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ABSTRACT. An urn contains 2n + 1 balls in two colors. The number
of balls of a particular color is a random variable having binomial
distribution with p = -;- We sample the urn removing balls one by
one without replacement. Our aim is to stop the process maximizing
the probability that the color of the last selected ball is the minority
color. We give an algorithm for an optimal stopping time, evaluate
the probability of success and its asymptotic behavior.
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1. INTRODUCTION

The aim of the paper is to find an optimal stopping time in a process
involving objects of two types. Like in the most famous model, namely the
secretary problem, the objects are coming one by one in a random permu-
tation. A decision about stopping at time t is based solely on the partial
sequence observed up to time ¢, but the outcome (win, or loss, or some
payment) is determined after the whole sequence is revealed.

In the classic secretary problem, solved originally in 1961 [9], the objects
are linearly ordered and we want to maximize the probability of stopping
on the maximal element. The book by Berezovsky and Gnedin [1] and
Ferguson’s paper (3] provide lovely history of the original problem and its
generalizations.

Later the secretary problem was studied for partial orders: complete bi-
nary tree [10], two parallel linear orders [4], general partial order [11], [5], and
threshold stopping times [6]. In [8] a broader graph-theoretic approach to
optimal stopping time was introduced. For a given graph (or a digraph), we
want to choose in the online decision process a vertex from a predefined sub-
set of vertices. This generalization does not require a partial order structure,
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and effective algorithms for such a choice may be applicable, for instance,
in searches for appropriate servers which are a part of a known computer
network. In [8] the case of searching for an end-vertex of a directed path of
order n was solved.

In our model, the objects are of two types (balls of different colors) and
the objective is to stop on the ball of the minority color. Therefore, this
process might be thought as a game played on a bipartite graph whose order
2n + 1 is known but the sizes of partite sets are random. A simpler version
of the game with known sizes of partite sets was solved recently in (7).

In this paper we will not use graph-theoretical terminology and the pro-
cess will be described using random binary sequences.

2. DESCRIPTION OF THE GAME

Consider an urn containing an odd number of balls, say 2n + 1, where
n > 1. The balls are in two colors and the number of balls of a specific
color is a random variable having binomial distribution with p = 1; the

2n+1

probability that the number of balls in a specific color is k equals (3,7’“;-2
Because we have an odd number of balls, the color classes have different
sizes. We refer to the color of the smaller class as the minority color. We
pick the balls randomly one by one without replacement revealing their
colors. We want to stop the process maximizing the probability that the
color of the ball selected in the last step is the minority color. Of course,
during the process we do not know which color is the minority color. We
label the two colors by 1 and -1. Let z; denote the color of the ith ball drawn.
The assumption about binomial distribution of a size of a particular color
class implies that z1, s, ..., Zon+1 are independent random variables having
Bernoulli distribution with p = % Our goal is to determine the stopping
policy for which the probability of selecting a ball in the minority color is a
maximum. Notice that z, is the minority color if and only if z, 2,2:',“ z; < 0.
Let Fo denote the trivial o-algebra and let F; = o(z1,z2,...,z;) be the o-
algebra generated by random variables z,,z3,...,z;, 1 <1 < 2n+1. Define
1, ifz, 2 ¢, <0

i=1

0, if 2z, 32z, > 0,

Wy = Wiz, 22, .. ., Ton41) = {
i=1
and
Zt = E(th}_g)

The first line in the definition of W, represents the event that z; is the
minority color, the second line - the majority color. A stopping time for
the stochastic sequence {Z;, F;}?}! is an integer valued random variable
T,1£T <2n+1, for which {T <t} € F;,1 <t <2n+1. The last
condition says that our decision to stop at ¢ is based only on the values of

x; for 7 < t and does not depend on the future events x¢41,...,Z2n+1. We

256



want to find a stopping time 7, referred to as an optimal stopping time,
for which £(Z;) = max E(Zr) where the maximum is taken over the set of
all stopping times T.

Let us notice that in our notation the probability of stopping on a ball of
the minority color is equal to

2n+1
Plz, ) z: <0 = PW, =1].
i=1

One can think about maximizing P[W, = 1] as a game, called G(0,2n + 1),
played against nature, where 2n + 1 denotes the length of the game and 0
denotes the initial difference between sizes of color classes of balls observed so
far. Because our game is finite, the optimal stopping time will be determined
by the method of backward induction (see [CRS]). For our process the value
of Z; depends not really on the whole history z1,xs,...,z; of the process till
time t, but on 2, Z:=1 z;, and (2n+ 1) — ¢, the number of unrevealed balls.
In this backward induction, which in this case is really a normal induction
on the number of unreaveled balls, we need to compare the value of Z; when
we stop the process at time ¢ with the expected value of the process when
we stop later. In the later case, we consider a shorter game determined by a
new smaller length and an updated initial difference between sizes of color
classes of balls observed so far. Instead of introducing new games, we prefer
to call those games the states of the original game G(0,2n + 1). They
are defined as follows. A state S(d,r) consists of all sequences of length
2n 4+ 1 whose initial partial segments of length t = 2n 4+ 1 — r have the
property that the number of balls of color —z; minus the number of balls
of the color z; is equal to d. Of course, r represents the number of balls
remaining in the urn, balls whose colors have not been revealed yet. For
example, each of the following sequences of length 9 belongs to the state
5(2,3): (1,1,1,-1,1, -1, 27,28, 29), (—-1,-1,-1,1,-1,1, 27, 28, Tg),
(1,-1,-1,-1,-1,1,z7, 28, x9), for x7,28,29 € {—1,1}. Notice that d can
be evaluated as d = —z, 3 i, ;, where t = (2n+ 1) — 7. If d < 0, then
z; is a majority color till time . If d > 0, then z; is a minority color
so far. When the ¢ initial terms of a sequence Z determine that Z is in
the state S(2,3) and the next term z:;4; of % is revealed, then either T €
5(1,2) or Z € §(-3,2). For example, (1,1,1,—1,1,—1,z7, z8, z9) € S(2,3)
but (1,1,1,-1,1,-1,-1,z5,z¢) € 5(1,2) and (1,1,1,-1,1,-1,1,z8,29) €
S§(—3,2). Therefore, from the state S(2,3) we can go either to S(1,2) or
S§(—3,2), to each with probability 0.5. The transition diagram in this case

18:
5(2,3) y
k 5(-3,2)

$(1,2)
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In general, the transition diagram for S(d,r) is:

S(d,r) y
m S(-d—1,r—1)

Let’s notice that in any state S(d, ), the integers d and r are of different
parity. Also, from a state S(0,r) we always go to S(—1,7 — 1). Being at
the state S(d,r), we should decide whether to stop on the color z(2n41)-r
or wait (and stop later). Let p(d,r) denote the value of the game that starts
from the state S(d,r). This value is the probability of success when an
optimal stopping time is used in the game of length r and the difference d
between color classes. At time t, the knowledge about z;, 29, ...,z allows
us to evaluate d and r. An optimal stopping time 7 is given by

r=min{t:1<t<2n+1and Z, > p(d,7)}

S(d-1,r-1)

3. RECURRENCE FORMULAS

First, we will determine the values of p(d,r) for all » and & such that
1<7<2n+1and —(2n+1) <d < 2n+ 1. Let’s start with a couple of
simple observations.

Fact 1. If d > r, then p(d,7) = 1.

This is true because the last ball is guaranteed to be of the minority color
and we can stop on it.

Fact 2. If d <0 and —d > r, then p(d,7) = 1 — .

The assumption —d > r guarantees that the last ball is of the majority
color, so we have to wait for a ball of the other(minority) color. There is a
chance of (%)r that such a ball will never come.

Fact 3. For every d and 7 > 1, p(d,7) > 3.

Suppose that » = 1. Then d is even. If d > 2, stopping guarantees the
success. If d = 0, stopping gives the probability of success 1. If d < -2,
then waiting and stopping on the last ball gives the probability of success 3.
Because the optimal strategy must give the probability of success at least as
high as the strategy described above, the fact follows for r = 1. For r > 2,

waiting till 7 = 1 and then using the strategy described above gives the



probability of success at least -;- The optimal stopping strategy cannot be
worse.
It is not difficult to establish recurrence formulas for p(d,r).

Theorem 1. (a) Ifd < 0, then

1 1
(1) p(d,r) = §P(d—1,r—1)+§p(—d— L,r-1)
(b) Ifd > 0 and d < r, then
1 1 .
gp(d—1,7 = 1) +3p(—d — 1,7 - 1);
(2) p(d,r) = maz { : ~ () +(D) ot (2mes )
2" :

Proof. (a) Stopping at the state with d < 0 gives the probability of success
less than % By Fact 3, p(d,7) > 4. So we have to wait and get the average
of the probabilities in two possible states S(d —1,r — 1) or S(—d—1,7—1).
(b) We are comparing the probabilities of success when waiting (the first line)
and when stopping (the second line in the formula involving maximum).
When we stop on a current ball, we will loose if, among the remaining =
balls, the number ¢ of balls of the other color is 0,1,2,..., or -12-(7' -d-1).
Then the color of the current ball will become the majority color, since
d+(c—(r—c))=d+2c—r > d+2-3(r—d—1) —r = —1. The probability
that this happens is equal to 27"((7) + (]) +. ..+ ( ,__L# )). Otherwise, the
current color will remain the minority color and we win. O

We will establish initial conditions, i.e. probabilities p(d, 1) for all possible
values of d when d is even. For d = 0, if we stop on a current ball we win
with the probability % Waiting and stopping on the last ball guarantees
failure, so p(0,1) = 3. From Fact 1 and Fact 2 we have that p(d,1) = 1 for
d>2and p(d,1) = § for d < -2.

These initial conditions together with recurrence formulas from Theorem
1 allow us to evaluate probabilities p(d,r). We would like to construct a
table of their values, but since all of p(d, ) are fractions with denominators
being powers of 2, we give a table of values of P(d,r) = 2"p(d, r). Of course,
the initial conditions for P(d,r) are P(d,1) = 2 for d > 2 and P(d,1) =1
for d < 0. Then the recurrence formulas from Theorem 1 become

(3) Pd,r)=Pd~1,r~1)+ P(—-d~1,r-1), for d <0,
and
d—1,7r— P(—d-1,r - 1)
() P(dr)=maz{ 47 7o DF Pd = Lrm)
2= () = () =~ (efa).
We also have, P(d,r) =27 ford > r.

foro<d<r.
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The values of P(d,r) for 1 <7 <9 and —12 < d < 12 are given in Table

d\r 1 2 3 4 5 6 7 8 9

0 1 4 20 80 382
1 3 11 45 191

-1 2 10 : 45 191
2 2 7 26 101 411

-2 1 6 25 101 411
3

-3 3 14 56 220
4 2 8 31 120 466

-4 1 7 30 119 466
5 4 16 63 247

-5 3 15 62 246
6 2 8 32 127 502

-6 1 7 31 126 501
7 4 16 64 255

-7 3 15 63 254
8 2 8 32 128 511

-8 1 7 31 127 510
9 4 16 64 256

-9 3 15 63 255
10 2 8 32 128 512

-10 1 7 31 127 511
11 4 16 64 256

-11 3 15 63 255
12 2 8 32 128 512

-12 1 7 31 127 511

TABLE 1. Table of values of P(d,r).

Looking at the entries P(d,r) in Table 1 one can notice that there is a
triangular region (a subset of the region above the main diagonal d = )
for which P(d,7) = P(—d,r), whereas below this region we have P(d,r) =
P(—d,r)+1 for d > 0. In the region where P(d,r) = P(—d,r) stopping is
not better than waiting. For the states S(d,r) in the other region, stopping
gives larger probability of success than waiting. In the remaining part of
the paper we find compact formulas for P(d,), describe the shape of the
boundary between these two regions, and examine the asymptotic behavior
of the probability of winning as the number of balls in the urn increases
without bound (2n + 1 — o0). The value of the game G(0,2n + 1) is

E(Z;) = P g'ﬁ""'l . Any random sequence (z1,Z2,...,Z2n+1) determines
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the random walk in the Table 1 that starts at S(0,2n + 1) and proceeds
northwest or southwest through different states S(d,r) from which one can
read the probability of success when optimal stopping time is used.

Table 1 has a significant shortcoming. In the region where P(d,r) =
P(—d,r), the probability of success when stopping is not larger than the
probability of success when waiting. However, the entries of the table do
not show the difference between corresponding probabilities. To overcome
these shortcomings we introduce new two-dimentional arrays a{(d,r) and
A(d,r) defined for all integer values of d and r such that d > 0 and r > 1.

N (D) 4.+ (o2
(%) a(d,r) = p(—d,r) — (1 — @ + () . (ﬂ_))'

(6) A(d,7) =2"a(d, 7).

In other words, the number a(d, r) represents the difference in probability
of success using the optimal strategy at the state S(—d,r) (when —d < 0
and we have to wait) and the probability of success when we stop at state
S(d,r). Informally, one might think about a(d,r) as "the advantage of
waiting over stopping”. The numbers A(d, ), introduced in order to avoid
fractions, satisfy nice recurence formulas that are the subject of Theorem 2.
Before formulating this theorem, let us notice that

() A(d,r) = 2"a(d,r) = P(~d,r) + (S) + (:) PR (_:%) —9r

Theorem 2. (a) Ifd >0 and A(d— 1,7 ~1) >0, then

(8) A(d,r) = A[d-1,r = 1) + A[d+1,r - 1)

(b)) Ifd =0 and r > 3, then

(9) A(d,r) = A(0,7) = 24(1,r — 1) + (";1)
2

Proof. (a) A(d,r) =27a(d,r) = P(~d,r) + (") + (;) + ..+ (_:_,;I___) —2r
=P(-d—1,r = 1)+ P(d-1,r=1)+ ("3") + ("7} +. g 1)+
3+ () o (Zgh) + (Zgh) -7t -
because of Formula (3) and properties of binomial coefficients.
Since A(d—1,7—1) > 0, we have that P(d—1,r—1) = P(—-d+1,7—-1)

and the last sum can be written as .
P(=d—1,r = 1)+ (TGN + (7)) +... + (Izds) — 271 +

+[P(=d+1,r =)+ (G + ('] )+ +(,_.g_1_1)—2r-1]
=Ad+1,r-1)+ A(d-1,r —-1).
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(b) For r > 3, we have

24(L,r — 1)+ ("%1_1)
N I
—2P(~1,r - 1)+ (g) + (’1”) - (r;) o

= A(0, 7).

Theorem 2 gives no formula for A(d,r) in those cases when A(d—1,7—1)
is negative. The next result will establish a pattern of negative entries of
the array A(d,r) and justify that the only possible negative value of A(d,7)
is -1.

Theorem 3. (a) If A(d,r) <0, then A(d,r) = ~1.
(b) If A(d,7) = -1, then A(d',7) = -1 ford' >d.
(c) If A(d,r) = -1, then A(d+1,r+1)=—

Proof. We will prove (a) and (b) by induction on . Part (c) will follow from
the proof.

For r =1, using (7), we have A(0,1) = P(0,1)+ ((1)) -2l=1+1-2=0.
Ford > 2, A(d,1) = P(—d,1)-2! =1—2 = —1, so (2) and (b) are true for
r=1.

Assume that (a) and (b) are satisfied for some r > 1. Consider the entry
A(d,7+1) in the next column. If d =0, then 7+ 1 > 3 and A(0,7 +1) > 3.
Therefore, if A(d,r + 1) < 0, then d > 1. Consider the element A(d — 1,7)
from the previous column. If A(d — 1,7) > 0, then, from (8), A(d,r +1) =
Ad-1,7) + A(d+1,7) 20+ (-1) = —1.

If A(d - 1,7r) < 0, then, using the inductive assumption, A(d —1,7) = -1
and also A(d + 1,7) = —1. This implies that

A(d,r+1)=P(—d,r+1)+(’";1)+ (*1“1) - (_;“;i) g
= P(-d—1,7) + P(d - )+(S)+G)+...+(,_;é)+

()t ()7
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Since A(d—1,7) = -1, we have P(d—1,7) = P(—d+1,7) + 1, and the last
expression equals to

[P(—d—lﬂ‘)+(3)+(:)+...+<%)—2']+1+

+[P(—d+1,7r) + (g) + (:) o (%) —27)

=Ad+1,7)+14+Ad-1,r)=~-1+1-1=-1.

Therefore, A(d,r +1) = ~1. If d’ > d, then A(d’,r + 1) = —1 by analogous
calculations in which we use entries A(d’ — 1,7) and A(d' + 1,7). |

Theorem 2 and Theorem 3 allow us to evaluate the entries of A(d,r)
recursively. The values of A(d,r) for 0 < d < 12 and 1 < r < 15 are
presented in Table 2.

dyrff1|2]|3]4|5|6|7]8]9|w nnfi2]13]14] 15
o (o 0 4 26 126 562 2416 10180
1 -1 -1 3 28 155 746 3374
2 |1 -1 -1 2 29 184 968 4571
3 -1 -1 -1 1 29 212 1197
4 |1 -1 -1 -1 0 28 239 1463
5 -1 ST B S -1 -1 27 265
6 |[-1 -1 -1 -1 -1 -1 26 290
7 -1 -1 -1 -1 -1 -1 25
8 |I-1 -1 -1 -1 -1 -1 -1 24
9 -1 -1 -1 -1 -1 -1 -1
10 |j-1 -1 -1 -1 -1 -1 -1 -1
11 -1 -1 -1 -1 -1 -1 -1
12 -1 -1 -1 -1 -1 -1 -1 -1

TABLE 2. Table of values of A(d, 7).

Looking at this table one can observe that the below diagonal pattern of
negative entries of A(d,r) has small disturbances. Notice that A(4,9) =0
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and, by using (8) from Theorem 2, A(5,10) = —1. The entry A(5, 10) is the
beginning of a new infinite diagonal line of negative entries in A(d,r). Those
-1’s cause the entries above them to form a decreasing sequence reaching 0 in
entry A(32,39). Starting from A(33, 40) and going diagonally down, we will
have a new line of -1’s. Without these disturbances, it would be easy to find
closed formulas for A(d,r) and for P(d,r) as well. The disturbances pro-
duce some adjustments to those formulas. Fortunately, the disturbances are
rare, adjustments are relatively small, and they do not effect the asymptotic
behavior of probabilities.

4. FINDING OPTIMAL STOPPING TIME

To find a formula for A(d,r) it is more convenient to work with modified
coefficients we call A’(d,r). A'(d,r) are the same as A(d,7) if A(d,r) >0or
A(d,r) = —1, but this -1 is the first negative entry in column 7. Otherwise
A'(d,r) = 0. In other words, the modified table A’(d,r) is obtained from
A(d,r) by replacing all -1 entries (except the first -1 in each column) by
0’s. The values of modified A’(d,r) are presented in Table 3 in which all -1
entries are boxed.

d\r 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 a 4 26 126 562 2416 10180

2 |11 = 3] 2 20 184 968 4571

3 0 0 ] 1 29 212 1197

4 0 0 0 = 0 28 239 1463

5 0 0 [} (] 1 27 208
6 0 0 0 0 =] & 26 290

10 0 0 0 0 0 0 0 =]
11 0 (1) [1] (1) 0 0 0
12 0 0 0 0 0 0 0 0

TABLE 3. Table of values of modified A’(d, ).
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We will need the following properties of binomial coefficient.

Property 1. T (%) (%2-2) = 22

The next property uses binomial coefficients and applies to the Pascal tri-
angle, but can be easily generalized to any rectangular array S(k, n) of num-
bers satisfying recurrence formula S(k,n) = S(k—1,n-1)+S(k+1,n—1).

Property 2. Let S(k,n),n > 1,k € Z, be an array of numbers satisfy-
ing the recurrence relation

S(k,n)=Sk-1,n-1)+Sk+1,n-1)

for every n > 2 and k € Z. Then for all integers n, k,u such that n > u > 1
we have

Stk,ny =3 (’;)S(k —u+2i,n—u).

i=0

Therefore, the entry S(k,n) can be expressed as a linear combination of
u + 1 entries from the line n — u (u units to the left from the line n) with
coefficients (%) counting the number of southwest-nortwest paths of length
u from (k,n) to (k — u + 2i,n — u). The number i represents how many
northwest steps, out of the total of « steps, we take. For example, the entry
A’(5,14) of the Table 3 can be expressed as:
for u =1: A'(5,14)= 265 = 239 + 26;
for u = 2: 265 = 212 + 2(27) -1;
for u = 3: 265 = 184+ 3(28) + 3(-1) + 0;
for u = 4: 265 = 155 + 4(29 + 6(-1) +4(0) + 0.

The array of modified entries A’(d,r) was defined only for d > 0 but , for
computational purposes only, we can consider the extended array of A’(d,r)
for any d € Z by defining A’(—d,r) = A’(d,r) (the mirror image of the
entries in Table 3 with respect to the row r = 0).

We would like to express the entries of the array A’(d,r) in terms of
entries of the 4-th column because this column contains only two nonzero
entries, namely A’(1,4) = A’(-1,4) = —1. We would like to use Property
2 for the array A’(d,r). However, the recurrence formula A’'(d,r) = A'(d —
1,r—1)+ A'(d + 1,7 — 1) is not valid for d = 0. The extra term (%11) on
the right-hand-side of Formula (9) contributes to A’(0,7). There are also
contributions from other terms of the form (7=1=2F) to 4’(0,7). The weights

of these contributions are equal to the number of diagonal paths from (0, r)
to (0,7 — 2k), that is (%*). Therefore, using Property 2, we can express
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A'(0,7) for r = 2n + 1, where 5 < 2n 4 1 < 15, as follows:
A'(0,7) = A'(0,2n + 1)

= A, 4)(2n+12 )+A,( 14)(2n+1 ) i(ﬂc)(?n 2k)
(-GS G- -0 6
Since (2»2)+(**7}) = (**=2) and, by Property 1, > 5_o (3¥) (3222%) = 2%,

we have 5 0 5
A'(0,2n 4+ 1) =27 — ( ") —3< ne )
n n—1

For example, if 2n+1 = 5, then n = 2 and A’(0,5) = 24— (4) 3(?) 4. On
the other hand, if 2n+1 = 15, then n = 7 and A’(0, 15) = 21— (1) - (162) =

10180.

For 2n + 1 > 17, the formula for A’(0,2n + 1) will contain more terms.
The entry A’(7,10), which appears on some diagonal paths from (0, 2n 4 1),
does not satisfy the recurrence relation A’(7,10) = A’(8,9) + A'(6,9), since
A'(7,10) = 0, A’(8,9) = 0 and A’(6,9) = —1. By the way, neither A’(3,2)
nor A’(3,) satisfies the recurrence relation but we do not go back beyond
the fourth column in our calculations. The first extra term in A’(0,2n + 1)
for 2n +1 > 17 is 2(224150%) = 2(**7). The factor 2 is present because

the identical adjustments are produced by entries (7, 10) and (-7, 10). The
binomial coefficient counts the number of diagonal paths from (0,2n +1) to
(7, 10).

For larger values of 2n+1 similar adjustments are produced by zero entries
of A’(d, ) ending the diagonally down sequences of -1’s. Following A’(7,10),
the two next entries of this type are A’(35,40) and A’(624,631) ending
sequences of -1’s, boxed in Table 3, of lengths 30 and 591, respectively. Let us
denote the coordinates of s** such entry by (ws, k;), where (w,, k;) = (7, 10).
After including all those extra terms, the general formula for A’(0,2n + 1)

is
p _o2n_ (21 2n — 2 2n+1-k
A(0,2n+1) =2 (n +2Z nds—1—k,

where z is the largest integer such that n +z -1 — k, >0.

We will find recurrence formulas for (wy, ks). We will prove that k, (as
well as w;) grow very quickly (super-exponentially) and the number of those
entries that effect A’(0,2n + 1) is very small (sub-logarithmic). In addition,
the positions of those entries will allow us to determine the shape of the
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boundary (boxed -1’s in Table 3) separating the region where the optimal
strategy tells us to wait from the region where the optimal strategy tells us
to stop. The boundary we are interested in consists of line segments going
down diagonally, that are translated two units up just before reaching the
entry A’(ws, ks). The recurrence formula (8) from Theorem 2 explains this
phenomenon. Let us look at the entries just above this boundary. The entry
A’(0,5) = 4 starts the decreasing sequence of entries going diagonally down
and ending with 0. The entry above this zero, A’(2,9) = 29, is repeated
(because of Formula 8) as A’(3,10) = 29, which stars a new decreasing
sequence of entries going diagonally down and ending with 0. This pattern
continues producing the shape of the boundary depicted in Figure 1.

k1 k2 k3

FIGURE 1. The shape of the boundary in A’(d, 7).

The consecutive entries ending the sequences of (-1)’s have coordinates
(w1, k1) = (7,10) and (we, k2) = (35,40). The entries above (ws, ks),s > 1,
are equal to A(ws — 2,k;) = —1. Let’s denote the entries above them by
A(w,; —4,k,;) = I5. Notice that !, determines the length of the next diagonal
segment of (-1)’s. More precisely, we have k;4) = ks +15+1 for every s > 1.
Therefore, a formula for I, will allow us to find recursively k, for s > 2.
Notice that w, can be eliminated because the boundary equation is given
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by

(r—3, for 3 <r <10 = ky;
r—>5, for 10 < r < 40 = ky;

(10) d

r—2s—1, forks.1 <r<k,,

L:
where d is the row number and r is the column number.

Therefore, (ws, ks) = (ks —2s —1,ks) and I, = A'(w, — 4, k) = A'(ks —
2s — 5,k,). Let’s describe how to find k, and I, for s > 1. We have k; = 10,

{3 =29, and ky = 40. Knowing the values of k;, ks, ..., ks allows us to find
l; and k,4+1 according to the following recurrence formulas:

L= Tine () Criazd) - Gl + 500 GRB)+ 5501 Gassiatn,)s

(11) ks+1 = ks +1s + 1.

The recurrence formula for {; looks very unpleasant. Fortunately, for a
fixed value of n, the number of terms in the summation present in l; is very
small. This observation will follow from several technical lemmas about the

‘rate of growth of the sequence {k;},>1.
Lemma 1. Forn > 4,A(0,2n + 1) < 6A(1,2n).
Proof.

A(0,2n+1) = 24(1,2n) + (2:) < 24(1,2n) + 4(2:_‘12)
< 24(1,2n) +4A(0,2n — 1) < 2A(1, 2n) + 4A(1, 2n) = 6A(L, 2n).

0

Before proving the next lemma, let us observe that I, is the largest entry
on the diagonal line containing it, which means that for every ¢ > 0,

At ks —ws +4+1) < L.
Also in the diagonal line below it A(i, ks —ws +2+1) <l forall i > 0.

Lemma 2. For every s > 2,1, < ky(k, — 1).
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Proof. For every s > 2, using the recurrence relation (w, — 4) times, we get

ls = A(ws — 4,k;) = A(ws — 5,k — 1) + A(w, — 3,k; — 1)

= Alws — 6,k; — 2) + A(ws — 4, ks — 2) + A(ws — 3, ks — 1)

= A(ws — T, ks — 3) + A(ws — 5,ks — 3) + A(w; —4,k; — 2) + A(ws — 3,ks — 1)

wse—3
= A0, ks —w, +4) + Y A(i, ks —ws +2+1)

i=2
< A(0,ks —ws +4) + (ws — 45—y < 6A(1, ks —wg + 3) + (ws — 4)ls—1
<6ly + (ws ~4)l21 < (ws +2)s-1
S (ks - 1)(ks - ks—l - 1) < ks(ks - 1)
which concludes the proof. O
Lemma 3. For every s > 1,kgqq < k2.

Proof. Using Lemma 2, we can write
kop1 =ks+ 1o+ 1 < ks +ko(ks —1) +1=k2 41, 50 kypy < ks2.
g

Before proving the next lemma, let’s notice that for the number [, =
A(ws — 4,k;), the entry below it is equal to A(w, — 2,k;) = —1 and
the diagonal including this —1 and going northwest in Table 3 has entries
0,1,2,...,ls_1. From the recurrence relation, all these entries contribute to
l, and, therefore,

'l—l

.1
ly= A(wy ~4,k) 2 Y i = glomi(la-1 +1).
i=1

2
Lemma 4. For every s 2 1,kgq1 > Ez—.

Proof. We use induction on s.
The inequality is satisfied for s = 1, since k2 = 40 > ’%2 = 54&.
For s > 2, assuming that k, > Q’—}ﬁ, we have
ks+1 = k,-l-l,-i-l 2 ks‘l“%ls—l(ls—l‘l‘l)‘l‘l = ka+%(k3_k3—l_1)(ks_ks—l)+1

1 1
= kot (ks = Foma)? = 5k = Bort) + 12 2{(ks — koct)* k2]
(ks)*
2

1
> (ks = 2VES) +ko+2] 2

The last inequality is true since k; > 40 for s > 2, and the previous inequality
follows from the inductive assumption. O
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23—1
Lemma 5. For every s > 1,k, > 4%‘,’7:;)-.

Proof. We use induction on s.
1
The inequality is satisfied for s = 1, since k3 = 10 > 14%—.
Assume that the inequality is true for some s > 1. Then, by Lemma 4,

1,2 1( 1027 10%
kssr > 2(ks)" 2 Z(Z(Q.T_l—) = @0
O

From Lemma 5, we have that k;4; > (2.5)2' for every s > 1. Therefore,

lni2n+1!
n2.5

if (2.5)23 > 2n + 1 or, equivalently, s > el 52—, then ks >2n+ 1. In

1 n(2n+41
other words, for every integer n at most [ﬂ_ﬁ;‘z—sl] values of s produce
ks <2n+1.

5. OPTIMAL STRATEGY, THE VALUE OF THE GAME, AND ASYMPTOTICS

We are ready to describe an algorithm giving the optimal stopping time
and the probability of success. Informally, the knowledge of the value of
2n + 1 allows us to find an equation of the boundary. When we sample the
urn, we construct a random {—1,1} sequence which determines the states
S(d,r) with r decreasing from the starting value of 2n 4 1. This sequence of
states determines a random walk in any of the table 1, 2, or 3. At some time,
that is also a random variable, we hit the boundary. When this happens the
last move had to be in the southwest direction which means that the last
selected ball is in the current majority color and, therefore, d is negative.
Since we cannot stop then, the algorithm tells us to wait for the first ball
in the other color and stops on it. The value p(0,2n+ 1) = ﬂ%?w"#l from
Table 1 gives the expected value of the game, the probability of stopping
on the minority color when the optimal stopping time T is used. Of course,
for a particular realization of a random sequence these probabilities change
with time and also can be found in Table 1. If we are more lucky and the
sequence of balls revealed so far is more unbalanced (|d| is large), then the
boundary will be hit earlier and the probability of success will be larger.

Algorithm:
Input: 2n +1
Output: The optimal stopping time 7 and E(Z,).
(1) Using recurrence formula (11) evaluate ky,...,k; until k; <2n+1
and k;41 > 2n 4+ 1.
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(2) Values kj,ks,...,k, give the equation of the boundary, the first
z diagonal line segments of (10). The optimal stopping time 7 is
defined as follows:

(a) Let ¢ be the first time such that (d,7), where r = 2n 4+ 1 — ¢,
satisfies the equation of the boundary.
(b) At that time t the value of d is negative.
(c) 7 =min{T : T > tand 27 = —=z,} or equivalently, 7 is the
first moment in which we see the ball of the color different that
z; with the assumption that min @ = 2n + 1.
(3) The probability of succes when the optimal strategy 7 is used is

LA+ 1)
3 T gzt

2n 2n—2 n+1-—k,
— 1 — o—(2n+1) _ )
e (W) -3 (5]

We will establish the asymptotic behavior of E(Z.) for the game G(0,2n+1).
Let’s denote the value of this game by Es,4+1(Z;). It turns out that

I =

E(Z;) = p(0, 2n+1)——+a(0 n+1)=

Eani1(Z:) =1- 0(%).

More precisely,
lim [1 - E2n+l 1')]\/'H =¢,

n—

where the constant c satisfies the inequalities 0.4925 < ¢ < 0.4926 and can
be easily estimated with higher accuracy. One can justify the last statement
by using Stirling’s formula for binomial coefficients present in the formula
for E(Z;). Then we obtain

11m [1 — Eont1(Z)Wn=c=—= {16 Zg— }

The exact value of ¢ can be easily approximated because the terms of the
series Y o, 275 approach zero extremely fast; recall that k3 = 631, so the
third term of the sum is 27631,

As an illustration, if 2n + 1 = 1001, or n = 500, then the exact value of
the game G(0,1001) is

1000 3 998 _ 991 _2 961
Ei001(Zr) =1 — (500) + (499?2100?(130) (261) ’

which is approximately 0.9779652. The asymptotic formula with n = 500
and ¢ = 0.49255 gives Ejg01(Z-) ~ 1 — 0.49255751.—#3 ~ 0.97797.
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