/| = 284 = 1+5’:(G)
Since V4 is a 2-packing by Theorem 9 and n = |V/ |(1 +6*(G), it
follows that every vertex of V4 is of degree §*(G). The converse
is similarly verified. m

Since 6*(G) > 2, we obtain the following.

Corollary 21 If G is a ~ygrsq-critical Roman graph of order n,
then vr(G) < 2. Equality holds if and only if there is a vr(G)-
functzon f= (VO VI V) such that Vi = 0 and every vertex of
V2 is of degree 2.

Similarly the following is verified.

Theorem 22 IfG is aypsq-critical Roman graph, then vr(G) >
TJ%;, and equality holds if and only if there is a yr(G)-function
f= WV V) such that Vi =0 and every vertex of Vi is of
degree A(G).

Proof. Let G be a ~yp,4-critical Roman graph. By Theorem 19
there is a yr(G)- functlon f =, V{, V) such that V/ = 0.
Every vertex of V2 dominates at most A(G) + 1 vertices of G,

and therefore V;/ dominates at most |V;|(1+ A(G’)) = —’1@2(1 +
A(G)) vertices of G. This implies that vr(G) > ; — A(G)

Next assume that equality holds. Let f = (V{J,V{,Vy) be a
~vr(G)-function such that V{ = @. Thus |V;f| = 1B = - AT
Since V4 is a 2-packing by Theorem 9andn = |V2 |(1 +A(G), it
follows that every vertex of V4 is of degree A(G). The converse
is similarly verified. m
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For realizability of equality in Theorems 20 and 22, note that C,

is a ypsq-critical Roman graph for n = 0 (mod 3), and yg(Cy) =
e o Tz A consequence of Theorems 20 and 22

leads to the following.

Theorem 23 A regular Roman graph G is Yrsq-critical if and

only if yr(G) = 1+:1)3n(G)'

3 Trees

In this section we give necessary conditions for a tree T to be
~rsa-critical. We call a vertex v in a graph G a non-yg-critical
vertex if Yr(G — v) = vr(G). Let T be the family of unlabelled
trees T that can be obtained from a sequence T1,...,T; (j > 1)
of trees such that T) is a star K, for 7 > 2, and, if j > 2,
T;.1 can be obtained recursively from T; by one of the following
operations.

e Operation O;,. Let T; € 7 and v be a non-vg-critical
vertex of T;. Then the tree T;,, is obtained from 7; by
attaching a leaf to v.

e Operation O,. Let T; € T and v be a vertex of T;. Then
the tree T}, is obtained from T} by joining v to a leaf of
a star K, ,, for some m > 2.

Theorem 24 If a tree T of order n > 3 is yrsq-critical, then
TeT.

Proof. We proceed by induction on the Roman domination
number yr(T) of a ygrse-critical tree T to show that T' € 7.
Since n > 3, we find that yg(G) > 2. If yp(T) = 2, then clearly
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T is a star, and thus T € 7. Suppose the result is true for
all yrsq-critical trees with Roman domination number at most
g > 2. Let T be a ypgg-critical tree with yg(T) = ¢+ 1 > 2.
Clearly diam(T') > 3, since yr(T) > 2.

If diam(7T") = 3, then T is a double-star. Let z,y be the central
vertices of T. If deg(x) > 3, and deg(y) > 3, then vr(T) = 4,
and clearly yr(T®¥) = 4 = «yg(T), a contradiction. Thus we
may assume without loss of generality that deg(z) = 2. Then
Yr(T) = 3. Let z; be the leaf adjacent to z, and T} = T — z;.
Then yg(T1) = 2 = vr(T1 — z), and so z is a non-yg-critical
vertex in T;. Then T} € 7. Hence, T is obtained from T}, € T
by operation O;.

Assume now that diam(7") > 4. Let o — z; — 22 — ... — Zx be
a diametrical path in T between two leaves zy and z;, where
k = diam(T).

Assume that diam(T") = 4. If deg(z;) > 3, then there is a yg(G)-
function f such that f(z;) = 2. By Theorem 9, f(z3) # 2.
If f(z3) = 1, then f(z4) = 1, and thus replacing f(z3) by 2
and f(z4) by 0 produces a contradiction. Thus f(z3) = 0, and
so f(z2) = 2, a contradiction. We deduce that deg(z,) = 2,
and by symmetry deg(z3) = 2. Moreover any support vertex
adjacent to zo is of degree two. By Lemma 8, T # Ps, and
thus deg(zs) > 3. Let [ be the number of support vertices
adjacent to zo. Then vg(T) =2+ 1!. Let Ty = T — zp. Then
Yr(T1) = 1+1, and f1 = f|y () is the unique yg(7T})-function of
T} and Vlf ! is independent and sz ' is a 2-packing. Thus T} is a
YRsd-critical tree, and by the inductive hypothesis T} € 7. But
Yr(T1 — 1) = vr(T1), and thus z; is a non-yg-critical vertex of
T;. Now T is obtained from T} € 7 by operation O;.

We thus assume that diam(7T") > 5.
We root T at zo. There are the following cases.

Case 1. deg(zi-2) = 2. We consider the following subcases.
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Subcase 1.1. There is a yr(T)-function f that zx_; € V4. Let
Ty =T — N[zk-1]. By Theorem 9 f(zx—2) # 2 and thus f|y(n)
is an RDF for T; and so yr(T1) < Yr(T) — 2. On the other
hand any yr(T})-function can be extended to an RDF for T by
assigning 2 to zx..; and 0 to any vertex in N(zk—;). This implies
that y(T") < Yr(T1) + 2. Thus vg(T') = yr(T1) +2. If T} is not
Yrsd-critical, then there is a yr(7})-function g such that either
VY is not independent or V7 is not a 2-packing. But then we
extend g to a yg(T)-function h by assigning 2 to zx—; and 0 to
any vertex in N(zx_1), such that either V}* is not independent
or V! is not a 2-packing, a contradiction. We conclude that T}
is «ypsq-critical. By the inductive hypothesis, T € 7. Now T is
obtained from T) by using operation O,.

Subcase 1.2. There is no yg(T)-function f that z,_; € Vi, Let f
be any yg(T)-function. Then f(zx—,) =0, and thus f(zr—2) =
2 and f(zx) = 1. As a consequence we have deg(zx—1) = 2.
Let T} = T — z. It is obvious that f|y(r) is an RDF for
T1, and so Yr(T) > vr(T1) + 1. On the other hand it is clear
that any yg(7T})-function can be extended to an RDF for T by
assigning 1 to zx, implying that yp(T) < yr(T1) + 1. Thus
Yr(T) = vr(T1) + 1. If T} is not -ypsq-critical then there is a
~vr(T1)-function g such that either V¢ is not independent or V/
is not a 2-packing. But then we extend g to a yr(T')-function g,
by assigning 1 to z;, such that either V' is not independent or
V5" is not a 2-packing, a contradiction. Thus T is «ygsqe-critical.
Suppose now that y7(T} —zx—1) < Yr(T1). By Theorem 1, there
is a yp(T1)-function h such that h(zx—;) = 1. Then we extend
h to a yr(T)-function h; by assigning 1 to zj such that V}* is
not independent, a contradiction. Thus yr(T} —zk-1) > Yr(T1),
and so z;_; is a non-yg-critical vertex of 7. Now T is obtained
from T) by operation O;.

Case 2. deg(zk—2) > 3.

Subcase 2.1. z;_; is a strong support vertex. If there is a child
y # Ty of zx_o such that y is a support vertex, then there is
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a yr(T)-function f such that y,zr_; € sz and so V4 is not a
2-packing, a contradiction to Theorem 9. Thus any child y #
Tk of x—o is a leaf. If deg(zk-2) > 4, then there is a yr(T)-
function f such that zx_g,zx-1 € V2f , and so sz is not a 2-
packing, a contradiction to Theorem 9. Thus deg(zx—2) = 3.
Let z be the leaf adjacent to zx—; as its child. Let f be a
Yr(T)-function. Then f(zx—;) = 2 and f(z) = 1. Let T} =
T — 2. It is obvious that f|y(r) is an RDF for T implying that
Yr(T1) € Yr(T) — 1. On the other hand any yg(77)-function
can be extended to an RDF of T by assigning 1 to z which
implies that yp(T) < yr(T1) + 1. Thus vr(T) = 1 + vr(Th).
If T} is not ypeg-critical, then then there is a yg(T})-function g
such that either V? is not independent or VJ is not a 2-packing.
But then we extend g to a yr(T')-function h by assigning 1 to 2
such that either V}" is not independent or V;* is not a 2-packing,
a contradiction. We conclude that T) is ygse-critical. By the
inductive hypothesis, T3 € 7. If yr(T} —zx—2) < yr(T}1), then by
Theorem 1 there is a yg(T})-function h; such that h;(z_s) = 1.
Then h; can be extended to a yr(T')-function hy by assigning
1 to 2, and thus Vlh2 is not independent, a contradiction. Thus
Yr(T1 — 2k—2) > vr(T1). Now T is obtained from Ty € 7 by
using operation O;.

Subcase 2.2. z_ is not a strong support vertex. So deg(zx—;) =
2 and we may assume that no child of z,_5 is a strong vertex.
Furthermore, any child of z,_» is either a leaf or a support vertex
of degree two. Let k; be the number of children of z;_» that are
support vertices.

If ky > 2, then there is a yg(T')-function f, such that f(zx_p) =
2. Then f(zx) = 1. Let Ty = T — zx. Then fly(r,) is an RDF
for 71 implying that ygr(T1) < vr(T') — 1, and we can easily see
that yr(T') = yr(T1) + 1. If T is not «ype-critical, then there
is a yr(T1)-function g such that either V{ is not independent or
V3 is not a 2-packing. Then we extend g to a yg(T)-function
h by assigning 1 to z) such that either V}* is not independent
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or V' is not a 2-packing, a contradiction. Thus T is Yrss-
critical. If ya(T1 — zx—1) < 7Yr(T1) then by Theorem 1 there
is a yp(7T1)-function g; such that zx_; € V{'. Then we extend
g1 to a yr(T)-function h; by assigning 1 to xzx, and thus V}* is
not independent, a contradiction. Thus yg(T} —zk—1) > Y&(T1)-
Now T is obtained from 7} by using operation O;.

Thus we assume that k; = 1. Since deg(zx—2) > 3, there is a
vr(T)-function f, such that f(zx—2) = 2. Then f(zr) = 1. Let
Ty = T—x. Then f|v(r,) is an RDF for T}, and we can easily see
that yr(T") = vr(T1) + 1. Furthermore, as in the previous cases,
we can see that Tj is ygsqe-critical, and yp(T} — zx-1) > Yr(TH).
Thus T} € 7, and T is obtained from T by using operation O,.
(]

We close with the following problem.

Problem 25 Find a constructive characterization for ypsq-critical
trees.
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