CALCULATING THE FREQUENCY OF
TOURNAMENT SCORE SEQUENCES

FRANK PLASTRIA

ABSTRACT. We indicate how to calculate the number of round-robin
tournaments realizing a given score sequence. This is obtained by
inductively calculating the number of tournaments realizing a score
function. Tables up to 18 participants are obtained.

1. TOURNAMENTS AND SCORE SEQUENCES

A (round-robin) tournament on a set P of n vertices (participants, teams,
...) is a directed graph obtained by orienting the complete graph K, on
P. In other words, a tournament is a directed graph on the vertex set P
having exactly one arc connecting each pair in P.

Clearly there are (3) = ’—‘-('—‘2;11 pairs in P to be connected by one of two
possible arcs, and thus the total number of tournaments of size n is 2(3).

The score function f, of a tournament t on P gives for each p € P the
outdegree f;(p) of p, i.e. fi(p) is the number of arcs of ¢ leaving p. When the
values of a score function f; are ordered (nondecreasingly, by convention)
we obtain a score sequence. We say that this score sequence is realized by
the tournament ¢.

Three questions immediately arise concerning score sequences:

(1) Which sequences are the score sequence of some tournament ?
(2) How many different score sequences exist ?
(3) How many tournaments realize a given score sequence ?

The first question was solved by Landau (7] when investigating domi-
nance relations within animal societies by the following result.
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TABLE 1. Number of score sequences. Narayana and Bent (1964)

n T. || n T.
1 0} 19 73996100
2 1] 20 259451116
3 21 21 951695102
4 41 22 3251073303
5 91 23 11605141649
6 22 || 24 41631194766
7 59 |i 26 150021775417
8 167 |} 26 542875459724
9 490 || 27 1972050156181
10 1486 || 28 7189259574618
11 4639 || 29 26295934251565
12 14805 | 30 96478910768821
13 48107 || 31 354998461378719
14 158808 || 32 1309755903513481
15 531469 || 33 4844523965710167
16 | 1799659 || 34 | 17961489379744400
17 | 6157068 || 35 | 66742666423989519
18 | 21258104 || 36 | 248530319605591021

Theorem 1.1 (Landau). Let s = (s1,52,...,5:) be a nondecreasing se-
quence of nonnegative integers. Then s is the score sequence of some tour-
nament if and only if

i=1
forallk =1,2,...,n, with an equality for k = n.

Using this characterization it is not hard to develop algorithms to gen-
erate all possible score sequences of given length. A relatively recent one
may found in Hemasinha [6], who gives further references. One of the
problems is, however, that the number T, of possible score sequences rises
sharply with n. Determining T;, is the second question mentioned above.
No explicit formula seems to be known, but some asymptotic bounds were
obtained, see e.g. Winston and Kleitman [9]. Narayana and Bent [5] gave
the first recursive formulas to calculate this number for any n, and obtained
table 1 for n =1,...,36. Note the correction for T};, incorrectly stated as
4649.

The third question is particularly of interest for studying statistical hy-
pothesis testing in sports concerning equivalence of teams or players, or in
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experiments involving the method of paired comparisons, as used in psy-
chology (see David [4]). To the best of our knowledge the only results
concerning this question have been published by Bradley and Terry (3],
Bradley [2] and by David [4]. The first two papers form a series and give
frequency tables up to n = 5, while the latter gives tables up to n = 8,
obtained using a generating function approach, that calls for symbolic al-
gebra tools. This note is intended to continue in the direction of solving
the frequency question in a more direct combinatorial way using induction.

In view of the sizes indicated in table 1 it is not possible to print much
larger tables than those published previously, but complete tables up to
n = 18 have been generated and are available online.

2. FREQUENCY OF A SCORE FUNCTION

A function f : P — [n], where [n] q—gf{ 0,...,n—1}, is a score function
on P if f = f,, the score function of some tournament ¢ on P; in this case
we say that ¢ realizes f. We start by deriving an induction formula for
the number of tournaments realizing f, that we call the frequency of f and
denote by F(f).

2.1. First induction formula. Let ¢ be any tournament on P that realizes
f. For any fixed ¢ € P the set P partitions into { ¢ }, t¥(g) = {7 €
Pl(g,r) €t} andt=(q) ={pe Pl(pg) €t} and f(q) = filg) = It (9)],
while |¢=(g) = n — 1 — £(q).

Deletion of g from P, together with all arcs in ¢ that contain g, defines
a tournament t' on the set P’ = P\ { q }.

Inversely the tournament ¢ on P = P’ U{ g } is uniquely determined by
the tournament ¢’ on P’ and the subset Q of n — 1 — f(q) elements of P’
that is to constitute t~(g), by the operation

(2.1) t=t'U{ () lpeQ}u{(ar)lreP\Q}

Evidently, when either the choice of ¢ changes or another subset @ C P’ is
selected, the resulting tournament ¢ will be different.
The relation between the score functions of ¢ and ¢’ is as follows

_ [ flp)—1 whenpet(q)
(2:2) ft'(p)—{ F.(p) whiﬁﬁemg)

Thus fy is obtained from f through following two-step modification:

(1) drop the element f(q)
(2) choose n — 1 — f(q) other elements of f and decrease them by 1.

Let ®,(f) denote the set of all such g-predecessors of f, i.e. functions
v : P’ = [n — 1] obtainable from f by this kind of two-step modification.
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We may then write a first induction formula

(2.3) F(fy= > F(@)

vEPL(f)

The number of g-predecessors of f depends on the choice of g, more
precisely on the value f(g), and is given by (n—'f:}(q))' Therefore, one
possible strategy for choosing g may consist in minimizing this number,
which is obtained by selecting among the minimum and maximum value of
f(q) the one farthest from (n — 1)/2.

The simplest situation arises when either f(g) =0 or f(g) =n —1 and
the number of g-predecessors of f equals 1. One easily sees that since f
satisfies the Landau condition (1.1) at most one 0 and at most one n — 1
may appear in f. One then simply obtains F(f) = F(v) for the only ¢-
predecessor of f that is found as follows: in either case one drops f(q) from
f, and in case f(¢) = O one also decreases each remaining f(p) by 1. In
this case this particular choice of g is evidently to be preferred.

It should also be noted that it is not guaranteed that g-predecessors of
f always satisfy the Landau condition (1.1). Since in such a case it is the
score function of no tournament we have F(v) = 0. Alternatively we may
test each potential g-predecessor and retain as valid only those satisfying
condition (1.1).

As a simple example of this phenomenon one may consider any score
function f on P with f(p) = n — 1 for some p € P, then any choice of
g # p and Q ¥ p will lead to a g-predecessor v of f with v(p) = n -1,
which cannot be a score function on P’ because the maximal allowed value
appearing in it is n — 2. Hence such choices of @ should be avoided. In fact
we saw before that for such f the choice ¢ = p is a much better one that
additionally totally avoids the difficulty. However, the phenomenon arises
also quite often in less simple situations, as exemplified next.

Ezample 2.1. Consider as an example the set P = { a;,a2,a3,a4,05 },
: ay Qa2 a3 a4 Qs
and the score function f = 3 3 9 1 1
applying the two step modification above choosing for Q = { a1,a4 } with
n—1- f(g) =5—1—2 =2 elements, we obtain the g-predecessor of f :

ay G2 G4 Qg

2 3 0 1

The set Q@ may be chosen in (;) ways, obtaining the following 6 elements
of &,(f)

- a a2 a4 Qas _ ay a3 a4 4as _ ay az a4 Qg
”1“(2 2 1 1)’”2‘(2 3 0 1 )’”3‘(2 3.1 0 )

_ a a3 a4 as _ a az a4 as _ ay az Q4 Gas
”4‘(3 2 0 1 )’”5‘(3 2 1 o)'”“‘(s 3 0 0 )

). Taking ¢ = a3 and
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Note that ve does not satisfy the Landau condition (1.1), so is not the
score function of a tournament, thus F'(vg) = 0. O

Observe that for calculation purposes the formula (2.3) is far from effi-
cient, since many of the terms F(v) are equal; e.g. in the example above
we will have F(vg) = F(v3) = F(v4) = F(vs) for reasons of symmetry.

2.2. Improved induction formula. For any permutation m of P and
any score function g on P, g o is also a score function. Indeed for any
tournament ¢ on P realizing g the tournament w(¢) = { (n(p), 7(q))| (p, q) €
t } realizes g o m. We also have F(g) = F(gom).

For a score function g on P we define its repetition function p, : [n] — [n]
that gives for each k = 0,...,n — 1 the number of times k appears as score
in g:

po(k) = |{ pe Plg(p) =k }
The repetition function is the basic invariant of score functions: for two
score functions g, h there exists a permutation 7 on P such that h=gon
if and only if py = py. It follows that if p, = p, we have F(g) = F(h), and
hence the frequency F(f,) of any score function f, with repetition function
p depends on p only.

Repetition functions of (the score function of) tournaments on P satisfy
following properties:

n—1
249 ek = n

k=0

(2.5) S ko(k) 2 (m“) when 0 <m <n -1
k=0

]
N3
N

n—1
(26) Y kolk)
k=0

Ezample 2.2. (continuation of example 2.1) The score function f has as

repetition function py = ( g ; % g g ) O

The g-predecessors set of f, ®,(f) may be split into classes, each class
containing all score functions on P’ with repetition function equal to some
fixedp :[n—1] = [n—1].

As repetition function of some g-predecessor of f such a p is found as
follows.

(1) choose j = f(q)
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(2) Choose numbers tx (k € [n] ) such that
0<ty < pg(k) when & # j
0<t; < ps(i) -t
Dt = n—1—j
ke(n]
(3) Define p by
p(k) = ps(k) —te +trsr when j # k€ [n—1]
p(7) = pr(F)—-1—-t;+tj except when j=n -1

We denote by ¥,(f) the set of such repetition functions.

The exceptional case j = n— 1 corresponds to f(g) = n— 1. In this case
we must have 3,1, tx = 0 and hence all # =0, so ¥,(f) is a singleton.
Its only element p is given by p(k) = ps(k) for all k € [n — 1] (while p(k)
remains undefined for ¥ = j = n — 1, as it should). This is the repetition
function of the only g-predecessor of f, obtained by simply deleting from f
the element at position g¢.

In case f(g) = 0 we have j = 0. Note that this choice means ps(0) =1
(higher values being excluded for tournament score functions), 5o we must
choose to = 0. So Y iemte =n—1 =3 yepmpsk) - 1= poY 1pf(lc
and it follows that we have as only possible choice t(k) = ps(k) for all
k=1,...,n—1. So again ¥,(f) is a singleton with only element p given
by p(k) = ps(k + 1) for all k£ € [n —1]). This ‘shifted down’ repetition
function corresponds with the only g-predecessor of f, obtained by deleting
from f the element at position ¢ and decreasing all other elements by 1.

Ezample 2.3. (continuation of example 2.2) Taking for ¢ = a3 as in example
2.1, we choose j = f(g) = 2. Then the numbers ¢, must satisfy to = t; =
tqy =0, while 0 < ¢3,t3 < 2 and t; +t3 =n — 1 — j = 2. Hence there are
only three choices possible for (¢3,t3): (2,0), (1,1), (0,2). and these yield
as elements of ¥,(f) respectively
01 2 3 01 2 3 01 2 3

”1=(2 00 2)”’2=(1 11 1)”’3=<0 2 2 o)'

p1 is not a tournament’s repetition function, since Z:lc.—.o kpi(k) =0 <
(3) = 1 contradicting property (2.5). In fact it is the repetition func-
tion of the invalid score function vg. po is the repetition function of the
permutation-equivalent score functions v, v3, v4 and vs. ps is the repetition
function of v;. 0

Each element of ¥,(f) is uniquely determined by the numbers ¢t =
(tk)kefn) and we denote it by pf’t. The g-predecessors of f with repeti-
tion function p = p f" correspond exactly to those obtained by way of a set
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Q such that
RQn{peP\{g} f(p) =k} =ti

This means that Q selects for every k # j exactly i elements out of the
ps(k) elements p € P for which f(p) = k, and ¢; elements out of the
ps(3) — 1 elements of p € P\ { g } for which f(p) = f(g) = j. Clearly the
number of such choices for Q equals

N, & (pf(az_ - 1) kﬁo (pftik))
Py

and so this is the number of g-predecessors of f with repetition function
,t
p=p}
We therefore obtain the second induction formula

(2.7) F(fy= Y, N.F(f,)

pEYL(f)

where f, denotes any score function with repetition function p. As repre-
sentative score function for p we have opted in what follows when needed
to select the only score function with nonincreasing values. This allows
to distinguish them from the nondecreasing score sequences, except in the
case of constant score functions, where we let the context guide the reader.

01 2 3 4
0212 0)
j = f(g) = 2 and encoding t as (to,%1,...,t4) We obtain the following ele-
ments of ¥ (f):
e t=(0,2,0,0,0) leads to p;, so N,, = (151) (g) (g) (g) (8) =1-1-1-
1-1 =1, which is the cardinality of { vg }.
e t=(0,1,0,1,0) leads to po, so N,, = (161) (8) (f) (f) (g) =1.1.2.
2.1 =4, that equals the cardinality of { va,vs, vq,vs }.
e t=(0,0,0,2,0) leads to p3, so N, = (3 Q)RR (G) =1-1-1-
1-1 =1 which is the cardinality of { v; }.

Ezample 2.4. (continuation of example 2.3) Using py = (

The induction formula (2.7) therefore yields
F(f) = F(fp) +4- F(fo,) + F(fo) = 4- F(fp;) + F(fp0)
hecause F(f,,) =0. O

2.3. Some simple rules.
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2.3.1. Mazimum score. The situation where the maximum possible score
n — 1 appears in a score function of length n has been evoked several times
before. We can now finalise these remarks in the following useful lemma.

Let g be a score function of length n — 1, then we denote by [n—1, g] the
score function of length n that is obtained by augmenting g by the score
n—1.

Lemma 2.5. F([n - 1,g]) = F(g)

Proof
Since g is of length n — 1 it contains only values at most n — 2, so does not
contain the value n—1. There is only one g-predecessor of f = [n—1, g] when
q is chosen such that f(q) = n — 1, which is obtained from f by dropping
the element at position g (which is the score n —1). No other modifications
are necessary since |Q| = n—1— f(g) = 0. In terms of repetition functions
we have ps(k) = pg(k) for k <n—1, and ps(n—1) =1.

Thus the only g-predecessor of f is g (with repetition function p,). To
calculate N,, we observe that all its factors are (P8 =1fork<n—1
and (}) = 1, s0 N,, = 1. Induction formula (2.7) then yields F([n~1,g]) =
F(f)= N, F(¢9)=F(g). U

2.3.2. Minimum score. Similarly we have a simple induction rule for score
functions containing the minimal value 0. Let g be a score function of
length n — 1, then we denote by [g + 1,0] the score function obtained by
adding 1 to each score in g and augmenting it in length with the value 0.

Lemma 2.6. F([g+1,0]) = F(g)

Proof
Clearly f = [g + 1,0] contains only one score of 0. Choosing g such that
f(g) = 0, we obtain only one g-predecessor of f by dropping the element at
position ¢ and subtracting 1 from each of the n — 1 — 0 other scores (those
of g + 1), in other words, we obtain g as only g-predecessor of f. In terms
of repetition functions we have p;y(k) = pg(k —1) for k > 0, and pf(0) = 1.
Thus the only g-predecessor of f is g (with repetition function pg). To

calculate Nj, we observe that all its factors are (7! gg) =1 for k > 0 and

() =1, so N,, = 1. Induction formula (2.7) then yields F([g + 1,0]) =
F(f)=N,,F(g) = F(g). |

2.3.3. Complementation. The complement t~! of a tournament ¢ is ob-
tained by inversion of all arcs of ¢, which also yields a tournament. The
score function of t~! counts the indegrees of ¢, so fi-1(k) = n — 1 — fi(k).

This is the complement f¢ efn_1- f of the score function f.
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Complementation works on repetition functions as follows py, (k) = ps(n—
1-k).

Lemma 2.7. F(f¢) = F(f)

Proof
Complementation is an involutory bijection on all tournaments, i.e. (t71)~! =
t. It follows that complementary score functions have the same frequency.
a

Application of this simple rule almost halves the work of calculating
frequencies of score functions (and score sequences). In fact Lemma 2.6
may be seen as the combination of lemma 2.5 and lemma 2.7.

2.4. Induction initialization and first steps. In what follows we use
shorthand notation for score functions, their frequencies and repetition
functions, exemplified by:
¢ {5,2,4,2,1,2] is the score function ( gl ;2 Za 34 ‘11'5 ;6 )
on the set P = { a;,0a9,0a3, a4, 05,06 }.
o Its frequency F([5,2,4,2,1,2]) is simplified to F[5,2,4,2,1,2]
. - . 01 2 3 45
e (0,1,3,0,1,1) is its repetition function ( 013011
e As in example 2.4 we denote the vectors ¢ needed for the construc-
tion of \I’q(f) as (to,t1,...stn~1).

As explained in next section there is a one-one correspondence between
repetition functions and score sequences. It follows that for each n the
number of different repetition functions of tournaments to be considered
equals T}, as given in table 1. These are listed in lexicographical order of
their representative score function.

When possible we will apply lemmas 2.6, 2.5 and 2.7 without further
reference.

.

2.4.1. n = 2. For n = 2 only one possible repetition function exists.

(1) {1,0] represents (1,1). It may evidently be realized by just 1 tour-
nament.
Hence F[1,0] = 1.

2.4.2. n=3. For n = 3 we have two possible repetition functions.
(1) [2,1,0] represents (1,1, 1).
F[2,1,0] = F[1,0] = 1.
(2) [1,1,1] represents {0, 3,0).
We choose j = 1 (there is no other choice anyway), and there is
only one possible choice for ¢:
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e t =(0,1,0), yielding the reduced p; = (0,1) with f,, = [1,0].
We have N,, = () (®)() =1-2-1=2.
Hence F[1,1,1]=N,, - F[1,0] =2-1=2.

2.4.3. n = 4. For n = 4 we have 4 possible repetition functions.
(1) [3,2,1,0] represents (1,1,1,1).
F[3,2,1,0) = F[2,1,0] = 1.
(2) [3,1,1,1] represents {0,3,0,1).
F[3,1,1,1) = F[1,1,1] = 2.
(3) [2,2,2,0] represents (1,0,3,0). This is the complement of the pre-
vious one.
F[2,2,2,0) = F[3,1,1,1] = 2.
(4) [2,2,1,1] represents (0,2,2,0).
We choose j = 2, and there are two choices for ¢:
e t =(0,1,0,0), yielding the reduced p, = (1,1,1) with f, =
(2,1,0].
We have Ny, = () ()@ =1-2-1-1=2
e t = (0,0,1,0), yielding the reduced po = (0,3,0) with f,, =
[1,1,1].
We have N, = () ()()() =1-1-1-1=1
Hence F[2,2,1,1] = N,,-F[2,1,0}+N,,-F[1,1,1} = 2.14+1.2 = 4.

2.4.4. n = 5. For n = 5 there are 9 cases to consider.
(1) [4,3,2,1,0] represents (1,1,1,1,1).
F[4,3,2,1,0) = F[3,2,1,0] = 1.
(2) [4,3,1,1,1] represents (0,3,0,1,1).
F4,3,1,1,1} = F[3,1,1,1] = 2.
(3) [4,2,2,2,0] represents (0,0,3,0,1).
F[4,2,2,2,0] = F[2,2,2,0] = 2.
(4) [4,2,2,1,1] represents (0,2,2,0,1).
F[4,2,2,1,1] = F[2,2,1,1) = 4.
(5) [3,3,3,1,0] represents (1,1,0,3,0).
F[3,3,3,1,0] = F[2,2,2,0] = 2.
(6) [3,3,2,2,0] represents (1,0,2,2,0).
F[3,3,2,2,0| = F[2,2,1,1] = 4.
(7) 13,3,2,1,1] represents (0,2,1,2,0).
We choose 7 = 3 and there are three choices for ¢:
et = (0,1,0,0,0), yielding the reduced p; = (1,1,1,1) with
for =1[3,2,1,0].
We have N, = QOGO =1-2-1-1-1=2.
et = (0,0,1,0,0), yielding the reduced p2 = (0,3,0,1) with
fo, =1[3,1,1,1].
We have N, = Q@ OH@ =1-1-1-1.1=1.
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et = (0,0,0,1,0), yielding the reduced p3 = (0,2,2,0) with
fos =12,2,1,1].
We have Np, = (5)(3) (o) () (o) =1-1-1-1-1=1.

Hence F[3,3,2,1,1) = N,, - F[3,2,1,0]+ N,, - F[3,1,1,1] + N, -
F[2,2,1,1]=2-1+1-241-4=8,

In fact this was the case developed in examples 2.1, 2.2, 2.3 and
2.4 through the different choice of j = 2, but with the same result
F[3,3,2,1,1) =4 F[3,2,1,0] + F[2,2,1,1} =4-1+4 =8.

This illustrates that the outcome is independent of the choice of
j, as it should.

(8) [3,2,2,2,1] represents (0,1, 3,1,0).
We choose j = 3 and there are two choices for ¢:
et = (0,1,0,0,0), yielding the reduced p; = (1,0,3,0) with
for =12,2,2,0].
We have N, = @ ()@@ =1-1-1.1.1=1.
et = (0,0,1,0,0), yielding the reduced p; = {0,2,2,0) with
for =[2,2,1,1).
We have N, = () ()@ =1-1-3-1-1=3.

Hence F[3,2,2,2,1] = N,, - F[2,2,2,0] + N,, - F[2,2,1,1] =
1-24+3-4=14.

(9) [2,2,2,2,2] represents (0,0,5,0,0).
The only choice is j = 2 and a single ¢:
= (0,0,2,0,0), yielding the reduced p; = (0,2,2,0) with
for =[2,2,1,1].
We have N, = ()& @) =1-1-6-1-1=6.
Hence F[2,2,2,2,2| = N,, - F[2,2,1,1] = 6-4 = 24.

2.4.5. n = 6. For n = 6 there are 22 cases to consider.

(1-9) All 9 cases of type [5, g] with g of length 5, for which F[5, g] = F|[g].
(10) F[4,4,4,2,1,0] = F[3,3,3,1,0] = 2.
(11) [4,4,4,1,1,1] represents (0, 3,0,0, 3,0).

Choosing j = 4 there are two possible choices for ¢:

e t=(0,1,0,0,0,0), yielding p = (1, 2,0,0, 2) with f, = [4,4,1,1,0]

that does not satisfy Landau’s condition.
= (0,0,0,0,1,0), yielding p; = (0,3,0,1,1) with f,, =

4,3,1,1,1].
WehaveN,,‘—(8)()(0)(0)(2)(8) 1-1.1-1-2-1=2.
Hence F[4,4,4,1,1,1] = N,, - F[4,3,1,1,1] =2-2=4.

(12) Fl4,4,3,3,1,0] = F[3,3,2,2,0] = 4.
(13) F[4,4,3,2,2,0 = F[3,3,2,1,1] = 8.
(14) [4,4,3,2,1,1] represents {0,2,1,1,2,0).
Choosing j = 4 there are four possible choices for ¢:
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ot = (010000) yielding p; = (1,1,1,1,1) with f,, =
4,3,2,1,0].
Weha"epr=(0)(1)(o)(o)()(o)=1 1-1-1-1=2.

ot = (0,0,1,0,0,0), yielding pz = (0,3,0,1,1) with f,, =
[4,3,1,1,1].
We have N, = Q) () () ()@ () =1-1-1-1-1-1=1.

ot = (0,0,0,1,0,0), yielding p3 = (0,2,2,0,1) with fp, =
4,2,2,1,1].
We have Np, = (o)(o)(o)(l)(o)(o) =1-1-1-1-1-1=1.

et = (0,0,0,0,1,0), yielding ps = (0,2,1,2,0) with f,, =
3,3,2,1,1].
We have N, = ( DAEEM@=1-1-1-1-1-1=1

Hence F[4,4,3,2,1,1) = N,,,-F[4,3,2,1,0]+N,,-F[4,3,1,1,1]+

N, -F[4,2,2,1,1)+N,, -F[3,3,2,1,1] = 2-14+1-2+1.4+1-8 = 16.
(15) [4,4,2,2,2,1] represents (0,1,3,0,2,0).

Choosing j = 1 there are two possible choices for :

et = (0,0,3,0,1,0), yielding py = (0,3,0,1,1) with f,, =
(4,3,1,1,1].

We have Ny, = Q)@Q) Q) (@) (D) =1-1-1-1-2-1=2.
et = (0,0,2,0,2,0), yielding po = (0,2,1,2,0) with f,, =
3,3,2,1,1].
WehaveN,,,—()(0)(2)()(2)(0)—-1 1-3-1-1-1=3.
Hence F[4,4,3,2,1,1] = N,,,-F[4,3,1,1,1]4+N,,-F([3,3,2,1,1] =
2:243-8=28.

(16) F[4,3,3,3,2,0] = F[3,2,2,2,1] = 14.
(17) F[4,3,3,3,1,1} = F[4,4,2,2,2,1] = 28
(18) (4,3,3,2,2,1] represents (0,1,2,2,1,0).
Choosing j = 4 there are three possible choices for ¢:
et = (0,1,0,0,0,0), yielding py = (1,0,2,2,0) with f,, =
3,3,2,2,0].
We have Ny, = (@GO =1-1-1-1.1-1=1,
et = (0,0,1,0,0,0), yielding p2 = (0,2,1,2,0) with f,, =
3,3,2,1,1].
We have N, = () (OO = 11211122
ot = (0,0,0,1,0,0), yielding ps = (0,1,3,1,0) with f,, =
[3,2,2,2,1].
We have N,, = ()G ()@ =1-1-1.2.1-1=2.
Hence F[4,3,3,2,2,1) = N,,,-F|3,3,2,2,0]+N,,-F[3,3,2,1,1]+
N, - F[3,2,2,2,1]=1-4+2-8+2-14 =48.
(19) [4,3,2,2,2,2] represents (0,0,4,1,1,0).
Choosing j = 4 there are two possible choices for ¢:
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et = (0,0,1,0,0,0), yielding p, = (0,1,3,1,0) with f,, =
(3,2,2,2,1].
We have Ny, = ()@ (O Q@ =1-1:4-1-1-1=4
= (0,0,0,1,0,0), yielding po = (0,0,5,0,0) with f,, =
(2,2,2,2,2].
We have N,, = Q@GO =1-1-1-1-1.1=1
Hence F[4,3,2,2,2,2] = N,,-F[3,2,2,2,1)+N,,-F[2,2,2,2,2| =
4-1441-24 = 80.
(20) F[3,3,3,3,3,0] = F[2,2,2,2,2] = 24.
(21) F[3,3,3,3,2,1] = F[4,3,2,2,2,2] = 80.
(22) [3,3,3,2,2,2] represents (0,0, 3,3,0,0).
Choosing j = 3 there are three possible choices for ¢:
ot = (0,0,2,0,0,0), yielding p; = (0,2,1,2,0) with f,, =

(3,3,2,1,1].

We have N, = @O @@@(©) =1-1-3:1-1-1=3,
et = (0,0,1,1,0,0), yielding p, = (0,1, ,1 0) with f,, =
[3,2,2,2,1].

We have Ny, = Q@ OO =1-1-3:2-1-1=6.
ot = (0,0,0,2,0,0), yielding p3 = (0,0, ,0,0) with f,, =

(2,2,2,2,2].
WehaveN,,s—(0)()(0)(2)(0)(0)—1 1-1-1-1-1=1.
Hence F[3,3,3,2,2,2] = N,, - F[3,3,2,1,1]+N,, - F[3,2,2,2, 1]+

N,y - F[2,2,2,2,2] =3-8+6-14+1-24 = 132.

2.4.6. n > 6. As the lists for higher n quickly explode in length T,, (see
table 1) we do not continue this listing here. We first programmed the cal-
culations in Delphi-Pascal using the highest precision available integer type
Int64 , and were able to obtain complete lists of score function frequencies
up to n = 12. There are ‘only’ T12 = 14805 of these, so this looks as a
relatively easy task. However, the size of the frequencies increases quite
dramatically and lead this quickly to Int64 overflow. As an example table
2 lists the almost uniform score functions of increasing length and their
frequency. Therefore for higher n we were obliged to abandon exact integer
precision and to move to floating point calculations. This allowed to push
up the calculations to n = 18, while at the next induction step we ran out
of memory.

Complete tables of results forn = 7, ..., 18 may be downloaded at http:
//homepages.vub.ac.be/~faplastr/Tournaments.html.

3. FREQUENCY AND PROBABILITY OF A SCORE SEQUENCE

A (nondecreasing) sort of f is any bijection ¢ : P — [n] such that for
alk=1,...,n—1
flo(k—1)) < f(a(k))
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TABLE 2. Frequencies for almost uniform score functions

n f F)
2 10 1
3 111 2
4 2211 4
5 22222 24
6 333222 132
7 3333333 2640
8 44443333 46144
9 444444444 3230080
10 5555544444 191474240
11 55555555555 48251508480
12 666666555555 10073269059840
13 6666666666666 9307700611292160

14 77777776666666 7.01106745286988006E18
15 7TITTITTITIT777 2.40619834982494284E22
16  8888888877777777  6.64993943699674823E25
17 88888888888888888 8.55847205541481497E29
18 999999999888888888 8.78450602892399261E33

Applying any sort to f results in the score sequence s(f) of f. The score
sequence is another invariant of score functions: it simply lists ps(k) copies
of & for each k from 0 to n — 1 in sequence.

It follows that all score functions having a same score sequence s also
have a same repetition function p,, so all have equal frequency. And the
number of such score functions is the number of ways one may split the
set P into n parts P, (k € [n]) having respectively p,(k) elements. This
number is well known as the multinomial number (see e.g. [1])

() = (@000 nn ) = 5T
Ps ps(0)7p3(1)1"°ap8(n_ 1) Pa(o)!psu)!---aps(n_ 1)'

It follows that the frequency F(s) for a given score sequence s is obtained
as follows from any score function f with s(f) =s.

(3.1) Fo = ()P

Observe that the sum of all these frequencies over all possible score

sequences of length n must equal the total number of tournaments 2(3).
For uniformly distributed tournaments we then obtain the probability
for a score sequence as

(3.2) P(s) =~
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TABLE 3. Frequency of score sequences for n = 4

f F(f)y pr () sy F(sy) P(sy)
3210 1 1111 24 0123 24 0.375

3111 2 0301 4 1113 8 0.125
2220 2 1030 4 0222 8 0.125
2211 4 0220 6 1122 24 0.375

Total 64 1.000

Ezample 3.1. (continued) Let s = (1,1, 2, 3, 3) be a score sequence of length
5.

The score function f from example 2.1 has score sequence s(f) = s. Also
012 3 4 )

the repetition function of s is p; = py = ( 021 20

Then we find for the frequency of s

n 51
Fs)= (Ps)F(f) = (o 2,1,2, O)F(f) om0l L ) =30-8=240

and for its probability

F(s) 240
P(s) = —x = — = 0.234375
€)= 3@ =

O

For n = 2 we have
2
= (01): F(s1) = (2)F(fu)) = 2-1 =2, P(s1) = F(s1)/208) =
2/2 =1
For n = 8 we have
3
= (012): F(s1) = (;3,)F(fo,) = 6-1 =86, P(s1) = F(s,)/203) =
0-75
s2=(111)%: F(s2) = (43 o) F(fer) = 1-2 = 2, P(s3) = F(s2)/2(d) =
0-25
Tables 3, 4 and 5 list the complete calculations for n = 4,5, 6. Further ta-
bles may be downloaded from http://homepages.vub.ac.be/~faplastr/
Tournaments.html forn = 7,...,18 Since the case n = 12 gave rise to over-

flow in Int64 mode, we had to move to floating point calculations resulting
in a slight loss of precision.

4. CONCLUDING REMARKS

We have calculated the frequency of tournament score sequences through
the frequencies of score functions. These latter are obtained by induction
on the length of the score function and a listing of all possible predecessor
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TABLE 4. Frequency of score sequences for n = 5

f F(fy ey () sr F(sg) Plsy)
43210 1 11111 120 01234 120 0.1171875
43111 2 03011 20 11134 40 0.0390625
42220 2 10301 20 02224 40 0.0390625
42211 4 02201 30 11224 120 0.1171875
33310 2 11030 20 01333 40 0.0390625
33220 4 10220 30 02233 120 0.1171875
33211 8 02120 30 11233 240 0.2343750
32221 14 01310 20 12223 280 0.2734375
922222 24 00500 1 22222 24 0.0234375

Total 1024 1.0000000

TABLE 5. Frequency of score sequences for n =6

f F(fy pr () sp F(sg) P(sy)
543210 1 111111 720 012345 720 0.02197265625
543111 2 030111 120 111345 240 0.00732421875
542220 2 103011 120 022245 240 0.00732421875
542211 4 022011 180 112245 720 0.02197265625
533310 2 110301 120 013335 240 0.00732421875
533220 4 102201 180 022335 720 0.02197265625
533211 8 021201 180 112335 1440 0.04394531250
532221 14 013101 120 122235 1680 0.05126953125
522222 24 005001 6 222225 144 0.00439453125
444210 2 111030 120 012444 240 0.00732421875
444111 4 030030 20 111444 80 0.00244140625
443310 4 110220 180 013344 720 0.02197265625
443220 8 102120 180 022344 1440 0.04394531250
443211 16 021120 180 112344 2880 0.08789062500
442221 28 013020 60 122244 1680 0.05126953125
433320 14 101310 120 023334 1680 0.05126953125
433311 28 020310 60 113334 1680 0.05126953125
433221 48 012210 180 122334 8640 0.26367187500
432222 80 004110 30 222234 2400 0.07324218750
333330 24 100500 6 033333 144 0.00439453125
333321 80 011400 30 123333 2400 0.07324218750
333222 132 003300 20 222333 2640 0.08056640625

Total 32768 1.00000000000
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score functions of length one less. In other words, we have proposed here a
simple induction of order one.

This is adequate as long as full lists of frequencies of score functions of
length one less are available. As the size of these lists grows extremely fast,
such lists may not be available. Therefore higher order induction, where
a given score function of length n is analyzed by a split into two parts of
any size p and ¢ (p + ¢ = n) may be of interest. This turns out not to
be that easy, and leads to new enumeration problems that seem presently
unpublished. Such a technique is currently being investigated.

The simplest case of such a splitting may be obtained as follows for some
particular score functions, generalizing lemma 2.5 (and 2.6).

We call the score function f on P splittable on A G P if 3, 4 f(a) =
("2”). In this case any tournament ¢ realizing f will have all |A|.(|P| — |4])
arcs between A and B = P \ A oriented from B to A. Such tournaments
have also been called reducible, see [8]. We denote the two subtournaments
of t induced on A and B as t4 and tg. If the tournament ¢ realizes f thent4
has score function f4 = f|a and tp has score function fg = f|g—|A|, where
flc denotes the trace of f on C C P. Furthermore when f is splittable
on A any tournament t realizing f is fully determined by t4 and tg by
addition of all possible arcs from B to A:

t=t4UtpgU(B x A)

It follows therefore

Lemma 4.1. If the score function f on P is splittable on A C P we have
F(f) = F(fa)- F(fB)

The case A = { ¢ } with f(g) = n — 1 corresponds to lemma 2.5, since
in this case f4 = [0] and F(f4) = 1.

To illustrate this property further we consider f = [444210] that is split-
table on subset A = { a4,as,a6 }. Then f4 =[210] and fp = [111], so

F[444210] = F[210] - F[111] =1.2 =2

Similarly from F[432222] = 80 and F[32221] = 14, and taking f4 =
[432222) and fp = [32221], we derive that

F[08887432229] = 80 - 14 = 1120,
while taking fa4 = [32221] and fp = [432222] we obtain
F[98777732221] = 14 - 80 = 1120.

However, most score functions are not splittable. In fact, asymptotically
there are almost no tournaments with splittable score function, as shown by
Moon and Moser (8] (see also Wright {10]), and so for most score functions
the calculations will be (much) more tedious in general.
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Similarly to the remarks in David [4] one may expect that the method-

ology presented here may be extended to multiple-round tournaments. In
case of non-uniformly distributed tournaments the calculation of probabil-
ities of score functions and score sequences seems to be much less evident,
however.

8.

9.
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