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Abstract

Let G be a graph with average degree greater than k — 2. Erdés
and Sés conjectured that G contains every tree on k vertices. A
star is a tree consisting of one center vertex adjacent to all the other
vertices, and a double-broom is a tree made up of two stars and a
path connecting the center of one star with the center of the other. If
the path connecting the two stars has length 2 or 3, then G contains
the double-broom (unpublished). In this paper, we prove that G
contains every double-broom on & vertices.

1 Introduction

The average degree of graph G is denoted d(G) and is equal to 2¢(G)/|V(G)|.
Erdés and Gallai [3] proved that if d(G) > k — 2, then G contains a path
on k vertices. Subsequently, Erdés and Sés conjectured the following.

Erdés-Sés Conjecture. If G is a graph with d(G) > k—2, then G contains
every tree on k vertices.

Various special cases of the conjecture have been proven. Many place
restrictions on the graph G. The cases where G has number of vertices
k,k+1, k+2, or k+ 3 were proved by Zhou [11], Slater, Teo, and Yap (6],
Woéniak [10], and Tiner [8], respectively. The number of edges on a path is
its length. The diameter of a graph G, diam(G), is the length of a longest
path in G. Eaton and Tiner [2] proved the conjecture holds if diam(G) is
less than k + 3.

Other cases that have been proven place restrictions on the class of
trees. Sidorenko proved the conjecture holds for every tree with a vertex
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having at least [§] — 1 leaf-neighbors. Eaton and Tiner (1] improved this
to include every tree with a vertex having at least [%] — 2 leaf-neighbors.

A spider is a tree with one vertex of degree at least 3, called the center,
and all others with degree at most 2. Wozniak [10] proved the conjecture
for spiders of diameter at most 4. McLennan (5] improved this to include
all trees of diameter at most 4. A leg of the spider is a path from the center
to a vertex of degree one. Fan and Sun [4] proved the conjecture for spiders
with no leg of length greater than 4. Sun (7] improved this to include all
spiders of diameter at most 9.

A double-broom is a tree made up of two stars and a path connecting the
center of one star with the center of the other. It is mentioned in [10] that
if d(G) > k — 2 and the path between the two stars of the double-broom
has either 2 or 3 edges, then G contains the double-broom (unpublished).
We prove the following.

Theorem 1. If G is a graph with d(G) > k — 2, then G contains every
double-broom on k vertices.

For standard notation and terminology in graph theory, see [9]. Let G
be a graph. For two subgraphs C,D C G, the set of edges with one end-
point in V(C) and one in V(D) is E(C, D); the number of edges in £(C, D)
is e(C, D). The subgraph induced by V(C) is G[C], its edge-set is E(C, C)
or simply E(C), and e(C) is the number of edges in E(C). The subgraph
G —V(C), or simply G — C, is obtained from G by deleting V(C) and the
set of edges with an endpoint in V(C). Choose A,BC V(G) andleta € A
and b € B. If ab € E(G), then the vertex a hits B and the subset B hits
A

The number of edges with at least one endpoint in A is ef;(A) or simply
e*(A). Notice that e*(A) =3, c 4 d(v) — e(A) = e(A) + e(A,G — A), and

Y dv) = 2e*(A)-e(4,G - A). (1)

vEA
A proof of the following lemma is in [1].

Lemma 2. Let G be a graph with d(G) > k — 2. Let W ¢ V(G) and
G =G-W. If (W) < (k- 2)|W|, then d(G') > k — 2.

The minimum degree among all vertices in G is 6(G). For a natural number
m, a graph G is minimal with d(G) > m if d(G') < m whenever G’ is a
proper subgraph of G.

The following corollary follows from Lemma 2 and Identity (1) above.
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Corollary 3. If a graph G is minimal with d(G) > k — 2 and W G V(G),
then e (W) > 3|W|(k - 2). In particular,

() 8(G) 2 5], and (i) 3 d(v) > Wik —2) - e(W, G~ W),

vew

2 Proof of Theorem 1

In this section we prove that if G is a graph with d(G) > k — 2, then G
contains every double-broom on k vertices.

Lemma 4. Let G be a graph that is minimal with d(G) > k — 2, and let
W be a subset of V(G), where l_—;‘-j < |W| < k—2. If each vertex in W has
degree at most |W|, then a vertex in W hits (k — 1) — |W| vertices outside
of W,

Proof. Let W' = V(G — W) and to the contrary, suppose that each vertex
in W hits at most (k — 2) — |W| vertices in W’. It follows that e(W,W’) <
[W|(k — 2 — |W]). By Corollary 3(it), we have

> d(w) > [W|(k—2) - |[W|(k -2 [W|) = [W|?
veW

which implies a vertex in W has degree greater than |W|, a contradiction.
Therefore, a vertex in W hits at least (k—1)—|W| vertices in V(G-W). O

Let P be an r-path in a graph G, where P = v;,...,v,. A path on the
vertez set V(P), or simply a path on V(P), is an r-path in G whose vertex
set is V(P). For distinct vertices v; and v; on the path P, if there is a path
on V(P) whose end-vertices are v; and vj, then it is a v;,v;-path on V(P).
For a vertex v; on the path P,

o(P,v;) = {vs € V(P) : there is a v, v,-path on V(P)}.

For each v; € Np(v;), the path v;_y,...,v1,v;,...,v, is a v;_1, v-path on
V(P). It follows that v;_; € a(P,v,), and e(vy, P) < |a(P,v,.)|. We state
this more generally in the following lemma.

Lemma 5. If P is a path in a graph G, where P = vy,...,v,, then
e(vs, P) < |a(P,vy)| for allv; € a(P,v,).

Lemma 6. Let G be a graph that is minimal with d(G) > k—2. LetQ be a
path in G, where Q = vy,...,v,, and let W = a(Q,v,.). If N(W) C V(Q),
then W hits a vertez in {vk-1,...,vr} andr 2 k — 1.
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Proof. We will prove that W hits a vertex in {vx~1,...,v,} which implies
that r > k — 1. If |W| > k — 1, then either W = {v;,...,v-1} or the
maximal i such that v; € W is greater than k — 1, and in either case,
the claim is obvious. Otherwise |[W| < k — 2. Since N (vl) C V(Q) and
d(v1) > 8(G) > | %] (by Corollary 3(i)), we see that |W| > [ | (by Lemma
5). By Lemma 4, a vertex v; in W hits at least (k—1)—|W/| vertices outside
of W. Therefore v; hits a vertex in {vk—1,...,vr}. O

Let G be a graph with d(G) > k—2. Erdés and Gallai (3] proved that G
contains a path on k vertices. Now suppose G is minimal with d(G) > k—2.
For an arbitrary vertex v € V(G), let P be a longest path in G having v as
one end-vertex. By our choice of P, we see that N(a(P,v)) C V(P), and
therefore the path P has at least k — 1 vertices (by Lemma 6). We state
this as a corollary.

Corollary 7. Let G be a graph that is minimal with d(G) > k — 2. If
v € V(G), then there is a (k — 1)-path in G having v as one end-vertex.

Lemma 8. Let G be a graph that is minimal with d(G) > k — 2, and let P
be a path in G, where P = vy,...,v,. Ifr < k—2, then a vertez in a(P,v;)
hits |4 (k — r)| vertices outside of V(P).

Proof. By Corollary 7, an r-path beginning with vertex v; exists. Let
W = a(P,v;). For each v; € W, we have e(v;, P} < |W| (by Lemma 5). To
the contrary, suppose e(v;, G — P) < |4(k — 7)) — 1 for each v; € W. Thus
for each v; € W, we have

d(v;) = e(vs, G — P) + e(vs, P) < %(k ) =14 |W|.

By Corollary 3(iz), we have

> d) [W|(k — 2) — [e(W,G — P) + &(W,P — W)
veW

\

v

Witk =2) = 7150 =) = 1)+ 1W1Gr = W)

WG (k=) ~ 1+ W)

which implies a vertex v in W has degree greater than %(k —-r) -1+ |W|,
a contradiction. O

For natural numbers r,¢; and ¢3, the double-broom DB(r,¢;,£2) con-

sists of an r-path a;,...,a, and ¢; additional vertices adjacent to a; and
¢y additional vertices adjacent to a,. We now prove Theorem 1.
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Theorem 1. If G is a graph with d(G) > k — 2, then G contains every
double-broom on k wvertices.

Proof. Let G’ be a subgraph of G that is minimal with d(G’) > k—2. If G’
contains every double-broom on k vertices, then so does G. For this reason,
we will simply assume that G is minimal with d(G) > k — 2. For natural
numbers r, £, and ¢3, let T be the double-broom DB(r, £;, £3), where £; > £
and 7+ £; + £3 = k. It follows that £(a;) < [3(k —r)]. Let T” be the tree
obtained from T by removing the leaf neighbors of a, (the tree T” is called
a broom).

Since d(G) > k — 2, there is a vertex v; € V(G) with degree least k — 1.
Let P be a path in G, where P = v;,...,v, and v, hits at least [%(k —7)]
vertices outside of V(P) (possible by Corollary 7 and Lemma 8). Map the
path ay,...,a, in T’ to vy,...,v,, respectively, in G. Since e(v,, V(G —
P)) > [%(k — )], this mapping can be extended to an embedding of T”
into G. Finally, since d(v1) > k — 1, this embedding of T” into G can be
extended to an embedding of T into G. a
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