Dual-Chordal and Strongly Dual-Chordal Graphs

Terry A. McKee
Department of Mathematics & Statistics
Wright State University, Dayton, Ohio 45435 USA

Abstract

A graph is chordal if and only if every cycle either has a chord or is a triangle. If an edge (or triangle) is defined to be a strength-k edge (or triangle) whenever it is in at least k maxcliques, then a graph is strongly chordal if and only if, for every $k \geq 1$, every cycle of strength-k edges either has a strength-k chord or is a strength-k triangle. Dual-chordal graphs have been defined so as to be the natural cycle/cutset duals of chordal graphs. A carefully crafted notion of dual strength allows a characterization of strongly dual-chordal graphs that is parallel to the above. This leads to a complete list of all 3-connected strongly dual-chordal graphs.

1 Background

A maxclique of a graph is an inclusion-maximal complete subgraph. The clique strength of an edge e or triangle C in a graph G—denoted by $\operatorname{cstr}_G(e)$ and $\operatorname{cstr}_G(C)$, respectively—is the number of maxcliques of G that contain e or C. An edge e or triangle C is a cstr_G -k edge or cstr_G -k triangle, respectively, if $\operatorname{cstr}_G(e) \geq k$ or $\operatorname{cstr}_G(C) \geq k$. The subscript G will be dropped from cstr_G whenever it is clear which graph G is. Thus, every edge or triangle is automatically a cstr_G -1 edge or a cstr_G -1 triangle.

A graph is *chordal* if every cycle of length 4 or more has a chord—in other words, if every cycle (of cstr-1 edges) either has a (cstr-1) chord or is a (cstr-1) triangle. As introduced in [4], a chord e of an even-length cycle C of G is a strong chord of C if e forms a cycle with an odd number of edges of C. A graph is strongly chordal if it is chordal and every cycle of even length 6 or more has a strong chord; see [2, 4, 10] for details. The results in this paper are motivated by Proposition 1 (from [5, 8], in the terminology of [9]), which restates being strongly chordal as a natural strengthening of being chordal.

Proposition 1 A graph is strongly chordal if and only if, for every $k \ge 1$, every cycle of cstr-k edges either has a cstr-k chord or is a cstr-k triangle.

A cutset of a connected graph G is an inclusion-minimal set $D \subset E(G)$ such that G - D is not connected. A triad is a size-3 cutset, and a cyclic triad is a triad D such each component of G - D contains a cycle. An edge $e \notin D$ is a cut-chord of a cutset D if $\{e\}$ is a cutset of G - D; equivalently—and dually to chords of cycles—if D can be partitioned as $D_1 \cup D_2$ where each $D_i \cup \{e\}$ is a cutset of G. As in [6, 7], a graph is dual-chordal if every cutset of size 4 or more has a cut-chord—in other words, if every cutset either has a cut-chord or is a triad. (Warning: This duality should not be confused with hypergraph duality, which leads to another important notion dual to chordal: the "dually chordal graphs" of [1, 2].)

As in [7], it is useful to restrict attention to 3-connected graphs—always with at least three vertices—when studying dual-chordal graphs, especially in light of Proposition 2 from [7] (where being *cubic* means that every vertex has degree 3).

Proposition 2 Every 3-connected dual-chordal graph G is cubic.

Proof. If a 3-connected graph dual-chordal graph G had a vertex v of degree 4 or more, then the cutset D of all the edges incident with v would have a cut-chord e, and simultaneously deleting v and e from G would leave a disconnected graph, contradicting G being 3-connected.

2 Strongly dual-chordal graphs

As in [7], a cut-chord e of an even-size cutset D of G is a strong cut-chord of D if e forms a cutset with an odd number of edges of D. A graph is strongly dual-chordal if it is dual-chordal and every cutset of even size 6 or more has a strong cut-chord.

Dualizing what happens with chords and cycles in chordal graphs, an easy inductive argument on |D| shows that a 3-connected graph is dual-chordal if and only if every cutset D with $|D| \geq 4$ has a cut-chord e with edges $a,b \in D$ such that $\{a,b,e\}$ is a triad of G. Similarly, a dual-chordal graph is strongly dual-chordal if every cutset D with $|D| \geq 6$ has a cut-chord e with edges $a,b,c \in D$ such that $\{a,b,c,e\}$ is a cutset of G.

Proposition 2 allows us to restrict attention to cubic graphs. Results in [3] show that every 3-connected cubic graph G can be decomposed into smaller 3-connected cubic graphs G_1, G_2, \ldots by repeatedly applying the procedure illustrated in Figure 1 to cyclic triads and, moreover, that the set $\{G_1, G_2, \ldots\}$ of non-decomposable graphs ultimately obtained is unique. Given the graphs G_1, G_2, \ldots of the decomposition of G, let T(G) denote

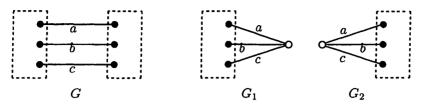


Figure 1: Decomposing G into graphs G_1 and G_2 along the triad $\{a, b, c\}$

the corresponding decomposition tree. For each node S of T(G), let G_S denote the subgraph of G that is formed by the edges in S.

If each subgraph G_i in a decomposition of G is isomorphic to K_4 or $K_{3,3}$, then G is called $\{K_4, K_{3,3}\}$ -decomposable in [3] (or see [7]), T(G) is called a $\{K_4, K_{3,3}\}$ -decomposition tree, and every node S of T(G) has either |S| = 6 or |S| = 9. Figure 2 shows an example of a 3-connected, cubic, strongly dual-chordal graph G and its $\{K_4, K_{3,3}\}$ -decomposition tree T(G). In this example, the triad $\{7, 8, 9\}$ decomposes G into a K_4 with edge set $\{1, 2, 3, 7, 8, 9\}$ and a graph G' with edge set $\{4, 5, \ldots, 15\}$ that is obtained from G by contracting the triangle $\{1, 2, 3\}$ to a single vertex; the triad $\{7, 8, 9\}$ corresponds to the left edge shown in T(G). The graph G' can then be decomposed along the triad $\{9, 10, 11\}$ into a K_4 with edge set $\{4, 5, 6, 9, 10, 11\}$ and a $K_{3,3}$ with edge set $\{7, 8, \ldots, 15\}$ that is obtained from the original G by contracting the triangles $\{1, 2, 3\}$ and $\{4, 5, 6\}$ into single vertices; the triad $\{9, 10, 11\}$ corresponds to the right edge shown in T(G).

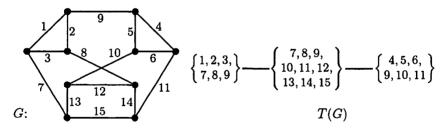


Figure 2: A strongly dual-chordal cubic graph and its decomposition tree.

Suppose G has a $\{K_4, K_{3,3}\}$ -decomposition tree T(G). If S is a degree-0 node of T(G), then $G_S \cong K_4$ or $G_S \cong K_{3,3}$. If S is a degree-1 node of T(G), then either G_S is net or a bipartite net graph, as illustrated in Figure 3.

If S is a degree-2 or higher node of T(G), then all the possibilities for G_S (up to isomorphism) are shown in Figure 4, where the vertices indicated by solid balls occur only in G_S for the one node S of T(G), while the three vertices in each dashed box are distinct endpoints of edges that are in both

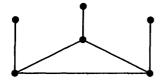




Figure 3: The net and bipartite net graphs.

 G_S and $G_{S'}$ for a neighbor S' of S in T(G). Contracting the subgraph inside each of the dashed boxes into a vertex would produce the K_4 or $K_{3,3}$ graph G_i in the $\{K_4, K_{3,3}\}$ -decomposition that has corresponding $E(G_S)$ and $E(G_i)$. For instance, in the degree-4 center column graph in Figure 4, $G_S \cong 2K_{1,3} \cup 3K_2$ (where $3K_2$ denotes the order-6 graph with three edges) with the corresponding $G_i \cong K_{3,3}$.

The results in Lemma 3 are all from [7] (where the *symmetric difference* of sets S_1, \ldots, S_n is the set of elements that occur in an odd number of S_1, \ldots, S_n).

Lemma 3 ([7]) The following hold for all 3-connected cubic graphs G:

- (1) A triad D of G is cyclic if and only if T(G) has an edge SS' with $D = S \cap S'$.
- (2) A triad D of G is cyclic if and only if the three edges in D have a total of six distinct endpoints in G.
- (3) G is dual-chordal if and only if every cutset D of G is the symmetric difference of triads $D_1, \ldots, D_{|D|-2}$ where $D_1 \cap D, \ldots, D_{|D|-2} \cap D$ partition D.
- (4) G is dual-chordal if and only if G is $\{K_4, K_{3,3}\}$ -decomposable.

3 Defining dual strength

Suppose G is a 3-connected cubic graph with a decomposition tree T(G). Define the dual strength of an edge e of G—denoted by $\operatorname{str}^*_G(e)$ —to be the number of nodes of T(G) that contain e. In the graph G in Figure 2, for instance, $\operatorname{str}^*_G(1) = 1$ and $\operatorname{str}^*_G(9) = 3$. Define the dual strength of a triad D of G—denoted by $\operatorname{str}^*_G(D)$ —to be the number of nodes S of T(G) that contain D such that the following holds:

If |S| = 9, then S is the unique size-9 node, G_S is neither of the top two graphs in the right column of Figure 4, and T(G) is a star with center S.

In the graph G in Figure 2, for instance, the center node S of the star T(G) corresponds to the graph G_S at the top of the center column of Figure 4,

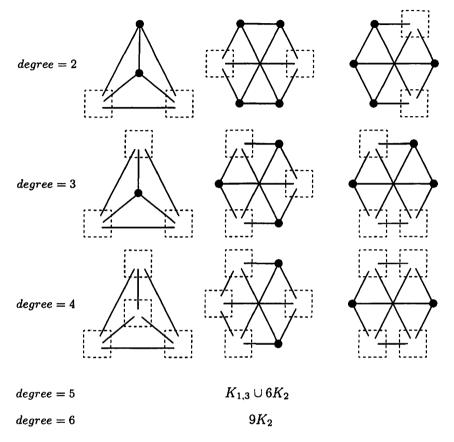


Figure 4: The possible G_S subgraphs for degree-2 or higher nodes S of T(G).

the two cyclic triads $\{7, 8, 9\}$ and $\{9, 10, 11\}$ have dual strength 2, and each of the ten noncyclic triads D has $\operatorname{str}^*(D) = 1$ (dropping the subscript G from str^*_G since it is clear which graph G is). Note that triads D always satisfy $\operatorname{str}^*(D) \leq \min\{\operatorname{str}^*(e) : e \in D\}$.

The definition of the dual strength of a triad may well look contrived, but notice that the |S| = 9 restriction only occurs for nonplanar graphs: $K_{3,3}$ will only occur in Lemma 3(4) when the graph G is nonplanar—if G is planar, then every S has |S| = 6. Also, Theorem 4 will show that the definition of $\operatorname{str}^*(D)$ can be defended by traditional graph-theoretic duality whenever G is planar (interchanging vertices with faces in a plane embedding).

Theorem 4 If a 3-connected cubic planar graph G has dual graph G^* , then every edge e of G has $\operatorname{str}^*_G(e) = \operatorname{cstr}_{G^*}(e)$ and every triad D of G has $\operatorname{str}^*_G(D) = \operatorname{cstr}_{G^*}(C)$ where C is the triangle in G^* that is dual to D.

Proof. Suppose a 3-connected cubic planar graph G is embedded in the plane and G^* is the vertex-face planar dual of G; thus the cutsets (and their dual-chords) of G correspond exactly to the cycles (and their chords) of G^* , and so G^* will be chordal [7]. By Lemma 3(4), every node of T(G) will have size 6. For each leaf node S of T(G), the graph G_S will be a net; say $S = \{a, b, c, d, e, f\}$ where a, b, c form a triangle in G and d, e, f form a triad of G. (Thus a, b, c will form a triad of the dual graph G^* —indeed, a, b, cwill have a common degree-3 endpoint in G^* .) Let G_1 be the graph with edge set $E(G) - \{a, b, c\}$ in the decomposition of G along the triad $\{d, e, f\}$, and repeat the above for the 3-connected cubic planar graph G_1 . In this way, repeatedly removing leaves from the trees $T(G), T(G_1), T(G_2), \ldots$ for this decomposition of G will correspond to a simplicial elimination scheme for G^* , see [2, 10], with the nodes of T(G) corresponding to the edge sets of the maxcliques of G^* . Therefore, every edge e of G has $\operatorname{str}^*_G(e) = \operatorname{cstr}_{G^*}(e)$ and every triad D of G has $\operatorname{str}^*_G(D) = \operatorname{cstr}_{G^*}(C)$ where C is the triangle in G^* that is dual to D.

Call an edge e or triad D a str*-k edge or str*-k triad, respectively, if $\text{str}^*(e) \geq k$ or $\text{str}^*(D) \geq k$. Thus, every edge or triad is automatically a str^* -1 edge or a str^* -1 triad.

Corollary 5 A planar 3-connected cubic graph is strongly dual-chordal if and only if, for every $k \ge 1$, every cutset of str*-k edges either has a str*-k cut-chord or is a str*-k triad.

Proof. For every 3-connected cubic planar graph G with dual graph G^* , the corollary follows from Proposition 1, Theorem 4, the identification of the cutsets (and their cut-chords) of G with the cycles (and their chords) of G^* , and the definitions of G being strongly dual-chordal and G^* being strongly chordal.

4 Strongly dual-chordal characterization

This section will generalize the result of Corollary 5 for planar 3-connected cubic graphs to arbitrary 3-connected cubic graphs. Theorem 7 will be the promised dual version of Proposition 1 (remembering that Proposition 2 allows the restriction to cubic graphs). Before that, several examples of dual-chordal graphs that are not strongly dual-chordal will be helpful.

Figure 5 shows a planar 3-connected graph that is dual-chordal, but not strongly dual-chordal: cutset $D = \{2, 3, 5, 6, 13, 14\}$ has cut-chords 8, 10, and 12, but no strong cut-chords; also, $D' = \{8, 10, 12\}$ is a triad of str*-2 edges with $\text{str}^*(D') = 1$.

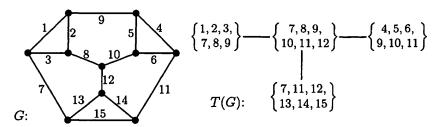


Figure 5: A planar 3-connected dual-chordal but not strongly dual-chordal graph and its decomposition tree.

Figure 6 shows two additional dual-chordal graphs that are not strongly dual-chordal; in each, the size-9 node of T(G) does not satisfy the |S| = 9 condition in the definition of $\operatorname{str}^*(D)$. In the top example, G_S is the top-right graph in Figure 4; thus $\operatorname{str}^*(\{4,5,6\}) = 1$, which is less than $\min\{\operatorname{str}^*(4),\operatorname{str}^*(5),\operatorname{str}^*(6)\} = 2$. In the bottom example, G_S is a bipartite net, but S is not the center node of a star; thus $\operatorname{str}^*(\{7,8,9\}) = 1$, which is less than $\min\{\operatorname{str}^*(7),\operatorname{str}^*(8),\operatorname{str}^*(9)\} = 2$.

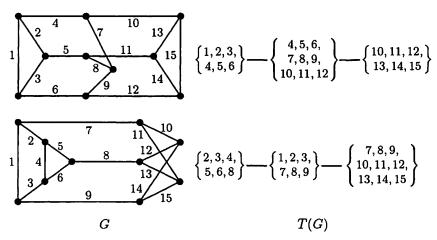


Figure 6: Two dual-chordal, but not strongly dual-chordal, graphs that have size-9 nodes in their decomposition trees.

Lemma 6 If G is a 3-connected dual-chordal graph such that, for every $k \geq 1$, every cutset of str^* -k edges either has a str^* -k cut-chord or is a str^* -k triad, then every nonleaf node S of the decomposition tree T(G) must have G_S be the left or middle graph in the top row of Figure 4—thus S must have degree 2 in T(G), and so T(G) must be a path.

Proof. Suppose G is a 3-connected dual-chordal graph such that, for every $k \geq 1$, every cutset of str*-k edges either has a str*-k cut-chord or is a str*-k triad. Suppose S is a nonleaf node of T(G). The proof will show contradictions for all the possibilities for G_S in Figure 4 other than the left and middle graphs in the top row.

Suppose for the moment that G_S is one of the top two graphs in the right column of Figure 4. If $D = \{a, b, c\} \subset S$ is a triad of G such that a, b, c all have endpoints in the same dashed box of G_S and if D is in k nodes of T(G), then D would be a triad of str*-k edges with str*(D) < k, since S would not be counted in the definition of str*(D) [contradicting that D would have to be a str*-k triad].

Next suppose that G_S is the bottom graph in the right column of Figure 4. Let v and w be the two vertices that only occur in G_S (indicated by solid balls) with edges a, b, c having endpoint v and c, d, e having endpoint w. Edge c only occurs in the one node S of T(G), and so $\operatorname{str}^*(c) = 1$, while $\{a, b, d, e\}$ is a cutset of str^* -2 edges. Furthermore, c is the only cut-chord of $\{a, b, d, e\}$ [contradicting that every cutset of four str^* -2 edges would have to have a str^* -2 cut-chord].

Finally, suppose G_S is one of the six graphs that are not in the top row or the right column in Figure 4. In each case, there is a triad $D = \{e_1, e_2, e_3\}$ where each e_i has an endpoint in a dashed box that does not contain an endpoint of either e_j with $j \neq i$; thus each e_i is in a node of T(G) that does not contain all of D. If $k = \min\{\text{str}^*(e_1), \text{str}^*(e_2), \text{str}^*(e_3)\}$, then D would be a triad of str*-k edges with $\text{str}^*(D) < k$ [contradicting that D must be a str^*-k triad].

Theorem 7 A 3-connected cubic graph is strongly dual-chordal if and only if, for every $k \ge 1$, every cutset of str*-k edges either has a str*-k cut-chord or is a str*-k triad.

Proof. First suppose G is a 3-connected strongly dual-chordal graph. Argue by induction on $k \ge 1$, where the k = 1 case follows from the definition of dual-chordal and every edge and triad being a str*-1 edge or a str*-1 triad. Suppose $k \ge 2$ and every cutset of str*-(k-1) edges either has a str*-(k-1) cut-chord or is a str*-(k-1) triad. Suppose D is a cutset of str*-k edges.

Suppose for the moment that $|D| \ge 4$. The induction hypothesis implies that D has a str*-(k-1) cut-chord e, and so G has a cutset D_2 of str*-(k-1) edges with $e \in D_2 \subset D \cup \{e\}$ and $|D_2| < |D|$. Repeat this if $|D_2| \ge 4$,

eventually reaching a str*-(k-1) cut-chord e of D and edges $a, b \in D$ such that $D_i = \{a, b, e\}$ is a triad of str*-(k-1) edges of G. The induction hypothesis implies that D_i is a str*-(k-1) triad, and so $e \in D_i$ is in at least k-1 nodes of T(G) that contain D_i . Since e is also in a triad that is contained in $D \cup \{e\} - \{a, b\}$, the edge e is in another node that does not contain D_i . Therefore, str* $(e) \geq k$, and so e is a str*-k cut-chord of D.

Henceforth assume instead that |D|=3. Since D is a triad of str*-k edges with $k \geq 2$, there must be two adjacent nodes of T(G) that contain D. Also, the inductive hypothesis implies that D is a str*-(k-1) triad. Suppose str*(D)=k-1, which means D is not a str*-k triad [arguing by contradiction]. Since that makes str* $(D) < k \leq \min\{\text{str}^*(e) : e \in D\}$, the definition of str*(D) implies that at least one of the following must hold:

- (i) D is contained in a size-9 node S of T(G) where G_S is one of the top two graphs in the right column of Figure 4.
- (ii) Each edge of D is in a node of T(G) that does not contain D.
- (iii) D is contained in a size-9 node S of T(G) that has a neighbor S' that either is not a leaf of T(G) or has |S'| = 9.

In case (i): Let $D = \{a, b, c\}$. Inspection of the two possibilities for G_S shows that there are six distinct edges a_1, a_2 and b_1, b_2 and c_1, c_2 in G that share common endpoints with a, with b, and with c, respectively. Those edges form a size-6 cutset D' of G that has cut-chords a, b, c. In fact, a, b, c are the only cut-chords of D' (if G_1 and G_2 are the graphs obtained from decomposing G along the triad D' as in Figure 1, then a, b, c have a common endpoint v in both G_1 and G_2 , with $G_1 - v$ and $G_2 - v$ both 2-connected). Furthermore, none of a, b, c is a strong cut-chord of D' (since $\{a, a_1, a_2\}$ and $\{b, b_1, b_2\}$ and $\{c, c_1, c_2\}$ are the only cutsets of G in $D' \cup \{a, b, c\}$ that contain exactly one of a, b, c). Therefore, D' cannot have a strong cut-chord [contradicting that G is strongly chordal].

In case (ii), assuming that (i) does not hold: As mentioned before, D is in adjacent nodes of T(G). In particular, D is in a node S that has degree $\delta \geq 3$ in T(G) (using (ii), since no two triads can have two edges in common: if $|D_1 \cap D_2| = 2$, then the symmetric difference $D_1 \oplus D_2$ would be a size-2 cutset of G, contradicting that G is 3-connected). Let S_1, \ldots, S_{δ} be the neighbors of S in T(G). If $\delta \geq 4$, then G can be decomposed along the triads $S \cap S_4$ through $S \cap S_{\delta}$ (as in Figure 1) so as to obtain a graph G_i that contains $S_1 \cup S_2 \cup S_3$ —and this would reduce the problem to the $\delta = 3$ case. Henceforth assume $\delta = 3$, and so G_S is the left or middle graph in the degree-3 row of Figure 4. Let $D = \{a, b, c\}$. Inspection of those two graphs shows that each of the edges a, b, c has an endpoint in one common dashed box in Figure 4 and a second endpoint outside of that box. Let a_1, a_2 and b_1, b_2 and c_1, c_2 be the edges of G that share common endpoints with a, with b, and with c, respectively, and lie outside of that box. The

edges $a_1, a_2, b_1, b_2, c_1, c_2$ form a size-6 cutset D' of G that has cut-chords a, b, c. By exactly the same argument as in case (i), D' cannot have a strong cut-chord [contradicting that G is strongly chordal].

In case (iii): Let G_i and G_j be the graphs in the $\{K_4, K_{3,3}\}$ -decomposition of G that have $E(G_i) = S$ and $E(G_j) = S'$. Let the triad $S \cap S'$ equal $\{a, b, c\}$; let a_1, a_2 and b_1, b_2 be the edges of G_i in S - S' that share an endpoint with a and with b, respectively; and let c_1, c_2 be the edges of G_i in S'-S that share an endpoint with c. The edges a_1,a_2,b_1,b_2,c_1,c_2 form a size-6 cutset D' of G that has cut-chords a, b, c. None of a, b, c is a strong cut-chord of D' (since $\{a, a_1, a_2\}$ and $\{b, b_1, b_2\}$ and $\{c, c_1, c_2\}$ are the only cutsets of G in $D' \cup \{a, b, c\}$ that contain exactly one of a, b, c). Since $\{a, b, c, a_1, a_2, b_1, b_2\} \subset S$ and |S| = 9, there are two additional edges d_1 and d_2 in S where, without loss of generality and using $G_i \cong K_{3,3}$, edge d_1 shares one endpoint with a_1 and b_1 (and the other endpoint with c and d_2), while d_2 shares one endpoint with a_2 and b_2 (and the other endpoint with c and d_1). Thus G_i is a bipartite net, and d_1 and d_2 are the only other possible cut-chords of D' (since S' not being a size-6 leaf of T(G) implies that $G_{S'}$ is not a net). But neither d_1 nor d_2 is a strong cut-chord of D'(since $\{a_1,b_1,d_1\}$ and $\{a_2,b_2,d_2\}$ are the only cutsets of G in $D' \cup \{d_1,d_2\}$ that contain exactly one of d_1, d_2). Therefore, D' cannot have a strong cut-chord [contradicting that G is strongly chordal].

Conversely, suppose G is a 3-connected dual-chordal graph such that, for every $k \geq 1$, every cutset of str*-k edges either has a str*-k cut-chord or is a str*-k triad. By Lemma 6, T(G) is a path and each internal node S of T(G) has G_S in the left or middle position on the top row of Figure 4. If every internal node S has G_S the left top graph, then G is planar and so is strongly dual-chordal by Corollary 5.

Henceforth assume that S is a size-9 node of T(G) and G_S is the middle graph of the top row of Figure 4. If T(G) is not a star whose center S is the unique size-9 node, then S would not be counted in the definition of $\operatorname{str}^*(D)$ for any triad $D \subset S$ [contradicting that $\operatorname{str}^*(D) \ge \min\{\operatorname{str}^*(e) : e \in D\}$]. Therefore, the path T(G) must be a star whose center S is the unique size-9 node, and so G is one of the three strongly dual-chordal graphs shown in Figure 7 (in which, from left to right, T(G) has order 3, 2, or 1).

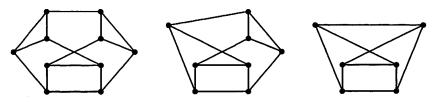


Figure 7: Three nonplanar 3-connected strongly dual-chordal graphs.

Corollary 8 Every 3-connected strongly dual-chordal graph is one of the three nonplanar graphs shown in Figure 7 or is K_4 or a triangular prism with any number of parallel struts (as illustrated in Figure 8).

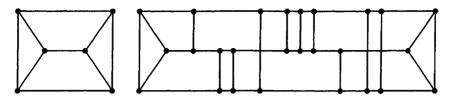


Figure 8: Triangular prisms with zero and ten parallel struts.

Proof. The three nonplanar cases follow by the final two paragraphs of the proof of Theorem 7. The planar cases of K_4 and triangular prisms with parallel struts are from [7, Thm. 11].

References

- [1] A. Brandstädt, F. F. Dragan, V. D. Chepoi and V. I. Voloshin, Dually chordal graphs, SIAM J. Discrete Math. 11 (1998), 437-455.
- [2] A. Brandstädt, V. B. Le, and J. P. Spinrad, *Graph Classes: A Survey*, Society for Industrial and Applied Mathematics, Philadelphia, 1999.
- [3] J.-L. Fouquet and H. Thuillier, Decompositions of 3-connected cubic graphs, *Discrete Math.* 114 (1993), 181-198.
- [4] M. Farber, Characterizations of strongly chordal graphs, *Discrete Math.* 43 (1983) 173-189.
- [5] T. A. McKee, A new characterization of strongly chordal graphs, Discrete Math. 205 (1999) 245-247.
- [6] T. A. McKee, Recognizing dual-chordal graphs, Congr. Numer. 150 (2001) 97-103.
- [7] T. A. McKee, Dualizing chordal graphs, Discrete Math. 263 (2003) 207-219.
- [8] T. A. McKee, Simplicial and nonsimplicial complete subgraphs, Discuss. Math. Graph Theory 31 (2011) 577-586.
- [9] T. A. McKee, Maxclique and unit disk characterizations of strongly chordal graphs, submitted.
- [10] T. A. McKee and F. R. McMorris, Topics in Intersection Graph Theory, Society for Industrial and Applied Mathematics, Philadelphia, 1999.