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Abstract

A graph is chordal if and only if every cycle either has a chord
or is a triangle. If an edge (or triangle) is defined to be a strength-
k edge (or triangle) whenever it is in at least k maxcliques, then a
graph is strongly chordal if and only if, for every k > 1, every cycle
of strength-k edges either has a strength-k chord or is a strength-
k triangle. Dual-chordal graphs have been defined so as to be the
natural cycle/cutset duals of chordal graphs. A carefully crafted
notion of dual strength allows a characterization of strongly dual-
chordal graphs that is parallel to the above. This leads to a complete
list of all 3-connected strongly dual-chordal graphs.

1 Background

A mazclique of a graph is an inclusion-maximal complete subgraph. The
clique strength of an edge e or triangle C in a graph G—denoted by cstrg(e)
and cstrg(C), respectively—is the number of maxcliques of G that contain
e or C. An edge e or triangle C is a cstrg-k edge or cstrg-k triangle,
respectively, if cstrg(e) > k or cstrg(C) > k. The subscript G will be
dropped from cstrg whenever it is clear which graph G is. Thus, every
edge or triangle is automatically a cstr-1 edge or a cstr-1 triangle.

A graph is chordal if every cycle of length 4 or more has a chord—in
other words, if every cycle (of cstr-1 edges) either has a (cstr-1) chord or is
a (cstr-1) triangle. As introduced in (4], a chord e of an even-length cycle C
of G is a strong chord of C if e forms a cycle with an odd number of edges
of C. A graph is strongly chordal if it is chordal and every cycle of even
length 6 or more has a strong chord; see [2, 4, 10] for details. The results in
this paper are motivated by Proposition 1 (from (5, 8], in the terminology
of [9]), which restates being strongly chordal as a natural strengthening of
being chordal.

JCMCC 93 (2015), pp. 53-63



Proposition 1 A graph is strongly chordal if and only if, for every k > 1,
every cycle of cstr-k edges either has a cstr-k chord or is a cstr-k triangle.

A cutset of a connected graph G is an inclusion-minimal set D C E(G)
such that G — D is not connected. A triad is a size-3 cutset, and a cyclic
triad is a triad D such each component of G — D contains a cycle. An edge
e € D is a cut-chord of a cutset D if {e} is a cutset of G — D; equivalently—
and dually to chords of cycles—if D can be partitioned as Dy U D, where
each D; U {e} is a cutset of G. As in (6, 7], a graph is dual-chordal if every
cutset of size 4 or more has a cut-chord—in other words, if every cutset
either has a cut-chord or is a triad. (Warning: This duality should not be
confused with hypergraph duality, which leads to another important notion
dual to chordal: the “dually chordal graphs” of [1, 2].)

As in [7], it is useful to restrict attention to 3-connected graphs—always
with at least three vertices—when studying dual-chordal graphs, especially
in light of Proposition 2 from (7] (where being cubic means that every vertex
has degree 3).

Proposition 2 Every 3-connected dual-chordal graph G is cubic.

Proof. If a 3-connected graph dual-chordal graph G had a vertex v of
degree 4 or more, then the cutset D of all the edges incident with v would
have a cut-chord e, and simultaneously deleting v and e from G would leave
a disconnected graph, contradicting G being 3-connected. 0O

2 Strongly dual-chordal graphs

As in (7], a cut-chord e of an even-size cutset D of G is a strong cut-chord
of D if e forms a cutset with an odd number of edges of D. A graph is
strongly dual-chordal if it is dual-chordal and every cutset of even size 6 or
more has a strong cut-chord.

Dualizing what happens with chords and cycles in chordal graphs, an
easy inductive argument on |{D] shows that a 3-connected graph is dual-
chordal if and only if every cutset D with |D| > 4 has a cut-chord e with
edges a,b € D such that {a,b,e} is a triad of G. Similarly, a dual-chordal
graph is strongly dual-chordal if every cutset D with |D| > 6 has a cut-
chord e with edges a,b,c € D such that {a,b,c,e} is a cutset of G.

Proposition 2 allows us to restrict attention to cubic graphs. Results
in [3] show that every 3-connected cubic graph G can be decomposed into
smaller 3-connected cubic graphs G, Ga,... by repeatedly applying the
procedure illustrated in Figure 1 to cyclic triads and, moreover, that the
set {G},Ga, ...} of non-decomposable graphs ultimately obtained is unique.
Given the graphs G1,Gas,... of the decomposition of G, let T(G) denote
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Figure 1: Decomposing G into graphs G; and G, along the triad {a,b,c}

the corresponding decomposition tree. For each node S of T(G), let Gg
denote the subgraph of G that is formed by the edges in S.

If each subgraph G; in a decomposition of G is isomorphic to K4 or
K33, then G is called {K4, K33}-decomposable in [3] (or see (7)), T(G) is
called a { K4, K3 3 }-decomposition tree, and every node S of T(G) has either
|S| = 6 or |S] = 9. Figure 2 shows an example of a 3-connected, cubic,
strongly dual-chordal graph G and its { K4, K3 3}-decomposition tree T(G).
In this example, the triad {7,8,9} decomposes G into a K, with edge set
{1,2,3,7,8,9} and a graph G’ with edge set {4,5,...,15} that is obtained
from G by contracting the triangle {1,2,3} to a single vertex; the triad
{7,8,9} corresponds to the left edge shown in T(G). The graph G’ can
then be decomposed along the triad {9,10,11} into a K, with edge set
{4,5,6,9,10,11} and a K33 with edge set {7,8,...,15} that is obtained
from the original G by contracting the triangles {1,2,3} and {4,5,6} into
single vertices; the triad {9,10,11} corresponds to the right edge shown
in T(G).

7,8,9,
}— 10,11, 12, —{9“’1‘:’)"1’1}
13,14,15 e

T(G)

Figure 2: A strongly dual-chordal cubic graph and its decomposition tree.

Suppose G has a { K4, K3 3}-decomposition tree T(G). If S is a degree-0
node of T(G), then Gg = K, or Gs & K3 3. If S is a degree-1 node of T(G),
then either Gg is net or a bipartite net graph, as illustrated in Figure 3.

If S is a degree-2 or higher node of T(G), then all the possibilities for
Gs (up to isomorphism) are shown in Figure 4, where the vertices indicated
by solid balls occur only in G for the one node S of T(G), while the three
vertices in each dashed hox are distinct endpoints of edges that are in both
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Figure 3: The net and bipartite net graphs.

Gs and Gg for a neighbor S’ of § in T(G). Contracting the subgraph
inside each of the dashed boxes into a vertex would produce the K4 or K33
graph G; in the {Kj4, K3 3}-decomposition that has corresponding E(Gs)
and E(G;). For instance, in the degree-4 center column graph in Figure 4,
Gs = 2K, 3 U3K, (where 3K, denotes the order-6 graph with three edges)
with the corresponding G; = K3 3.

The results in Lemma 3 are all from [7] (where the symmetric difference
of sets Sy,...,S, is the set of elements that occur in an odd number of
S1y..-,8n).

Lemma 3 ([7]) The following hold for all 3-connected cubic graphs G:

(1) A triad D of G is cyclic if and only if T(G) has an edge SS’ with
D=Sn&.

(2) A triad D of G is cyclic if and only if the three edges in D have a total
of siz distinct endpoints in G.

(3) G is dual-chordal if and only if every cutset D of G is the symmetric
difference of triads Dy, ..., D|D|-2 where DN D, ..., DIDI"Q NnD
partition D.

(4) G is dual-chordal if and only if G is {K4, K3 3}-decomposable.

3 Defining dual strength

Suppose G is a 3-connected cubic graph with a decomposition tree T(G).
Define the dual strength of an edge e of G—denoted by str*g(e)—to he the
number of nodes of T(G) that contain e. In the graph G in Figure 2, for
instance, str'g(1) = 1 and str*g(9) = 3. Define the dual strength of a triad
D of G—denoted by str*g(D)—to be the number of nodes S of T(G) that
contain D such that the following holds:

If |S| = 9, then S is the unique size-9 node, Gs is neither of the
top two graphs in the right column of Figure 4, and T(G) is a
star with center S.

In the graph G in Figure 2, for instance, the center node S of the star T'(G)
corresponds to the graph Gg at the top of the center column of Figure 4,
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Figure 4: The possible Gg subgraphs for degree-2 or higher nodes S of
T(G).

the two cyclic triads {7,8,9} and {9, 10, 11} have dual strength 2, and each
of the ten noncyclic triads D has str*(D) = 1 (dropping the subscript G
from str*g since it is clear which graph G is). Note that triads D always
satisfy str*(D) < min{str*(e) : e € D}.

The definition of the dual strength of a triad may well look contrived,
but notice that the |S| = 9 restriction only occurs for nonplanar graphs:
K33 will only occur in Lemma 3(4) when the graph G is nonplanar—if
G is planar, then every S has |S| = 6. Also, Theorem 4 will show that
the definition of str*(D) can be defended by traditional graph-theoretic
duality whenever G is planar (interchanging vertices with faces in a plane
embedding).
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Theorem 4 If a 3-connected cubic planar graph G has dual graph G*, then
every edge e of G has strig(e) = cstrg-(e) and every triad D of G has
str'g(D) = cstrg-(C) where C is the triangle in G* that is dual to D.

Proof. Suppose a 3-connected cubic planar graph G is embedded in the
plane and G* is the vertex-face planar dual of G; thus the cutsets (and their
dual-chords) of G correspond exactly to the cycles (and their chords) of G*,
and so G* will be chordal (7. By Lemma 3(4), every node of T(G) will
have size 6. For each leaf node S of T(G), the graph Gs will be a net; say
S = {a,b,¢c,d,e, f} where a, b, c form a triangle in G and d, e, f form a triad
of G. (Thus a,b,c will form a triad of the dual graph G*—indeed, a,b,c
will have a common degree-3 endpoint in G*) Let G; be the graph with
edge set E(G)— {a, b, c} in the decomposition of G along the triad {d, e, f},
and repeat the ahove for the 3-connected cubic planar graph G,. In this
way, repeatedly removing leaves from the trees T(G), T(G,), T(G2), . .. for
this decomposition of G will correspond to a simplicial elimination scheme
for G*, see (2, 10], with the nodes of T(G) corresponding to the edge sets of
the maxcliques of G* Therefore, every edge e of G has str*g(e) = cstrg- ()
and every triad D of G has str*g(D) = cstrg+(C) where C is the triangle
in G* that is dual to D. O

Call an edge e or triad D a str*-k edge or str*-k triad, respectively, if
str*(e) > k or str*(D) > k. Thus, every edge or triad is automatically a
str*-1 edge or a str*-1 triad.

Corollary 5 A planar 3-connected cubic graph is strongly dual-chordal if
and only if, for every k > 1, every cutset of str*-k edges either has a str*-k
cut-chord or is a str*-k triad.

Proof. For every 3-connected cubic planar graph G with dual graph G*,
the corollary follows from Proposition 1, Theorem 4, the identification of
the cutsets (and their cut-chords) of G with the cycles (and their chords)
of G* and the definitions of G being strongly dual-chordal and G* being
strongly chordal. 0

4 Strongly dual-chordal characterization

This section will generalize the result of Corollary 5 for planar 3-connected
cubic graphs to arbitrary 3-connected cubic graphs. Theorem 7 will be the
promised dual version of Proposition 1 (remembering that Proposition 2
allows the restriction to cubic graphs). Before that, several examples of
dual-chordal graphs that are not strongly dual-chordal will be helpful.
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Figure 5 shows a planar 3-connected graph that is dual-chordal, but not
strongly dual-chordal: cutset D = {2,3,5,6,13,14} has cut-chords 8, 10,
and 12, but no strong cut-chords; also, D’ = {8,10,12} is a triad of str*-2
edges with str*(D’) = 1.

1,2,3, 7,8,9, 4,5,6,
7,8,9 10,11,12/~ 19,1011

7,11,12,
T(G): 13,14,15

Figure 5: A planar 3-connected dual-chordal but not strongly dual-chordal
graph and its decomposition tree.

Figure 6 shows two additional dual-chordal graphs that are not strongly
dual-chordal; in each, the size-9 node of T(G) does not satisfy the |S| =
9 condition in the definition of str*(D). In the top example, Gg is the
top-right graph in Figure 4; thus str*({4,5,6}) = 1, which is less than
min{str*(4),str*(5),str*(6)} = 2. In the bottom example, G is a bipartite
net, but S is not the center node of a star; thus str*({7,8,9}) = 1, which
is less than min{str*(7), str*(8),str*(9)} = 2.

7,8,9,
10,11,12 13,1415

7] 10
2 7 13
5 1 {1,2,3,} { 4,5,86, } {10,11,12,}
o - —

—
w
[o2]
>
w
—
[ -]
fo=y
>

7,8,9,
}— 10,11,12,
13,14,15

G T(G)

Figure 6: Two dual-chordal, but not strongly dual-chordal, graphs that
have size-9 nodes in their decomposition trees.
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Lemma 6 If G is a 3-connected dual-chordal graph such that, for every
k > 1, every cutset of str*-k edges either has a str*-k cut-chord or is a
str*-k triad, then every nonleaf node S of the decomposition tree T(G)
must have G be the left or middle graph in the top row of Figure 4—thus
S must have degree 2 in T(G), and so T(G) must be a path.

Proof. Suppose G is a 3-connected dual-chordal graph such that, for every
k > 1, every cutset of str*-k edges either has a str*-k cut-chord or is a
str*-k triad. Suppose S is a nonleaf node of T'(G). The proof will show
contradictions for all the possibilities for Gs in Figure 4 other than the left
and middle graphs in the top row.

Suppose for the moment that Gs is one of the top two graphs in the
right column of Figure 4. If D = {a,b,c} C S is a triad of G such that a, b,c
all have endpoints in the same dashed box of Gs and if D is in k nodes
of T(G), then D would be a triad of str*-k edges with str*(D) < k, since
S would not be counted in the definition of str*(D) [contradicting that D
would have to be a str*-k triad).

Next suppose that Gg is the bottom graph in the right column of Fig-
ure 4. Let v and w be the two vertices that only occur in Gg (indicated by
solid balls) with edges a, b, ¢ having endpoint v and ¢, d, e having endpoint
w. Edge c only occurs in the one node S of T'(G), and so str*(c) = 1, while
{a,b,d, e} is a cutset of str*-2 edges. Furthermore, ¢ is the only cut-chord of
{a,b,d,e} [contradicting that every cutset of four str*-2 edges would have
to have a str*-2 cut-chord|.

Finally, suppose G is one of the six graphs that are not in the top row or
the right column in Figure 4. In each case, there is a triad D = {ey, e, €3}
where each e; has an endpoint in a dashed hox that does not contain an
endpoint of either e; with j # i; thus each ¢; is in a node of T'(G) that does
not contain all of D. If k = min{str*(e,),str*(e2),str*(es)}, then D would
be a triad of str*-k edges with str*(D) < k [contradicting that D must be
a str*-k triad). o

Theorem 7 A 3-connected cubic graph is strongly dual-chordal if and only
if, for every k > 1, every cutset of str*-k edges either has a str*-k cut-chord
or is a str*-k triad.

Proof. First suppose G is a 3-connected strongly dual-chordal graph. Ar-
gue by induction on k > 1, where the k = 1 case follows from the definition
of dual-chordal and every edge and triad being a str*1 edge or a str*1 triad.
Suppose k > 2 and every cutset of str*-(k — 1) edges either has a str*(k —1)
cut-chord or is a str*(k — 1) triad. Suppose D is a cutset of str*-k edges.
Suppose for the moment that |D]| > 4. The induction hypothesis implies
that D has a str*(k —1) cut-chord e, and so G has a cutset D, of str*(k—1)
edges with e € Dy C DU {e} and |Dy| < |D|. Repeat this if |Ds| > 4,



eventually reaching a str™(k — 1) cut-chord e of D and edges a,b € D such
that D; = {a,b,e} is a triad of str*(k — 1) edges of G. The induction
hypothesis implies that D; is a str™(k — 1) triad, and so e € D; is in at
least k¥ — 1 nodes of T(G) that contain D;. Since e is also in a triad that is
contained in D U {e} — {a, b}, the edge e is in another node that does not
contain D;. Therefore, str*(e) > k, and so e is a str*k cut-chord of D.
Henceforth assume instead that |D| = 3. Since D is a triad of str*-k
edges with & > 2, there must be two adjacent nodes of T(G) that contain
D. Also, the inductive hypothesis implies that D is a str*-(k — 1) triad.
Suppose str*(D) = k — 1, which means D is not a str*-k triad [arguing by
contradiction]. Since that makes str*(D) < k < min{str*(e) : e € D}, the
definition of str*(D) implies that at least one of the following must hold:
(?) D is contained in a size-9 node S of T(G) where G5 is one of the top
two graphs in the right column of Figure 4.
(i) Each edge of D is in a node of T(G) that does not contain D.
(ii2) D is contained in a size-9 node S of T(G) that has a neighbor S’ that
either is not a leaf of T(G) or has |§'| = 9.

In case (2): Let D = {a,b,c}. Inspection of the two possibilities for G5
shows that there are six distinct edges a;, a; and b1, b2 and ¢;, ¢z in G that
share common endpoints with a, with b, and with ¢, respectively. Those
edges form a size-6 cutset D’ of G that has cut-chords a,b,c. In fact, a,b, ¢
are the only cut-chords of D' (if G; and G, are the graphs obtained from
decomposing G along the triad D’ as in Figure 1, then a, b, ¢ have a common
endpoint v in both G; and G3, with G; — v and G5 — v hoth 2-connected).
Furthermore, none of a,b,c is a strong cut-chord of D’ (since {a,a;,a2}
and {b,b;,b2} and {c, ¢, c2} are the only cutsets of G in D’ U {a,b,c} that
contain exactly one of a, b, ¢). Therefore, D’ cannot have a strong cut-chord
[contradicting that G is strongly chordal].

In case (4%), assuming that (i) does not hold: As mentioned before, D
is in adjacent nodes of T(G). In particular, D is in a node S that has
degree 6 > 3 in T(G) (using (it), since no two triads can have two edges in
common: if |D; N Dy| = 2, then the symmetric difference D, @ D3 would be
a size-2 cutset of G, contradicting that G is 3-connected). Let Sy,...,Ss
be the neighbors of S in T(G). If § > 4, then G can be decomposed along
the triads S NS4 through S N S5 (as in Figure 1) so as to obtain a graph
G that contains S; U Sy U S3—and this would reduce the problem to the
6 = 3 case. Henceforth assume 6 = 3, and so G is the left or middle graph
in the degree-3 row of Figure 4. Let D = {a,b, c}. Inspection of those two
graphs shows that each of the edges a, b, ¢ has an endpoint in one common
dashed box in Figure 4 and a second endpoint outside of that box. Let
a1, as and by, by and cj, cp be the edges of G that share common endpoints
with a, with b, and with ¢, respectively, and lie outside of that hox. The
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edges aj,asq, by, ba,c1,co form a size-6 cutset D’ of G that has cut-chords
a,b, c. By exactly the same argument as in case (i), D’ cannot have a strong
cut-chord [contradicting that G is strongly chordal].

In case (#ii): Let G; and G; be the graphs in the {K,, K3 3}-decom-
position of G that have E(G;) = S and E(G;) = S" Let the triad SN §’
equal {a,b,c}; let a;,a, and by, be be the edges of G; in S — S’ that share
an endpoint with a and with b, respectively; and let ¢;, ¢z be the edges of
G; in §' — S that share an endpoint with ¢. The edges a;,as,b1,b2,¢1,¢2
form a size-6 cutset D’ of G that has cut-chords a,b,c. None of a,b,c is
a strong cut-chord of D’ (since {a,a1,a2} and {b,b1,b2} and {c,c1,c2} are
the only cutsets of G in D' U {a, b, c} that contain exactly one of a,b,c).
Since {a,b,c,a1,a2,b1,b2} C S and |S| =9, there are two additional edges
dy and ds in S where, without loss of generality and using G; = K3 3, edge
d; shares one endpoint with a; and b (and the other endpoint with ¢ and
d3), while d; shares one endpoint with a; and b, (and the other endpoint
with ¢ and d;). Thus G; is a bipartite net, and d; and d, are the only other
possible cut-chords of D’ (since S’ not being a size-6 leaf of T'(G) implies
that Gg/ is not a net). But neither dy nor ds is a strong cut-chord of D’
(since {a1,b1,d;} and {ag,bs,d;} are the only cutsets of G in D' U {d,, d,}
that contain exactly one of dj,d2). Therefore, D’ cannot have a strong
cut-chord [contradicting that G is strongly chordal].

Conversely, suppose G is a 3-connected dual-chordal graph such that,
for every k > 1, every cutset of str*-k edges either has a str*-k cut-chord
or is a str*-k triad. By Lemma 6, T(G) is a path and each internal node S
of T(G) has Gg in the left or middle position on the top row of Figure 4.
If every internal node S has Gg the left top graph, then G is planar and so
is strongly dual-chordal by Corollary 5.

Henceforth assume that S is a size-9 node of T'(G) and G is the middle
graph of the top row of Figure 4. If T(G) is not a star whose center S is the
unique size-9 node, then S would not be counted in the definition of str* (D)
for any triad D C S [contradicting that str*(D) > min{str*(e) : e € D}].
Therefore, the path T'(G) must be a star whose center S is the unique size-9
node, and so G is one of the three strongly dual-chordal graphs shown in
Figure 7 (in which, from left to right, T(G) has order 3, 2, or 1). m|

Figure 7: Three nonplanar 3-connected strongly dual-chordal graphs.
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Corollary 8 Every 3-connected strongly dual-chordal graph is one of the
three nonplanar graphs shown in Figure 7 or is K4 or a triangular prism
with any number of parallel struts (as illustrated in Figure 8).

Figure 8: Triangular prisms with zero and ten parallel] struts.

Proof. The three nonplanar cases follow by the final two paragraphs of
the proof of Theorem 7. The planar cases of K, and triangular prisms with
paralle] struts are from (7, Thm. 11]. o
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