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Abstract

The results of Laughlin and Johnson [1] are generalized in this
paper, and open problems left at the end of [1} are addressed. New
values of Anti-Waring numbers are given, including N(2,4), N(2,5),
N(2,6), and N(2,7).

1 Waring’s Problem and “Anti-Waring”
Numbers -

The original conjecture of Waring [4] stated that for each positive integer
k there is a number g(k) such that every positive integer can be expressed
as a sum of g(k) or fewer k** powers of positive integers. Waring’s problem
is to find the smallest such g(k) for each k. The affirmation of Waring’s
Conjecture in 1909 added more foundation to Waring’s problem, and sub-
sequently, a second “Waring” type problem, namely to find the smallest
integer G(k) for each positive integer k such that every sufficiently large
integer may be expressed as the sum of G(k) or fewer k** powers. Each
of these problems have been thoroughly investigated; however several open
problems still remain.

The “Anti-Waring” conjecture due to Johnson and Laughlin [1] is as
follows: If k and r are positive integers, then every sufficiently large integer
is the sum of 7 or more distinct k*» powers of positive integers. The smallest
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integer such that all integers from that one on are so expressible will be
denoted N(k,r). Looper and Saritzky in [2] proved that N(k,r) exists for
all k and r [2]. Johnson and Laughlin managed to find values for N(2,1),
N(2,2), and N(2,3), and in the following sections we will expand upon
these results.

2 A General Result on Anti-Waring
Numbers

We call an integer (k,7)-good if it can be expressed as the sum of » or more
distinct kP powers of positive integers. If an integer is not (k,r)-good,
then it is (k,7)-bad. We begin this section by providing an extension of
the methods of Laughlin and Johnson [1], followed by applications of our
extension.

Theorem 1. Suppose that k and r are positive nonzero integers. If there
exist positive integers A, B, and C which satisfy the following:
1. C is a (k,r)-bad integer;

2. C < A* and for each integer s € [C +1,...,A¥], s is a (k,7)-good
integer;

3. For each of the polynomials (1), (2), and (3) below, A is greater than
its largest real Toot:
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then N(k,r) =C + 1.

Proof. To begin we note that N(k,7) = C' +1 if and only if C is the largest
(k,r)-bad integer.
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Suppose that each integer in the interval [C + 1,..., A¥] is (k,7)-good.
We will show the following via induction on m: If m > A and n < m* is
{(k,r)-bad, then n < C. This will finish the proof.

Since each integer C +1,..., A* is (k,7)-good, at m = A our statement
holds. Now suppose that m > A and that the statement is true for m;
suppose that n < (m + 1)* is a (k,7)-bad integer. We wish to show that

n<C.

First, if n < mF then the conclusion follows from the induction hypoth-
esis. Therefore suppose that m* + 1 < n < (m + 1)¥, or equivalently:

k
15z=n—m'°5(m+1)"—m'°=z<k_:>m'°‘j. (4)
=1\
We now claim that n — (m — B)* is a (k,7)-bad integer. If

k
k X X X
n-— - B =2+ ymk-i(=1)i+t1 B 5
(m— B) z_:(J) (-1) (5)

were (k,r)-good then for some integer ¢ > r there exist positive integers
@) < ap < --+ < a; such that n—(m—B)k = Z;.=1 o¥. Since n is (k,r)-bad
then one of the a; must be m — B. Therefore

r—1
n—(m-B)f>(m-BF*+) j*
=1

Consequently, using (4) and (5):
L ‘ -l k /e .
m* + 22 (j)m""’(—-B)J + ij <z< Z (j)mk". (6)
i=1 3=1 =1

Inequality (6) implies that the value of

kL= [k k—j ; =L
z +Z(j)x R(-BY —1+3
j=1 j=1

at m, is non-positive. Therefore, m is no larger that the largest real root
of this polynomial. However, this polynomial is the polynomial (1). Hence,
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the conclusion that m is no greater than its largest real root implies that
m < A, a contradiction.

Now we do a similar manipulation to show that n — (m — B)¥ < mk, If
this were not the case then

k
k .
mF+1<z+ (.)mk”’ —1)it1pi
<43 (B)mtson

<5 (s a3 ()i

Thus m must be less than or equal to the largest real root of the following
polynomial:

k
K\ ._. .
=k + 15:‘; (J,)xk i(-BY - 1] +1.

By the hypothesis of the Theorem, we would then have that m < A, a
contradiction.

Now we need only invoke the inductive hypothesis. We have

k
k . : )
C>n—(m-Bf=z+ (')mk"J(_l)J'l‘lBJ
jZl J

k
k . A .
>14 (,)mk"(—l)"”B’.
2\

Again we can conclude that m is no larger than the largest real root of the
following polynomial:

-1+Z() k=i(—~B). (7)

This implies m < A , contradicting m > A. Therefore n < m* after all, so
n < C; the induction step has been taken.

]
Applying this theorem, we find A, B, and C to compute new values

of N(k,r). Below is a table giving values {4, B,C] from which the value
N(k,r) = C +1 can be proven, for some pairs (k,).
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Table 1: Some values for [A, B, C] giving N(k,r), from Theorem 1:
r\k 2 3 4

1 | [18,4,128] [33,6,12758] 7
2 | [18,4,128] [33,6,12758] ?
3 | [18,4,128] [33,6,12758] ?
4 | [23,6,128] [33,6,12758] ?
5 | [23,5,197] [33,6,12758] ?
6 | [23,6,237] ? ?
7 | [26,8,330] ? ?
8 | [27,9,382] ? ?
9 | (32,10,527] ? ?
10 | [33,12,647] ? ?

In each case, in Table 1, N(k,7) = C + 1; for instance, N(3,5) =
12,759. In each case the (k,r)-goodness of the integers C + 1,... A* was
checked directly; representations of those integers as sums of distinct kP
powers are available on request. Our results have extended the list of known
Anti-Waring numbers from N(2,7), 7 = 1,2,3 [1], to those indicated by
Table 1. Progress on remaining Anti-Waring numbers gets more difficult;
it has been verified by computer that N(4,1) > 550000, and little is known
about remaining Anti-Waring numbers; in particular we have no bounds on
N(k,r), although it appears that something could be extracted from [2].

3 On A Larger Problem

Johnson and Laughlin introduce a larger question in the final section of
(1]. Let (an) = (a1,a2,a3...) be a strictly increasing sequence of positive
integers, and let r be a positive integer. We say that (a,) has property
S, if and only if each sufficiently large positive integer can be expressed
as the sum of r or more distinct elements from the set {a,|n = 1,2,...}.
Furthermore, if (a,) has property S, for all », we say that (a,) has property
Seo- (In this respect, the existence of N(k,7) for all k and r means that for
all k the sequence (n*) has property Sw, as shown by Looper and Saritzky

21.)
Let f(z) be a polynomial that maps integers to integers!, and the
sequence generated by f(z) be the sequence f(1), f(2),.... We define

1These polynomials are sometimes called numerical polynomials and their coefficients
need not be integers.
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N(f(z),r) to be the smallest integer such that every integer from there
on is representable as the sum of 7 or more distinct terms of the sequence
generated by f(zx), if there is such an integer.

We are able to provide an additional infinite family of sequences which
possess the property S, by extending the methods of Looper and Saritzky
[2]. To do this we use a Theorem of Roth and Szekeres [3]. We say a set of
real numbers S is complete if all sufficiently large integers can be written
as a sum of distinct elements of S.

Theorem 2 (Roth and Szekeres). Let f(z) = anz™ + o1z ! +--- +
a1T + ap, an > 0 be a polynomial which maps integers into integers. Let
S(f) denote the set {f(5)I7 =1,2,...}. Then S(f) is complete if and only

if for any prime p, there erists an integer m such that p does not divide

f(m).
Using this result we may show the following.

Theorem 3. If f(z) = anz” + an_ 12" '+ -+ 1T+ ap # 0, o > 0,
a, > 0, is a polynomial mapping Z — Z with the property that for any
prime p there exists a integer m such thatp [ f(m), then {f(n)In=1,2,...}
has the property S.

Proof. We proceed by induction on 7. For r = 1, Theorem 2 implies that
N(f(z),1) exists. Suppose r > 1, N(f(z),r) exists, and N(f(z),r) = B
for some integer B. We note that

2f(z)— fz+1)=a, 22" —(z+1)"]+ -+ x[2-1] = o0

as n — oo.

Hence there exists a positive integer A such that for all = > A, 2f(z) >
f(z 4+ 1) + B. Now let m be an integer such that m > f(A) + B so that
m — B > f(A). Let 8 be the greatest integer such that f(8) < m — B.
Hence

f(B)<m-B< f(B+1). (8)

Combining inequalities yields

f(B)<m-—-B< f(B+1) <2f(8) - B. (9)
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From inequality (8), B < m — £(8), so m ~ f(8) = f(s1) + -+ + f(sz),
where s; are distinct positive integers and t > r. Thus if any s; = S, then
m > 2f(B), contradicting (9). Therefore m = f(ﬂ)+2 =1 f(s;) is the sum
of 7 4+ 1 or more distinct elements of the set {f(n)|n =1,2,...}. Since m
was an arbitrary integer greater than or equal to f(A)+B, by the induction
hypothesis we are finished: N(f(z),r + 1) exists (and will be no greater
than f(A) + N(f(z),)).

O

Finally, we say that a sequence (a,) has property S, if and only if every
tail of the sequence has property S;; if (an) has this property for all 7, then
(an) has property So. The following is a corollary pertaining to our famlly
of sequences.

Corollary 4. If f(z) = anx™ + @n-12" 1+ -+ o124+ 09 # 0, ax > 0,
an > 0, is a polynomial mepping Z — Z with the property that for any
prime p there ezxists a positive mteger m > N such that p [ f(m), then
{f(n)ln=1,2,...} has the property So

Proof. For each positive integer N, g(z) = f(z + N — 1) satisfies the hy-
pothesis of Theorem 3 and (g(1),9(2),...) = (f(N), f(N +1),...). The
conclusion of the corollary follows from Theorem 3.

O

4 Open Problems

In the pursuit of values for N(k,7), Theorem 1 is very effective for verifying
candidates found from searching. The algorithms for searching for candi-
date va.lues all involve computing power sets for the set {1%,2% ... n*}
where n* is the smallest k*" power less than the number we are testmg
Any upper bound on N(k,r) or even N(k,1) would be extremely useful in
searching for N(k,r) by setting limits on the search for candidates. Also
it is unknown whether N(k,7) < N(k + 1,7) and even this would be an
interesting result.

For positive integers k,r,s, does there exist an integer N(k,r,s) such
that every n > N(k,r,s) is expressible as a sum of r or more distinct kth
powers of positive integers in s or more different ways? Let fi (n) be the
number of different ways of expressing n as a sum of r or more distinct kt®
powers of positive integers. Then N(k,r,s) exists for all k,r, and s if and
only if frr(n) = 0o as n — oo, for all k, 7.
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