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Abstract

An edge-coloured path is rainbow if the colours of its edges are
distinct. For a positive integer k, an edge-colouring of a graph G
is rainbow k-connected if any two vertices of G are connected by k
internally vertex-disjoint rainbow paths. The rainbow k-connection
number rck(G) is defined to be the minimum integer ¢ such that
there exists an edge-colouring of G with t colours which is rainbow k-
connected. We consider rc2(G) when G has fixed vertex-connectivity.
We also consider rci (G) for large complete bipartite and multipartite
graphs G with equipartitions. Finally, we determine sharp threshold
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functions for the properties rck(G) = 2 and rex(G) = 3, where G is
a random graph. Related open problems are posed.
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1 Introduction

In this paper, unless otherwise stated, all graphs are finite, simple and
undirected. For basic terminology in graph theory, we refer to the book
by Bollobds [1]. An edge-coloured path is rainbow if the colours of its
edges are distinct. For k € N, an edge-colouring of a graph G is rainbow
k-connected if any two vertices of G are connected by k internally vertex-
disjoint rainbow paths. The rainbow k-connection number rci(G) is defined
to be the minimum integer ¢ such that, there exists an edge-colouring of
G with t colours which is rainbow k-connected. We write r¢(G) = re) (G).
Note that, by Menger’s Theorem [19], a graph is k-connected if and only if
any two vertices are connected by k internally vertex-disjoint paths. Hence,
rci(G) is well-defined for k-connected graphs G.

The function ¢, (G) was introduced by Chartrand et al. [4, 5] in 2008.
They studied rci(G) for many graphs, notably when G is complete, and
complete bipartite and multipartite. They also introduced the strong rain-
bow connection number src(G), and considered some relationships between
r¢(G) and sre(G). An application to secure data transfer was presented
as well. The subject has since attracted considerable interest. These in-
clude the study of rcx(G) when G satisfies some condition on its minimum
degree, or forbidden subgraphs, or diameter; or when G is regular. The
computational complexity of rc,(G) has also been studied. Further re-
lated functions have been introduced, such as the rainbow verter connection
number rve(G), and the k-rainbow inder rzi(G). See for example, Caro
et al. [2], Chartrand et al. [6], and Krivelevich and Yuster [12]. Recently,
Li et al. [14], and Li and Sun [17], published a survey and a book on the
current status of rainbow connection.

-We continue the study of r¢i(G). First, we consider rci(G) for graphs G
with given vertex-connectivity. The case k = 1 was asked by Hajo Broersma
(at the IWOCA workshop 2009). Let G have order n. For k = 1, Caro et
al. [2] proved that re(G) < 2 and r¢(G) < % +0(y/n) if G is 2-connected.
Li and Shi (13] proved that re(G) < 31 if G is 3-connected. Chandran
et al. (3] proved that, if G has minimum degree &, then r¢(G) < 33_& + 3.
Hence, if G is f-connected, then r¢(G) < e"f'_—"l + 3. Here, we prove the
following result for the case k = 2.
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Theorem 1.1 If¢ > 2 and G is an €-connected graph onn > £+1 vertices,
then rca(G) < (—‘igl)ﬂ.

In the case ¢ = 2, we can do better if G is series-parallel. A 2-connected
series-parallel graph is a (simple) graph which can be obtained from a K3,
and then repeatedly applying a sequence of operations, each of which is a
subdivision, or replacement of an edge by a double edge. These graphs are
a well-known sub-family of the 2-connected graphs.

Theorem 1.2 If G is a 2-connected series-parallel graph onn > 3 vertices,
then rc2(G) < n.

Note that rea(Cr) = n if C,, is the cycle on n vertices. More generally,
Theorem 1.3 below shows that Theorem 1.2 is tight when G is a generalised
©-graph. That is, G = ©y,, .. 4, is the union of ¢ > 2 paths with lengths
q1 > --->q > 1, where g,_; > 2, and the paths are pairwise internally
vertex-disjoint with the same two end-vertices.

Theorem 1.3 IfG = Oy, 4, is a generalised ©-graph on n vertices, then

@) n ift=2,
ree "I n-lorn-2 if t >3.

These results naturally lead to the following question.

Problem 1.4 What is the minimum constent ¢ > 0 such that for all 2-
connected graphs G on n vertices, we have rca(G) < en?

)
By Theorems 1.1 and 1.3, we have 1 < ¢ < % Theorem 1.2 suggests
that ¢ = 1 may possibly be the correct answer.
Theorem 1.2 has an instant corollary. A result of Elmallah and Colbourn
[8] says that any 3-connected planar graph contains a 2-connected series-
parallel spanning subgraph.

Corollary 1.5 If G is a 3-connected planar graph on n > 4 vertices, then
ree(G) < n. O

Our next aim is to continue the study of rcx(G) when G is a com-
plete bipartite or multipartite graph. For 1 < n; < ... < ny with t >
2, let K, . n, denote the complete multipartite graph with class sizes

ny,...,n;. Chartrand et al. [4] determined r¢(K,,,. n,) exactly, as fol-
lows. If ') n; = m and n, = n, then
('n ift=2and n; =1,
min([3/n],4) ift=2and 2 <n; <ngy,
re(Kuy,.om)=4¢ 1 ift>3and n, =1,
2 ift>3,n,>2and m >n,
| min([3/n],3) ift>3and m < n.




Chartrand et al. [5] also proved that rex(Knn) =3 if £ > 2 and n =
2k|'§]. They asked if for every k > 2, there is a function f(k) such that for
every n > f(k), we have reix (K, ») = 3. Li and Sun [16] proved that this
is the case, when f(k) = 2k [—’25] Both of these results considered explicit
colourings. With a random method, we are able to improve the result to
f(k) = 2k 4 o(k), as follows.

Theorem 1.6 Let 0 < € < % and k > %(9 - 1)1 - 2¢) + 2, where 0 =
0(€) is the largest solution of 2r2e=¢*(=2) = 1, Ifn > ?’i’;? + 1, then
rck(Kn,n) =3.

For example, if we set € = %; so that 6 = 469.94, this result shows that
for k£ > 159 and n > 3k — 5, we have rcp (K, ) = 3.

On the other hand, how small can the function f(k) be? The next result
shows that the best we can hope for is approximately f(k) > %

Theorem 1.7 For any 3-colouring of the edges of K, », there exist u,v €
V(Kn,n) where the number of internally vertez-disjoint rainbow u — v paths

. 2
is at most 5&"_—1)

We can extend this to complete multipartite graphs with equipartitions.
Let K;x, denote the complete multipartite graph with ¢t > 3 classes of size
n. For k > 2, when considering bipartite graphs K, ,, we cannot achieve
r¢ck(Kn,n) = 2. However, we may hope for rc(Kyxn) = 2. Using a similar
random method, we have the following.

Theorem 1.8 Let0 <e < %, t>3,and k> %O(t —2)(1 — 2¢) + 1, where
0 = 8(e, t) is the largest solution of %t2z2e“(‘“2)€2’ =1. Ifn> (—t%,
then reg(Kixn) = 2.

For example, if we set ¢ = 3 and € = } so that # ~ 501.86, this result
shows that for k > 169 and n > 3k — 3, we have rcx(Kaxn) = 2.

Again, going in the other direction, the following result shows that the
best lower bound for n would be approximately n > %
Theorem 1.9 Lett > 3. For any 2-colouring of the edges of Kixn, there
existu,v € V(K,xn) where the number of internally vertez-disjoint rainbow

2
u — v paths is at most !2‘(;7‘1_’1&)

The related problem of considering rci(G) when G is a complete graph
has already been well studied. Obviously, we have r¢(K,) = 1 for n > 2,
and rex(K,) > 2 for n > k > 2. Chartrand et al. [5] proved that, for
k > 2,if n > (k+ 1)2, then rcx(K,) = 2. The bound on n was later
improved by Li and Sun [15] to n > ck%/2 4 o(k%/2) (for some constant c),
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and then by Dellamonica et al. {7] to n > 2k + o(k). The latter bound is
also asymptotically the best possible.

Our last aim is to study rcx(G) when G is some random graph model.
In this direction, Caro et al. [2| considered rc(Gr p), where G p is the
random graph on n vertices with edge probability p. Recall that, if Q is a
graph property and p = p(n), then G, , satisfies Q almost surely (a.s.) if
P(Gn,p satisfies Q) — 1 as n — co. A function f(n) is a sharp threshold
function for Q if there are constants ¢, C > 0 such that, G, cf(n) does not
satisfy Q a.s., and G, , satisfies Q a.s. for all p > Cf(n). Caro et al. [2]
proved that p = y/logn/n is a sharp threshold function for the property
r¢(Ghn,p) < 2. This was generalised by He and Liang (10], who proved that

if d > 2 and k < O(logn), then p = % is a sharp threshold function
for the property rcx(Gn,p) < d. Here, we prove the following result.

Theorem 1.10 p = \/logn/n is a sharp threshold function for the prop-
erty rcg(Gn,p) <2 for allk > 1.

We can consider other random graph models. Let Gy, m,p be the random
bipartite graph with class sizes n and m, and edge probability p. Let G, p
be the random graph on n vertices with M edges, endowed with the uni-
form probability distribution. We can analogously define sharp threshold
functions for these models. We have the following results.

Theorem 1.11 p = \/logn/n is a sharp threshold function for the prop-
erty rex(Gnon,p) <3 for allk > 1.

Theorem 1.12 M = \/n3logn is a sharp threshold function for the prop-
erty rck(Gn,m) < 2 for all k > 1.

This paper will be organised as follows. We prove Theorems 1.1 to
1.3 in Section 2; Theorems 1.6 to 1.9 in Section 3; and Theorems 1.10 to
1.12 in Section 4. In Section 5, we present some related open problems.
Throughout, we say that an edge-coloured graph is rainbow if its edges
have distinct colours. Unless otherwise stated, we simply say that the
paths Q,,Q2,... are disjoint if they are internally vertex-disjoint. Recall
that a graph G is minimally k-connected if G is k-connected, but G — e is
not k-connected for every e € E(G).

2 Graphs with given Connectivity

In this section, we prove Theorems 1.1 to 1.3. For Theorem 1.1, we first
recall the Fan Lemma, which is a consequence of Menger’s Theorem.
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Theorem 2.1 (Fan Lemma, [19]) Let G be a k-connected graph. Then,
for any vertezx u € V(G) and any set X C V(G — u) with |X| > k, there
are k paths from v to X such that for any two paths, their only common
vertez is u.

Proof of Theorem 1.1. We shall in fact prove a stronger result, as
follows.

Theorem 2.2 If £ > 2, and G is an £-connected graph on n > £+ 1
vertices, then there exists an edge-colouring of G with at most sﬂ'}ﬁ colours
satisfying the following.

(a) For any two vertices u,v € V(G), there are two disjoint rainbow v —v
paths.

(b) For any vertex u € V(G) and any set X C V(G) with |X| = 2, there
are two rainbow u — X paths whose only common vertex is u.

(c) For any two sets X,Y C V(G) with |X|,|Y| = 2, there are two
rainbow X — Y paths which do not intersect.

Note that in (b), if u € X, then one of the paths is taken to be the
vertex u. Likewise, in (c), if X and Y intersect, then a suitable path is a
vertex in X NY.

Clearly Theorem 1.1 follows from Theorem 2.2, so we prove Theorem
2.2.

Proof of Theorem 2.2. We first find subgraphs Ho c H; C --- C H, C
G, for some t > 0, with V(H;) = V(G), as follows. Firstly, let Hy be
a cycle of G on at least ¢ vertices (The fact that any ¢-connected graph
contains a cycle on at least ¢ vertices is well-known. For example, this is
an exercise in [1], Ch. III.6). Now suppose that we have found the graphs
Hyp,...,H;_; for some i > 1. If V(H;_;) = V(G), then set H;_; = H;,.
Otherwise, there exists a vertex v; € V(G) \ V(H;-)). By Theorem 2.1, v;
sends ¢ paths to H;_,, with each pair of paths meeting only at v;, i.e., the
union of these ¢ paths is a subdivided K. Let H; be the union of H;_;
with these £ paths. Repeat this process until it terminates.

We prove inductively that for every 0 < ¢ < ¢, there is an edge-colouring
of H; with at most {&ERVUHI oolours such that properties (a) to (c) in
Theorem 2.2 hold, with H; in place of G. Then, setting i = ¢ implies that
Theorem 2.2 holds for G.

To proceed, define an edge-colouring of each H; as follows. Firstly, give
H, a rainbow colouring. Then, for 1 < i < t, suppose that we have an
edge-colouring for H;_,, with colours 1,...,m. The graph H; is obtained
by attaching a subdivided K, ¢ to H;_1, where the £ paths meet at v;. Let
the paths be Q;,...,Qe, with e(Q1) > --- > e(Q¢) > 1. For the case £ = 2,
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we may assume that e(Q;) > e(Q2) = 1. Let F = Q,U---UQ,. For
each 1 < j < ¢, let w; € V(H;-,) be the other end-vertex of Q;. We call
the edges of Q; incident to v; and w; the first edge and last edge of Q;,
respectively.

Case 1. L+ 1< |V(F) <20—-1,e(Q1) =|V(F)|—Cand e(Q2) = -+ =
e(Qe) = 1.

Give Q; a rainbow colouring with colours m+1,...,m+|V(F)|-¢. In
view of |V (F)|—£€ < £—1, we colour @2, ...,Q¢ with colours m+1,...,m+
|[V(F)| — £ in such a way that each colour appears at least once. We have
used |V(F)| — £ new colours in total.

Case 2. [V(F)| > 20, e(Q1) = |V(F)| — £ and e(Q2) = - -- = e(Qe) = 1.
Give @, a rainbow colouring with colours m +1,...,m + |V(F)| — €.

Colour all of Qs,...,Q, with colour m + |V(F)| — £+ 1. We have used
[V(F)| — £+ 1 new colours in total.

Case 3. e(Q2) > 2.

Let 1 < s < 1¢ be the largest integer such that e(Q1),...,e(Q2) > 2.
For each 1 < j < s, colour the first edge of Q2;_; and the last edge of Q2;
with colour m +2j — 1, and the last edge of Q2;_1 and the first edge of Q2;
with colour m +2j. Colour the last edge of Q2,41 and all of Qgs42,...,Qe
(each having length 1) with colour m + 2s + 1. Colour the remaining edges
of F with further new, distinct colours. We have used |V(F)| — £ new
colours in total.

Repeating inductively, we have a colouring for H;, for every 0 < ¢ <
t. We prove inductively that for every 0 < i < t, the colouring for H;
satisfies all of our requirements. Certainly, for Hp, we have used |V (Hp)| <
w colours, and properties (a) to (¢) hold. Now for 1 < i <
t, suppose that in the colouring for H;_;, at most &V;H"—'M colours
are used, and properties (a) to (c¢) hold. Let F,Q,,...,Q. be defined as
before. Note that |V(H;_1)| = |V(H;)| — |V(F)| + ¢. For Cases 1 and 3,
since [V(F)| > € + 1, the total number of colours used by H; is at most
GDWVH I |y ()| g < CHIVE Ror Case 2, since [V(F)| > 24, the
total number of colours used by H; is at most %)—'HV(FH—Z-H <
(+DIV(H:)|

N éxt, we show that in Cases 1 to 3, properties (a) to (c) hold for H;. For
(a), we are done by the inductive hypothesis if v,v € V(H;_,). Similarly
when {u} UX C V(H;_,) for (b), and when X,Y C V(H;_;) for (c). We
consider the other possibilities. Since this involves a lengthy case by case
analysis, we will only sketch the arguments.

Let A = V(F)\ V(Hi-1), X = {z1,22} and Y = {y;,y2}. For two
(possibly equal) vertices z,y € V(F'), write zFy for the unique z — y
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path in F. We make the following simple observation, which we will use
repeatedly.

Observation 2.3 For the edge-colouring of F' in Cases 1 to 3, the follow-
ing hold.

(A) For any z,y € A, the path =Fy is rainbow.

(B) For any1 < a < { and 2,y € V(Q,) with x € V(yQ.v; — y), there
erists 1 < b < €, b# a, such that Qp does not use the colours in the

paths £Qav; and yQaw,. a

Now, the following arguments apply in each of Cases 1 to 3. Obser-
vation 2.3 and the inductive hypothesis will be applied repeatedly, so we
abbreviate these to Ob 2.3(A) and H;_i(a), etc. Let H be the set of all
rainbow subpaths of H;_,.

(a) Without loss of generality, we have the following cases. In each case,
we find two disjoint rainbow u — v paths in H;.

e u€ Aand v € V(H;_,). Let u € V(Q,) for some a. By Ob 2.3(B),
there exists b # a such that uFw, is rainbow. By H;_;(b), there are
w, — v and wp, — v paths R, R’ € H which meet only at v. Take the
paths uQ,w, Rv and uFw,R'v.

e u,v€ A Ifu,veV(Q,) for some a, assume that u € V(vQ,v;). By
Ob 2.3(B) and H;_(a), there exist b # a and a w, — w, path R € H
such that uFwsRw,Q,v is rainbow. Take uQ,v and uFw,RweQ,v.
Ifu € V(Qa—v:) and v € V(Qp—v;) for some a # b, then by H;_,(a),
there is a w, — w, path R € H. Take uFv and uQ,we RwyQpv (uFv
is rainbow by Ob 2.3(A)).

(b) Without loss of generality, we have the following cases. In each case,
we find two rainbow v — X paths in H;, meeting only at u.

e u € A and r1,z2 € V(H;_;). This is similar to the first item in (a)
above. We apply H;_(c) instead of H;_;(b) to obtain two suitable
disjoint rainbow u — X paths.

e 1) € Aand u,z9 € V(H;_;). Let z; € V(Q,) for some a. If x5 # w,,
take uRw.Q,r1 and vR'z,, for some R, R’ € H meeting only at u
(by Hi_1(b)). If o = w,, take uRw,Fz, and uR'z,, for some b # a
and R, R’ € H meeting only at u (by Ob 2.3(B), H;_;(b)).

o u,x; € Aand 2o € V(H;_;). Let v € V(Q,) for some a. If z; ¢
V(uQow,), take uFz; and uQ,w.Rzs, for some R € H (by Ob
2.3(A), Hi_1(a)). If z; € V(uQew,), take uQqz; and uFwy,Rx, for
some b # a and R € H (by Ob 2.3(B), H;_1(a)).



e x,,z9 € Aand u € V(H;_;). If 21,20 € V(Q,) for some a with
zo € V(1Quv;), take uRw,Q,z; and uR'wyFz,, for some b # a
and R, R’ € H meeting only at u (by Ob 2.3(B), H;_1(b)). If z; €
V(Qu —v;) and x5 € V(Qp —v;) for some a # b, take uRw,Q,z; and
uR'wpQyxa, for some R, R' € H meeting only at u (by H;—1(b)).

e u,z1,72 € A. Assume that 22 € V(uFz,). Take uFz; and ufz, if
they meet only at u (by Ob 2.3(A)). Otherwise, let u € V(Q,) for
some a. If u,zy, 2, € V(Q,), then z; € V(uQ,x3). Take uQ,z;, and
uFwyRw,Q.zs or uQ.w,RwpFx2, for some b # a and R € H (by
Ob 2.3(B), H;_1(a)). If x5 € V(Q.) for some ¢ # a, take uF'z; and
uQuwe Rw Q.x2, for some R € H (by Ob 2.3(A), Hi—1(a)).

(¢) Without loss of generality, we have the following cases. In each case,
we find two disjoint rainbow X — Y paths in H;.

e z; € Aand z2,y1,y2 € V(Hi_1), or 1,72 € A and y1,y2 € V(Hi-1).
These are similar to the second and fourth items in (b) above, re-
spectively. For both, apply H;_;(c) instead of H;_,(b) to obtain two
suitable disjoint rainbow X — Y paths.

e 7,11 € A and z2,y2 € V(H;-1). Take z,Fy; and z2Ry,, for some
R e H (by Ob 2.3(A), Hi—1(a)).

e z1,%2,y1 € A and yp € V(H;—1). Assume that o ¢ V(z1Fy;). Let
z9 € V(Q,) for some a. If 71 Fyy and 22Q,w, are disjoint, take z; F'y;
and 12Q.wq Ryo, for some R € H (by Ob 2.3(A), Hi—1(a)). Other-
wise, we have z1,y; € V(22Q.wa). Take 2,Q,y1 and zoFwyRy,, for
some b # a and R € H (by Ob 2.3(B), H;_;(a)).

® 11,%2,Y1,y2 € A. Assume that z3,y2 € V(21 Fy;). Take z1Fy; and
zo Fys if they are disjoint (by ODb 2.3(A)). Otherwise, let z3 € V(Q.)
and y; € V(Q,) for some a,b. Ifa # b and z5, yo # v;, take 1 Fy; and
T2Qowa RwpQpy2, for some R € H (by Ob 2.3(A), Hi—i(a)). If a =
b, then z1,y; € V(22Qay2). Take z1Qqyi, and zo Fw.Rw,Qay2 or
Z2oQawa Rw.Fy,, for some ¢ # a and R € H (by Ob 2.3(B), H;_1(a)).

We have now proved that properties (a) to (c) hold for H;. This com-
pletes the proof of Theorem 2.2, and hence of Theorem 1.1. ao

Remark. The authors originally found a shorter proof of Theorem 1.1
in the case £ = 2. The proof considered an edge-colouring of a minimally
2-connected spanning subgraph of a given 2-connected graph. A sketch of
this proof can be found in [9).

Proof of Theorem 1.2. By the definition of a 2-connected series-parallel
graph, it is easy to see (and well-known) that G can be constructed as fol-
lows. There are graphs Go ¢ G, C --- C Gy = G for some t > 0. Go = Qo
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is a cycle. For 1 < i <t, G; is obtained from G;_; by attaching a path
Q; of length at least 1 to G;_, by identifying the end-vertices of Q; with
two distinct vertices z,y € V(Gi—-;). = and y must be the end-vertices
of some path P C Q; for some 0 < j < 4, and if an end-vertex of some
Qe (1 <€ < i, £ # j)is an internal vertex of P, then P must contain
both end-vertices of Q. Note that every G; (0 < i < t) is a 2-connected
series-parallel graph.

We successively embed each G; into the plane as a plane graph, and
define an orientation for G; (we can think of this as turning G; into a
directed graph), as follows. Fix z € V(Gyp). Firstly, embed the cycle G,
into the plane and orient it clockwise. Now for 1 < i < tandeach0 < j <1,
suppose that we have defined an orientation and a plane embedding for
Gj, with the exterior cycle of G; oriented clockwise, and containing 2.
Moreover, for each 1 < j < i (if ¢ > 2), assume that the path Q; is
embedded into the exterior face of G;j_;. If we can embed Q; into the
exterior face of G;_;, then we do so, and orient @; so that, z remains on
the new exterior cycle (of G;), and the cycle remains directed clockwise. In
addition, if z € V(Q;), then choose the embedding and orientation for Q;
so that z is the tail vertex of );. Note that this embedding and orientation
of @; is unique, up to homotopism.

Otherwise, delete Q;_1,Qi—2,... successively until we reach the first j
(0 £ j < i —1) such that we can embed Q; into the exterior face of Gj.
Embed Q); and orient it in the same way as above. Note that Q); is embedded
into the bounded face created by Q;41 when it was embedded into the
exterior face of G;. Hence, we can re-embed and re-orient Q;44,...,Qi-1,
in this order, to achieve an embedding and orientation for G;. Finally,
re-label Q;, Qj41,...,Qi—1 With, respectively, Q;4+1,Qj+2,...,Qi.

Repeat for each i until we reach G, = G. For 0 < i < ¢, let H; be the
exterior cycle of G;, so that we have z € V(H;) for every i.

Next, for each G;, we define an edge-colouring with |V'(G;)| colours,
inductively as follows. Firstly, give Go a rainbow colouring, so that |V (Go)|
colours are used. For 1 < i < t, suppose that G;_; is coloured with
[V(Gi-1)| colours. Q; is embedded into the exterior face of G;_;. Colour
the head edge of 5: with the colour of the edge of E(H;_,)\ E(H;) incident
with the tail edge of a: Give the other edges of 5: new and distinct colours.
Then G; is coloured with |V(G;)| colours. Note that by induction, H; is
rainbow coloured for every i.

We claim that for each 0 < 7 < ¢, the colouring for G; is rainbow 2-
connected, which implies Theorem 1.2. Proceed by induction. Initially, the
colouring for Gy is rainbow 2-connected. For 1 < i < ¢, suppose that the
colouring for G;_; is rainbow 2-connected. Let u,v € V(G;). We want to
find two disjoint rainbow u — v paths in G;. G; is obtained by embedding
Q;: into the exterior face of G;_;. If u,v € V(G;_1), then we are done by
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induction, and if u,v € V(H;), then we are also done, since H; is rainbow
coloured.

It remains to consider the case u € V(Gi_1) \ V(H;) and v € V(Q:) \
V(G;-1). For this, we aim to find two rainbow paths from u to H;, meeting
only at u, with both having ‘almost’ no colours in common with H;. Pro-
ceed by deleting Q;, Q;-1,Qi—2,... until we reach the first 7 (0 < j < i)
such that © € V(H;). Re-embed @Q;+;. Then u becomes an interior ver-
tex of Gj;1. Let Q;41 be attached to H; at z) and y;, with x; directed

towards u, then y,;, along H;. Let E; and §; be the z; — v and u — y;
directed paths, respectively. Since H; is rainbow coloured, so are IT; and
§;. Moreover, between El) U] 3’; and Hjy,, the only edges that have the
same colour are the tail edge of E; and the head edge of m . Note also

that z € V(y{ Hj417,). Now, we prove that for every 1 < £ < i — j, there
are distinct z¢, ye € V(Hj4¢) such that in G4, the following hold.

(a) There are rainbow z¢—u and u—y, directed paths E and ?g, meeting
only at u.

(b) Among all edges of EU@ and Hj ¢, the only possible edges with the

— —

same colour are the tail edge of Ry and the head edge of z¢H;,ye.
Hence, the directed cycle £, ReuSeyeH ez, is rainbow.

(¢) If a and b are internal vertices of z, H j.,.ey; and yeHjyex¢ respectively,
then for all 0 < m < j + ¢, we have {a,b} ¢ V(Qn).

(d) z € V(yeHj1eze).

We proceed inductively. For £ =1, (a) to (d) all hold. For2 < £ <i—j,
suppose that they hold for G;4+,—1. We have the vertices z¢_1,y¢—1, and
by (a), the directed paths R:;,E:. By (d), let T‘;,T; and ’1—’; be the
Te—1 — Ye—1, Ye—1 — z and z — x4, directed paths along Hjie—1. Embed
and orient Q;+¢ as before. Let z and y be the tail and head vertices of
—_— — — =
Q;+e, respectively. By (c), z and y must both belong to T} or T UT3, since
Gjye is a 2-connected series-parallel graph. We consider two cases. Note
that the following arguments apply even if we have z € {z,_y,ye—1}-

e T,y € V(T—';), orz,y € V(T; —2z),0r T,y € V(T_'};)

pu— [y
We have xo_y,ye—1 € V(Hjze). Set T¢ = To_1, ye = Ye—1, Re = Rea
et dadant
and S¢ = Sp_;. Clearly G;; satisfies (a), (c) and (d). For (b), note
— — —_— —
that R U Sy = Ry_ U Se_1, and to get from the set of colours of
Hj4e—1 to that of Hj4¢, we remove some colours of Hj,¢_1 and add
some new colours, unused in Gj;¢—1. Hence, among the edges of



E U §; and Hj4¢, the only ones that can have the same colour will
———
still be the tail edge of R—; and the head edge of x¢H;4eye. They will

—
actually have different colours if z,y € V(T}), y = ye—1, and z,y are
non-adjacent in Hj;4e_1.

N
o e V(T3), y € V(Ti - 2) and {z,y} # {ze-1,5e-1}.
Here, zo—1,ye—1 can possibly be interior vertices of G;;,. Along
e ——

Hjie—1, Ye—y is directed towards y,z,7,T¢_1, in this order. Let
Te = T, Ye = Y. Then G, clearly satisfies (c) and (d). Let

-y
Re = zHjpe-17e- 1R¢_1u, Se = uSe—1Ye—-1Hjpre—1y. We have Ry,

Sz are rainbow, since Re U Sz C xg-1Re—1uSe_1¥e—1Hjre-1Ze—1, the
latter of which is rainbow by (b) for G;;¢-1. Hence, Gj+¢ satisfies

(a). For (b), note that H;y¢ = 2Qj+eyH;4e—1z. Again by (b) for
—_ = _

Gj4e—1, Re U S¢ has no colours in common with yH; o1z, Also, by

the constructlon of the colouring of Q,+e, among the edges of Re U Se

and Q,.,.e, the only ones that can have the same colour are the tail

edge of Rg and the head edge of Qg+e = z¢H;;eye. They will actually
have different colours if £ = z¢..; and x¢_1,y¢~1 are non-adjacent in
Hjte—1. This proves (b) for Gje.

Hence, properties (a) to (d) hold for G_) By (a), we have the vertices
—_—
Zi,Yi € V(H) and the directed paths R;, S;. If v € V(z:H;y:) \ {zi, vs},
— —_— PRa-At i,

take uR;z; Hv and uS,y,Fv If v e V(yiH;z;), take uR;z;H;v and
—_
uS;y;iHv. By (b), we have two disjoint rainbow u — v paths in G;, in
both cases. The induction on 7 is complete, and Theorem 1.2 follows. [

Proof of Theorem 1.3. Let Q,,...,Q; be the t paths, and z,y be their
common end-vertices. The case t = 2 is clear (G is a cycle). Now, let ¢ > 3.

Firstly, since e(G — y) = n — 2, if we colour G with fewer than n — 2
colours, then for some u,v € I'(y) \ {z}, the unique u — v path Pin G —y
is not rainbow. But in G, there is only one pair of disjoint « — v paths, and
P is one of the paths. Hence, rc(G) > n — 2.

Secondly, colour G as follows. For 1 <i <t — 1, colour the edges of Q;
incident to x and y with colours 7 and ¢ + 1 (modulo ¢ — 1) respectively.
Colour the other edges with further distinct colours. Then we have used
n — 1 colours for G, and this colouring is rainbow 2-connected, since ¢ > 3.
Hence, rco(G) < n —1. 0O



3 Complete Bipartite and Multipartite
Graphs

In this section, we prove Theorems 1.6 to 1.9. We will only sketch the
proofs of Theorems 1.8 and 1.9, since these are similar to the proofs of
Theorems 1.6 and 1.7.

Proof of Theorem 1.6. Colour the edges of a perfect matching of K, ,,
with colour 1, and randomly and independently colour the other edges with
colours 2 and 3. For u,v € V(K, ), let E,, be the event that there are
fewer than k disjoint rainbow u — v paths. If P(U, , Eu) < 1, then a
suitable 3-colouring of K, , exists, and Theorem 1.6 follows.

Fix © and v in the same class of Kn,n, and let P be a set of n—2 disjoint
u — v paths of length 2, w1th no path using colour 1. The probability that
each path of P is rainbow is 2 , and these probabilities are independent. Let
X be the number of rainbow u — v paths of P. We have X ~ Bi(n -2, 1).
Using the Chernoff bound (see, for example, [11] Ch. 2.1; note that k-3 <
—é-(n — 2), so the bound applies), and the fact that n > 2’° 4 + 1 implies

Rt > 2,
n—2k+4
(n—2) (1——--——n_2 ))

Now, fix « and v in different classes of K, ., and let P be aset of n —1
disjoint u—wv paths of length 3, each of which having one edge with colour 1.
The probability that each path of P is rainbow is %, and these probabilities
are independent. Let X be the number of rainbow u — v paths m P, so
that X ~ Bi(n — 1, 1). A similar calculation (note that k — 2 < 1(n — 1)
and 2=2k£3 > 9¢) gives

e s

—ez(n—l).

N —

P(Buy) < B(X < k—3) =1P(x <

< e~ (=2

< e

By the union bound, P(U, , Eu.v) < 2n%e=<*("=2)_ On [0, c0), the func-

tion 2z2e~¢"(==2) jg eventually decreasmg, and tendstoQasz — o0. If @ =
0(¢) is the largest solution of 2z%e~¢ He-2) - 1, then P(UJ, , Fu.v) <1 for
n 2 6. Hence, the result holds for n > 2" 24 +1withk > 2(0 1)(1—2e)+2.

(]

Proof of Theorem 1.7. Let A and B be the classes of K, .. We
prove that there exist u,v € A which will work for the theorem. For
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u,v € A, any rainbow u — v path must have length 2. Let Z({u,v})
be the number of monochromatic u — v paths of length 2. Note that
Y uvea Z({u,v}) = 32, p Y (b), where Y(b) is the number of monochro-
matic paths of length 2 with middle vertex b. For b € B and ¢ € {1,2, 3},
let d;(b) be the number of edges of colour 7 at b. Then, by the convexity of
(3) (for = € R),

EZ = (i S Z({u,v}) = mc (,,) S Y ()

2/ u,veA beB

R ((d‘z"’)) (%) (%)

3(d1(b) + da(b) + d3(b))
@) ,,%3;3( 2 )

Hence, there exist u,v E A such that the number of rainbow u — v paths
n®-3n

is at most n — —-;:—7 m O
Proof of Theorem 1.8. Colour the edges of K;x, randomly and inde-
pendently with 2 colours. For u,v € V(K;xn), let E, , be the event that
there are fewer than & disjoint rainbow u — v paths.

First, let u and v be in the same partite set, and let X be the number
of rainbow u — v paths of length 2, so that X ~ Bi((t — 1)n, ;). By the
Chernoff bound (note that k-1 < (¢t~ 1)n, and n > Z_Z)le—zm implies

t—1)n—2k+42
—m — 2 26

P(Ey,») =1P(XSk—1)=lP( %(t—l) ( (t—:t)ri—l)iku))

il

v

< e—(t—l)ezn

Next, let u and v be in different partite sets, and let X be the number
of rainbow u — v paths of length 2, so that X ~ Bi((t — 2)n, 1). As before

(note that k — 2 < 3(t — 2)n and Qﬁz-t)’_‘—;%ﬁ > 2e),
_ _ 1, o (t=2n—2k+4
P(Ey,) = P(X <k—2) _u»(x < 3(t-2)n (1 o ))

< e—(t—2)e2n

We have P(, , Bu) < 1t2n2e=(t-De’m_ If g = g(c,t) is the largest
solution of -;-tzzrze“(“z)ezz = 1, then P(J, , Euv) < 1 for n > 6. Hence,



the result holds for n > 1—23’%';—25 with & > 16(t — 2)(1 — 2¢) + 1. O

Proof of Theorem 1.9. Let A be a class of K;x, and B = V(K xn) \ A.
For u,v € A, any rainbow u — v path must have length 2. Let Z({u,v}) be
the number of monochromatic u — v paths of length 2. Then, by a similar
calculation as in Theorem 1.7,

L (t — 1)(n% - 2n)
= 7m Z({U 'U} n 1) ( n) = - _ 1y

( ) uvZGA ( ) Q(n_ 1)
Hence, there exist u, v € A such that the number of rainbow v — v paths

is at most (¢t — 1)n — “";25,"_252") = (;(-,',13111)2 0

4 Random Graphs

We first prove Theorem 1.10. We recall the result for re(G,, ) by Caro et
al.

Theorem 4.1 ([2]) p = /logn/n is a sharp threshold function for the
property rc(Gn p) < 2.

The proof of Theorem 1.10 will be similar to that of Theorem 4.1. A
key result used in the proof of Theorem 4.1 is Theorem 4.2 below. We
generalise this in Theorem 4.3.

Theorem 4.2 ([2]) For any non-complete graph G on n vertices, with
minimum degree §(G) > % + log, n, we have r¢(G) = 2.

Theorem 4.3 For allk > 2 ande > 0, there exists an integer N = N (k,€)
so that, for all graphs G on n > N wvertices with minimum degree §(G) >
%+ (1 +¢€)logyn, we have rei(G) = 2.

Proof. Colour the edges of G with 2 colours, randomly and independently.
Let u,v € V(G), and E be the event that we have fewer than k disjoint
rainbow u — v paths. We have |I'(u) NT'(v)| > ¢, where t = 2(1 + €)logy n
(we may assume that t € N). Let P be a set of ¢ disjoint u — v paths of
length 2, and X be the number of rainbow paths in P. For P € P, P(P is
rainbow) = 1, s0 X ~ Bi(t,4). For0 < £<t, P(X < ¢) = (3)" Z,_o( ) <

(%)‘(1 + t)¢. For fixed k > 2 and € > 0, lim,, (1"'2(“"22""52 L 0, so

1 2(1+4¢€)logyn 1
P(E)<P(X <k-1)< (5) (1 +2(1 + ) logy n)*~! —o(nz)

There are (5 ) pairs u, v, so from the union bound, with positive prob-
ability when n is sufficiently large, any two vertices in G have at least k
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disjoint rainbow paths connecting them. Hence, there exists a 2-colouring
of G which is rainbow k-connected. O

Proof of Theorem 1.10. By Theorem 4.1, it suffices to consider k > 2,
and to show that there is a constant C > 0 such that, for p = C/logn/n,
we have rci (G, p) = 2 a.s. By Theorem 4.3 with £ = 1, it suffices to show
that any two vertices of G, have at least 4log,n common neighbours,
a.s. In the proof of Theorem 4.1 [2], it was shown that there is a constant
C’ > 0 such that, for p = C’y/logn/n, any two vertices of G, p have at
least 2log, n common neighbours, a.s. Here, we take a larger constant for
C. g

Next, we prove Theorem 1.11. We first prove Theorem 4.4, which is the
analogue of Theorem 4.3 for bipartite graphs. The version for £k = 1 was
also proved by Caro et al.

Theorem 4.4 Let ¢ = 1/ log -3. For allk > 2 and € > 0, there exists an
integer N = N(k,¢) so that, for all bipartite graphs G on n > N wvertices,
where any two vertices in the same class have at least 2c(1+¢) logn common
neighbours, we have rcg(G) = 3.

Theorem 4.5 ([2]) Let ¢ = 1/log2. If G is a non-complete bipartite
graph on n vertices, and any two vertices in the same class have at least
2clogn common neighbours, then re(G) = 3.

Proof of Theorem 4.4. Colour the edges of G with 3 colours, randomly
and independently. Let u,v € V(G), t = 2¢(1+¢€)logn (assume that ¢ € N),
and F be the event that we have fewer than k disjoint rainbow u — v paths.

First, let « and v be in the same class, so |[['(u)NI'(v)| > t. Let P be a set
of t disjoint u — v paths of length 2, and X be the number of rainbow paths
in P. For P € P, P(P is rainbow) = %, so X ~ Bi(t, %) For0<¢<t,
PX <0 =Y o3 m(3)(8) < ()1 +1¢)%. Forfixed k > 2 and ¢ > 0,
P(E) < P(X <k —1) < (§)>0+9187(1 + 2¢(1 4 €) logn)*~! = o( ).

Next, let © and v be in different classes. We claim that there is a set
P of t — 1 disjoint u — v paths of length 3. Let B = I'(u) \ {v}, and note
that |B| > t — 1. For each vertex z € B, let A, = (T(v) NT(z)) \ {u},
and note that |A,| > ¢t — 1. For the sets A, take a system of distinct
representatives {y;}zep. Then we can take P = {uzy,v : £ € B}, and
the claim holds. Now, let X be the number of rainbow paths of P. For
P € P, P(P is rainbow) = %, so X ~ Bi(t - 1,-3-). Foro<e<t-1,
PX <¢) = Zf=0(%)“1"(§)’(‘:1) < (Z)H1 + t)%. As before, P(E) <
P(X <k-1)=o(%).

There are (’2‘) pairs u,v, so applying the union bound, there exists an
edge-colouring of G with 3 colours which is rainbow k-connected. O

Proof of Theorem 1.11. For the first part, we prove that for C; >



6, if p > Civ/logn/n, then rcx(Gnpn,p) = 3, a.s. By Theorem 4.5, and
Theorem 4.4 with € = 1, it suffices to show that any two vertices in the
same class of G » p have at least 4clog(2n) common neighbours, a.s., where
c = 1/log 2. Fix two vertices u,v in one class. For a vertex w in the
other class, the probability that w is a common neighbour of u and v
is C#logn/n. If X be the number of common neighbours of u and v,
then X ~ Bi(n,C?logn/n) and EX = C? logn By Chernofl’s inequality,
P(X < 1C? logn) < exp(—3Cilogn) = o( ). There are 2(3) pairs u,v.
By the union bound, any two vertices in the same class of G n,p have at
least lC2 logn > 4clog(2n) common neighbours in the other class, a.s.
For the second part, we prove that for 0 < Cp < 2, Gnn,p has diameter
at least 4 a.s., if p = Cy4/logn/n. Let A, B be two disjoint sets in one
class, with |A| = |B| = § (assume that 7 € N). Let A = {a1,...,an/2}
and B = {b3,...,bn/2}. The probability of the event E; that a; and b; have
a common neighbour in the other class is 1 — (1 — 922%)" The events
E; are independent, so the probability that all pairs a;, b; have a common
. .l C2logny\n\n/2 _ . .
neighbour is (1 — (1 — =2222)")"" = 0,(1). Hence, there is a pair of
vertices in one class with no common neighbour, a.s., so they have distance
at least 4 between them. O
We finish with the proof of Theorem 1.12, which is similar to the pre-
vious proofs.
Proof of Theorem 1.12. For the first part, we prove that for C} > 3, if
M > Cyv/n8logn, then rci(Gn pm) = 2, a.s. By Theorem 4.2, and The-
orem 4.3 with ¢ = 1, it suffices to show that any two vertices of Gn M
have at least 4log, n common neighbours, a.s. Let N = (’2‘), and fix two
vertices u,v. For another vertex w, the probability that w is a common
neighbour of u and v is (N-2)/(3) = H If X is the number of
common neighbours of u and v, then X ~ Bi(n — 2, %}—))TAJ-) and EX =
(n—2) %W——M"i;x > 2C%logn. By Chernoff’s inequality, P(X < Clogn) <
exp(—iEX) < exp(-1Cflogn) = o(Zr). There are (3) pairs u,v. By the
union bound any two vertices in G, p have at least CZlogn > 4log,n

common neighbours, a.s.
For the second part, we prove that if 0 < Cy < -51-, then G, um has

diameter at least 3 a.s., if M = Cy+/n3logn. Let A, B be two disjoint sets
of vertices, with |A| = |B| = n!/? (assume that n!/2 € N). The probability
that AU B is an independent set is

MG - () - CpymSTogm 1) (N—Cz\/"31°g")
G (N =)+ 1)
1 —o0,(1).
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Let A = {a1,...,am1/2}, B = {b1,...,b,1/2}. The probability of the

-2 1/2
event E; that a; and b; have a common nelghbour is1—(1— MM~ 11 noen

The events E; are independent, so the probability that all pairs a;, b; have

a common neighbour is
(-5 ()
= on(1),

since M = C2y/n3logn and 0 < Cz < 3.
It follows that there is a non-adjacent pair a;, b; with no common neigh-
bour a.s., and such a; and b; have distance at least 3 between them. O

nl/2

IA

5 Open Problems

In this section, we pose some open problems which are related to the results
of this paper.

We can ask the following extension of Problem 1.4: If1 < k < ¢, derive
a sharp upper bound on rcx(G) for every £-connected graph G. A result of
Mader (18] implies that any minimally k-connected graph on n vertices has
at most kn edges. If G is £-connected on n vertices, then by considering
a minimally k-connected spanning subgraph of G, we have rcx(G) < kn.
Therefore, we ask the following question.

Problem 5.1 Let 1 < k < ¢. Find the least constant ¢ = c(k,€), where
0 < ¢ < k, such that for all £-connected graphs G on n vertices, we have
rek(G) < en.

We have already asked the question of whether or not do we have
c(2,2) =1.

For Theorems 1.6 and 1.7, if k is sufficiently large, we still do not know
the best function f(k) such that, if n > f(k), then rex(Kn ) = 3 (unlike the
analogous 51tua.t10n for complete graphs). We only know that the answer
lies between 3£ and 2k + o(k).

Problem 5.2 For k sufficiently large, is there a constant 3 < ¢ < 2 such
that, if n > ck, then reg(Kp n) =37

In relation to Theorems 1.6 and 1.8, for complete bipartite and mul-
tipartite graphs G, all known results for r¢;(G) with & > 2 only concern
those graphs with equipartitions. Chartrand et al. [5] asked the question
of whether for each k£ > 2, there exists a function f(k) such that for all
f(k) £ m < n, we have rci(Km,n) = 3. We can see that the answer to
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this question is negative, since the same authors ([4], Th. 2.6) proved that
if n > 3™, then r¢(K,, ) = 4. For complete multipartite graphs, they also
proved that for £ > 3, n; < --- < n,and m = ny +--- + ny_1, we have
re(Kn,,...n,) = 3if ng > 2™ ([4], Th. 2.7). Therefore, we pose the following
problem.

Problem 5.3 For k,t > 2 and ny < --- < ng, is there a function f(k,t)
such that, if ny > f(k,t), then

rck (Knl,...,ng) =

3ord ift=2,
2 0r3 if t > 37

Moreover, when precisely do we have rcx(Kn, n,) = 3?2 When precisely
do we have rcy(Kn,,...n,) =2 ift 237

Finally, for random graphs, we can obviously ask the following.

Problem 5.4 For d > 2, determine a sharp threshold function for the
property rcx(G) < d, where G is another random graph model.

In particular, an answer for random regular graphs would be interesting.
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