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Abstract

Let G = (V,E) be a graph having at least 3 vertices in each of
its components. A set L C V(G) is a liar’s dominating set if (1)
INglv)n L| > 2 for all v € V(G) and (2) [(Ne[u]U Ne[v]) N L} > 3
for every pair u,v € V(G) of distinct vertices in G, where Ng|z] =
{y € V|zy € E} U {z} is the closed neighborhood of z in G. In this
paper, we characterize the vertices that are contained in all or in
no minimum liar's dominating sets in trees. Given a tree T', we also
propose a polynomial time algorithm to compute the set of all vertices
which are contained in every minimum liar’s dominating set of T and
the set of all vertices which are not contained in any minimum liar’s
dominating set of T

Keywords: Liar's domination; Graph algorithin; Tree.

1 Introduction

Let G = (V, E) be a graph. For each v € V, let Ng(v) = {u|uv € E(G)}
denote the neighborhood of v and let Ng(v] = Ng(v)U{v} denote the closed
neighborhood of v. A vertex u € V(G) is said to be dominated by a vertex
v € V(G) if u € Ng[v]. A set D C V is called a dominating set of a
graph G = (V, E) if each vertex v € V is dominated hy a vertex in D,
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ie, [INgw]NnD| 2 1forallv e V. Aset D CV is called a double-
dominating set of a graph G = (V, E) if each vertex v € V is dominated by
at least two vertices in D, i.e., [Ng[v]N D| = 2 for all v € V. Doinination
and its variations have been extensively studied in the literature and are
used to model many practical problems arising in computer networks and
operations research (see [4, 5]).

Assume that a graph G = (V| E) models a communication network
where each vertex represents a communicating device and each edge repre-
sents a communication link between two of its end vertices. Assume that
each vertex of the graph G is the possible location for an intruder such as
a thief, a saboteur, a fire or some possible fault and there is exactly one
intruder in the system represented by G. A protection device at a ver-
tex v is assumed to be able to (1) detect the intruder at any vertex in its
closed neighborhood N¢[v], and (2) report the vertex u € Ng(v] at which
the intruder is located. One is interested in deploying protection devices
at minimum number of vertices so that the intruder can be detected and
identified correctly. This can be solved by finding a minimum cardinal-
ity dominating set, say D, of G and deploying protection devices at all
the vertices of D. If any one protection device can fail to detect the in-
truder, then to correctly detecting and identifying the intruder one needs
to place the protection devices at all the vertices of a minimum cardinal-
ity double-dominating set of G. If, however, any one protection device in
the closed neighborhood of the intruder vertex might (either deliberately
or through a transmission error) misreport (lie) the location of an intruder
in its closed neighborhood, then it has been shown by Slater [8] that to
correctly detecting and identifying the intruder one needs to place the pro-
tection devices at all the vertices of a minimum cardinality set L satisfying
(1) |LNNg[v]] > 2 for every v € V(G), and (2) for every pair u, v of distinct
vertices |(Ng[u]U Ng{v]) N L| > 3. Such a set L of vertices is called a liar’s
dominating set (see [8]).

A set L C V(G) of a graph G = (V, E) is called a liar’s dominating set
if (1) for all v € V(G), |Ng[v]NL| > 2 and (2) for every pair u,v € V(G) of
distinct vertices, |(Ng[u] U Ng[v]) N L| 2 3. The liar’s domination number,
denoted as vy g(G), is the minimum cardinality of a liar’s dominating set
of G.

Liar's domination has been studied in [7, 8]. In [8], Slater has given
some lower bounds for a general graph G having at least 3 vertices in terms
of the number of vertices n, the number of edges m and the maximum
degree A(G). He has also given an exact formula for the v r(G) if G is
either a path P, or a cycle C, with n vertices. In the same paper he has
proved that for a tree T° with at least 3 vertices (3/4)(n+1) < vr(T) <n
and also characterized the trees having v, g(T") = n. In (7] the trees having
vLr(T) = (3/4)(n + 1) have been characterized. Slater also proved that




the decision version of the minimum liar’s dominating set problem is NP-
complete [8] for general graphs.

It is interesting to study the characterization of the vertices of G that
are contained in all or in no set with a certain property P. Indeed, Hammer
et al. (3] have characterized the vertices which are contained in all or in no
maximum stable sets in a graph. Mynhardt [6] has characterized the ver-
tices that are contained in all minimum dominating set of trees. Cockayne
et al. [2] have characterized the vertices contained in all or in no minimum
total dominating set of trees and Blidia et al. [1] have characterized the
vertices contained in all or in no minimum double dominating set of trees.

In this paper, we characterize the vertices belonging to all or to no
minimum liar’s dominating set in a tree. We also propose polynomial timne
algorithm to compute these sets of a tree.

The rest of this paper is organized as follows. In section 2, we give some
pertinent definitions and state some known results which will be used in
the rest of the paper. In Section 3, we describe tree pruning technique and
reduction technique and give the characterization of the set of vertices con-
tained in all or in no minimum liar’s dominating set. In section 4, we show
that computing the set of vertices contained in all or in no minimuin liar’s
dominating set can be done in O(n®) time. Finally, Section 5 concludes
this paper.

2 Preliminaries

Let G = (V,E) be a graph. For S C V, let G[S] denote the subgraph
induced by G on S. The distance between two vertices u and v in a graph
G is the number of edges in a shortest path between them and is denoted
as dg(u,v). The degree of a vertex v, denoted by degg(v), is the number of
vertices adjacent to v. A tree is a connected graph which has no cycle. A
tree T} is called a rooted tree if one of its vertices, say r, has been designated
as the root. In a rooted tree, the parent of a vertex is the vertex adjacent
to it and is in the path from this vertex to the root. Every vertex v, except
the root, has a unique parent and is denoted by p(v). If a vertex v is
the parent of a vertex u, then u is called a child of v. The degree of a
vertex u in a rooted tree T, is basically the degree of that vertex in the
underlying tree. For a vertex u in a rooted tree T,,, let Cr,(u) and D, (u)
denote the set of children and the set descendants of u, respectively. Let
Dr,[u] = Dr,(u) U {u}. The mazimal subtree of a rooted tree T, at v is
the rooted subtree T,.[Dr, [v]] of T, induced by T, on Dr, [v]. A vertex v in
T. is called a leaf if v has no child in T;.. A pendant vertex is a vertex of
degree one. A vertex y adjacent to a pendant vertex z is called a support
vertez of z. Let P(G) and S(G) denote the set of all pendant vertices and
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the set of all support vertices of G, respectively. A vertex v in T, which has
at least two children is called a branch vertez. Let B(T}) denotes the set
of all branch vertices of T,.. For a vertex w of T;., we define P7(w) as the
set of leaves u € Dr,_(w) such that dr, (w, u) = j(meod 4) with j =0,1,2,3,
and every vertex in the path from w to p(u) other than w has exactly one
child. Let P, denote the path having n vertices.

There is no explicit formula for v, g(T’) for a tree T'. However, there is
an explicit formula for vLr(Pn),n 2 3.

Lemma 2.1. [8] For a path P,,n > 3, vpr(Pn) = [3(n 4 1)/4].

Definition 2.2. For a graph G, we define the sets ALr(G) and Nipr(G)
by

ALr(G) = {v € V(G)|v is in every minimum liar’s dominating set of G}
and
Nipr(G) = {v € V(G)|v is in no minimum liar’s dominating set of G}.

The following proposition immediately follows from the definition of
liar’s dominating set.

Proposition 2.3. Let G be a graph having at least three vertices. Then
the following statements are true.

(a) P(G)U S(G) € ALr(G).
(b) If u € P(G) is adjacent to v and Ng(v) = {u,w}, then w € ALg(G).

(c) If n = 3(mod 4), then P, has a unique minimum liar’s dominating
set. Moreover, if n = 3(mod 4) and vy,vs,...,Vn is an ordering of
P, such that viviy; € E(P,),1 <i<n-1, then ALr(P,) = {vili =
j(mod 4), where j € {1,2,3}} and NLr(P,) = {vi|i = 0(mod 4)}.

Definition 2.4. Attaching a path P, to x: Given a vertex z of a tree
T, we say we attach a path Py to z if we join z and a pendant vertex, say
y, of P by the edge zy to obtain the tree T. So V(T") = V(T) U V(FP%)
and E(T") = E(T)U E(P;) U {zy}.

Lemma 2.5. Let T = (V, E) be a tree with at least three vertices. Let u be
a pendant vertez of T and v be the support vertex of u. If T' is obtained
from T by attaching a P4 to u, then

(a) YLr(T') = vLr(T) + 3.

(b) For allw € V(T), if either () dr(u,w) > 3, or (ii) dr(u,w) = 2 and
|Nr(v)| > 2, then w € ALr(T) if and only if w € ALr(T").
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(c) For allw € V(T), if either (i) dr(u,w) = 3, or (it) dr(u,w) = 2 and
INT(v)| > 2, then w € N g(T) if and only if w € Npp(T").

Proof. Without loss of generality, let V(T”) = V(T)U{a, b, ¢,d} and E(T") =
E(T) U {ua,ab, be, cd}.

(a) Let L be a minimum liar’s dominating set of 7. By Proposition
2.3(a), u,v € L. Let L' = LU{b,c,d}. Clearly L’ is a liar’s dominating set
of T. Hence yLr(T’) < vLr(T) + 3.

Let L' be a minimum liar’s dominating set of 7. By Proposition 2.3(b)
beede L'. Ifa ¢ L', then L = L'\ {b,c,d} is clearly a liar’s dominating
set of T of size |L’| — 3. So assume that a € L’. Since degr(u) = 2,
L' contains at least one of u and v. If exactly one of u and v belongs
to L', then L”, which is obtained from L’ by replacing a with v or v
whichever is not present in L/, is a minimum liar’s dominating set of T’
not containing a. So L' = L" \ {b,¢,d} is clearly a liar’s dominating set
of T of size |L'| — 3. So assume that u,v € L’. If there exists a vertex
z € Nr(v)\ {u} such that = € L', then L'\ {a} is a liar’s dominating
set of T of cardinality less than |L’|. This contradicts the minimality
of L'. So (Nr(v)\ {u}) nL' = 9. Now L" = (L' \ {a}) U {z}, where
z € Nyr(w) \ {u}, is a minimum liar’s dominating set of 7" not containing
a. Now L" = L"\ {b,c,d} is clearly a liar’s dominating set of T of size
|L'} — 3. Hence in all the cases v r(T) < vLr(T') — 3.

Thus yLr(T') = vor(T) + 3.

(b) Let w € V(T') be such that either (¢) dp(u,w) > 3, or (if) dr(u, w) =
2 and |N7(v)| > 2.

Sufficiency: Suppose that w € ALr(T’). If possible suppose that
w ¢ ALr(T). So there exists a minimumn liar’s dominating set, say L, of
T not containing w. Let L’ = LU {b,¢,d}. Clearly L’ is a minimum liar’s
dominating set of T” not containing w. This is a contradiction to the fact
that w € ALr(T"). So, w € ALr(T).

Necessity: Let w € Apgp(T). If possible suppose that w ¢ App(T").
So there exists a minimum liar’s dominating set, say L', of T’ not contain-
ing w. By proposition 2.3(b) b,e,d € L'. If a ¢ L', then L = L'\ {b,¢,d}
is a minimum liar’'s dominating set of T not containing w. This is a con-
tradiction to the fact that w € ALr(T). So assume that a € L’. Since
degr+(u) = 2, L' contains at least one of u and v. If exactly one of u and v
belongs to L', then replace a in L’ with u or v whichever is not present in L’
to get the set L”. Clearly L” is a minimum liar’s dominating set of T' not
containing @ and L'’ = L" \ {b,¢,d} is a minimum liar’s dominating set of
T not containing w. This is a contradiction to that fact that w € ALr(T).
So assume that L' contains both v and v. Note that if there exists a vertex
z € Nr(v) \ {u} such that z € L, then deleting a from L’ gives rise to
a new liar's dominating set of T’ of cardinality less than {L’|. This con-
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tradicts the minimality of L’. So assume that (Np(v) \ {u}) N L' = 0.
Let L” = L'\ {a} U {y}, where y € Np(v) \ {z,w} if dp(u,w) = 2 and
y € Nr(v) \ {u} if dr(u,w) > 3. Now L” is a minimum liar's dominating
set of T' not containing w. Let L = L" \ {b,¢,d}. Clearly L is a mini-
mum liar’s dominating set of T not containing w. This is a contradiction
to the fact that w € ALp(T). Hence w € ALr(T").

(¢) Let w € V(T') be such that either () dr(u, w) 2 3, or (ii) dr(u,w) =
2 and |Nz(v)| > 2.

Sufficiency: Suppose that w € Npr(T’). If possible suppose that
w ¢ Nor(T). So there exists a minimum liar’s dominating set, say L, of
T containing w. Let L' = LU {b,¢,d}. Clearly L’ is a minimum liar’s
dominating set of T’ containing w. This is a contradiction to the fact that
w € N r(T"). So, w € Npr(T).

Necessity: Let w € Npr(T). If possible suppose that w ¢ Npr(T").
So there exists a minimum liar’s dominating set, say L', of T’ containing
w. By proposition 2.3(b) b,c,d € L’. Ifa ¢ L', then L = L'\ {b,c,d} is a
minimum liar’'s dominating set of T containing w. This is a contradiction
to that fact that w € Npg(T). So assume that a € L’. Since degr (u) = 2,
L' contains at least one of u and v. If exactly one of v and v belongs
to L', then replace a in L’ with u or v whichever is not present in L’ to
get the set L”. Clearly L” is a minimum liar’'s dominating set of 7" not
containing a and L' = L” \ {b, ¢,d} is a minimum liar's dominating set of
T containing w. This is a contradiction to that fact that w € Ny g(T). So
assume that L’ contains both u and v. Note that if there exists a vertex
z € Np(v) \ {u} such that £ € L, then deleting a from L’ gives rise to a
new liar’s dominating set of T” of cardinality less than |L’|. This contradicts
the minimality of L'. So if dr(u,w) = 2, then L’ cannot contain both u
and v and if dr(u,w) > 3, then assume that (Nr(v) \ {u}) N L' = 0. Let
L" = L'\ {a} U {y}, where y € Np(v) \ {u} if dp(u,w) > 3. Now L” is a
minimuin liar’s dominating set of T containing w. Let L = L" \ {b,¢,d}.
Clearly L' is a minimum liar’s dominating set of T containing w. This is
a contradiction to that fact w € Npg(T). Hence w € Npr(T"). O

3 Characterization of A r(T) and Npg(T) of a
tree T

In this section, we characterize AL g(T") and Npr(T) of a tree T.

For a rooted tree T, having root v, the sets W*(T},) and U*(T,) are
defined by W*(T,,) = {w € Cr, (v)|Dr,(w) N B(T},) = 0,|P3(w)| = 2 and
PO(w) U P (w) U P*(w) = 9} and U*(T,,) = {u € Cr, (v)|Dr, () N B(T,) =
0,|P (u)| = 1,|P°(u)| = 1 and P*(u) U P3(x) = 0}.
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We describe a class, CT(v), of rooted trees having root v and a tree,
denoted as T;. This class of trees, and the tree T,;, will play an important
role in our characterization.

Definition 3.1. The class CT'(v): A rooted tree T,, € CT(v) if T, satisfies
each of the following three conditions.

(¢) T, has at least three vertices.
(7¢) The cardinality of W*(T,) is at most one.
(#42) If u ¢ U*(T,) UW™*(T,) U {v}, then the subtree rooted at u is a path.

The tree T, is a rooted tree having root v such that v has exactly two
children, say wy and ws, and W*(Ty) = {wy, w2}

o v

) (2]
w u

Ty T,
Figure 1: Tree T and T, belonging to CT(v).

The tree T, in Figure 1 is a member of CT'(v). In the tree T, of Figure
1, the nodes w and u are in W*(T,,) and U*(T},), respectively. The tree T}
is shown in Figure 1.

3.1 Tree Pruning Technique

In this subsection, we describe a technique called tree pruning which
will allow us to characterize the sets ALr(T) and N r(T) of a tree T'.

Let v be any vertex of T and let T, be the rooted tree obtained from T
by making v the root of T,,. The pruning is applied to a rooted tree T,.

Definition 3.2. Tree Pruning at u:

Let u be a branch vertex of maximum distance from v in 7, such that
u ¢ U*(T,) U W*(T,,) U {v}. Note that |Cr,(u)| > 2 and degr, () < 2 for
z € Dr, (u).

The pruning of T, at u results in a rooted tree T, which is obtained
from T, as follows:
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o If |[P2(u)| > 1, then delete D, (u) from T, and attach a P, to u.
o If |P!(u)| > 2 and |P%(u)| = 0, then delete D, (u) from T, and a attach P» to u.

o If [PY(u)| = 1, |P%(u)] = 0 and |P3(u)| > 1, then delete D, (u) from T, and
attach a P, to u.

o If [P(u)] = 1, |P?(x)| = 0 and }P3(u)| = 0, then

- If |P%(u)| > 2 and u € Cr, (v), then delete Dr, (u) from T, and attach one
P, and one Py to u.

- If |P%(u)| > 1 and dr, (v,u) > 2, then delete D7, (u) from T, and attach a
P to u.

o If |[Pl(u)| = 0, |P2(x)| =0, |P3(x)] > 1 and |P%(u)| > 1, then delete D, (u)
from Ty and attach a Pa to u.

o If |Pl(u)| =0, |P%(z)] = 0 and |P%(u)| = 0, then

- If |P3(u)| > 3 and u € Cr,(v), then delete Dr, (u) from Ty and attach two
Pss to u.

- If |P3(u)| > 2 and dr,(v,u) = 2 and p(u) ¢ B(Ty), then delete D, (u)
from T, and attach a P3 to u.

- If |P3(u)| > 2 and either dr, (v,u) > 3 or p(u) € B(Ty) \ {v}, then delete
Dr, [y from Ty.

If |[P!(u)] = 0, |P%(x)| = 0, |P3(u)| = 0 and |P%(u)| > 2, then delete D, (u)
from T, and attach a Py to u.

Definition 3.3. Tree Pruning:

Repeat the tree pruning to T, until a tree T}, is obtained so that for
all v ¢ U*(T,) U W*(T},) U {v} degp,(u) < 2. The tree T, is called the
pruning of T,,.

We illustrate the tree pruning technique with the help of an example.
Consider the rooted tree T} of Figure 2(a). The vertices p,q,7, w1, w; and u
are the branch vertices of T}. The branch vertex p is at maximum distance
from v and since |P!(p)| = 1, |P%(p)| = |P3(p)| = O, |P°(p)| > 1 and
dri(v,p) > 2, we delete Dri(p) and attach a path P; to p to obtain the
tree T2 which is shown in Figure 2(b). Now the only branch vertices of T2
are q,r, w;,we and u and among these branch vertices g is the branch vertex
at maximum distance from v. Since |P(q)| = |P2(q)| =0, |P3(q)| > 1 and
|P%(q)| > 1, we delete Dr2(g) and attach a path P; to g to obtain the
tree T3 which is shown in Figure 2(c). The only branch vertices of T2 are
r, w1, ws and u. Since r is the branch vertex at maximum distance from v
and |P(r)] > 2 and |P%(r)| = 0, we delete Dy3(r) and attach a path P,
to  to obtain the tree T, which is shown in Flgure 2(d). The only branch
vertices of T are wy,w; and u. Since wy,ws € W*(T2) and u € U*(T}),
the pruning process can not be applied further. The pruning of Ty is T}
which is shown in Figure 2(d). So T} = T}.
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T T

Figure 2: The pruning of the tree T'! rooted at v.

The following lemma shows that the pruning of T, at u preserves the
property of v being in AL gr(T,) ( respectively, in Npg(T)).

Lemma 3.4. Let T, be a tree rooted at v and let u be a branch vertex of
mazimum distance from v in T, such that u ¢ U*(T,)UW™*(T,) U {v}. Let
ki = |PY(w)|, k2 = |P?*(u)|, k3 = |P3(u)|, and k4 = |P°(u)|. Suppose T, is
the tree obtained from T, as follows.
(1) If ka 2 1, then T} is obtained from T, by deleting D, (u) and attach-
ing a Py to u.
(2) If ky > 2 and ky = 0, then T, is obtained from T, by deleting Dr, (u)
and attaching a P> to u.
(3) If ky =1, ko =0 and k3 > 1, then T, is obtained from T, by deleting
Dr,(u) and attaching a P to u.
(4) Ifky =1, ko +k3 =0, kg > 2 and u € Cr,(v), then T, is obtained
from T,, by deleting Dr, (u) and attaching a Py and a Py to u.
(5) Ifky =1, ko + k3 =0, kg > 1 and dt,(v,u) > 2, then T, is obtained
from T, by deleting D, (u) and attaching a P; to u.

(6) If ki + ko =0, k3 > 1 and kg > 1, then T is obtained from T, by
deleting Dt (u) and attaching a P to u.

(7) If ky + k2 + k4 =0, k3 > 3 and u € Cr,(v), then T, is obtained from
T, by deleting Dy, (u) and attaching two Pss to u.
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(8) If ky + ko + kg =0, k3 > 2, dr, (v,u) =2 and p(u) ¢ B(T,), then T,
is obtained from T, by deleting Dr, (u) and attaching a P3 to u.

(9) If ky + ko + k4 = 0, k3 > 2 and either dr,(v,u) > 3 or p(u) €
B(T,) \ {v}, then T, is obtained from T, by deleting DT [u].

(10) If ky+ko+ks = 0 and kg > 2, then T, is obtained from T, by deleting
Dr,(u) and attaching a Py to u.

Then the following statements are true.
(a) v € ALr(Ty) if and only if v e ALr(T}).
(b) v € Npr(Ty) if and only if v e NLr(T}).

Proof. Let u; be a child of v in T, and let z € D1, (u;1) be a leaf vertex of
T,. If dp, (u1,z) > 4, then let z;,2,, and 3 be vertices in T, such that
z) = p(z),z2 = p(x1), and z3 = p(z2). Let T} be the tree obtained from
T, by removing z,z;, 9, and z3 from T,. By Lemma 2.5, v € ALp(T},)
(respectively v € Npp(Ty)) if and only if v € ALg(T)) (respectively v €
NLR(T})). By repeating this process we can obtain a tree T2 such that
drz(u,z) < 4 for all leaves z of T2 which are descendant of u. So without
loss of generality assume that dr, (u,z) < 4 for all leaves z of T, which are
descendant of u.

Let P'(u) = {aj,az,...,ak,}, P?(u) = {ui,uz,...,ux,}, P3(u) =
{z1,22,...,2k, } and P%(u) = {s1,82,...,5k,}. Let p(u;) =¢;,1 < i < ko,
p(z:) = yi, and p(y;) = x;, 1 < @ < ks, p(si) = ri, p(r:) = qi, and p(g:) = pi,
1<i<k,.

Case 1: ky > > 1.

Let X = (UZH {a:}) U(UIZ8 (15,43} U (UZH {a, s, 26 ) U (UIZH (@,
ry, 8t}). By Proposmon 2.3, every minimum har s dominating set of T,
contains X. Let T) = T, \ (Dr, (u) \ {t1,u1}). Let L' be a minimum liar’s
dominating set of TJ. Clearly L = L' U X is a liar’s dominating set of T,,.
Hence, vLr(Ty) < vr(T)) + k1 + 2(k2 — 1) + 3k3 + 3k4. On the other
hand, let L be a minimum liar's dominating set of T,,. So X C L. Clearly
L' = L\ X is a liar’s dominating set of . So vLr(T}) < vor(Ty) — k1 —
2(ke — 1) —3k3z —3k4. Thus ’)’LR(T‘,) = ’YLR(T:,) +ky +2(k2 - 1) + 3k3 + 3k,4.
Hence L is a minimum liar’s dominating set of T, if and only if L’ = L\ X
is a minimum liar’s dominating set of T,.

(a) Suppose v € ALg(T},). Let L be an arbitrary minimum liar’s domni-
nating set of T,,. As seen above, L’ = L\ X is a minimum liar’s dominating
set of T) andsov e L'. As L' C L, v € L. Hence, v € Apr(T,,).

Conversely, suppose that v € AL r(T,). Let L’ be an arbitrary minimumn
liar’s dominating set of T/. As seen above L = L' U X is a minimum
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liar’s dominating set of T, and so v € L. Since v ¢ X, v € L’. Hence
ve ALr(Ty).

Hence v € App(T,) if and only if v € ALr(T}) in this case.

(b) Suppose that v € N r(T,) and L is an arbitrary minimum liar’s
dominating set of T,,. As seen above, L' = L\ X is a minimum liar’s
dominating set of T, and so v ¢ L’. Since v ¢ X, v ¢ L. Hence, v €
NLR(TU)'

Conversely, suppose that v € Ny r(Ty) and L’ is an arbitrary minimum
liar’s dominating set of T,,. Then L = L'UX is a minimum liar’s dominating
set of T, and so v ¢ L. This implies that v ¢ L’. Hence, v € Npr(T}).

Hence v € Ny r(T,) if and only if v € N g(T}) in this case.

As the proof of item (b) is similar to item (a) as seen in Case 1, the
proof of item (b) is omitted in the remaining cases.

Case 2: k; > 2 and k; = 0.

Let X = (UiZ¥ {a; U(UEZ {2y, ye, 26 )U(UIZR4 {q1, 71, 1 }). By Propo-
sition 2.3, every minimum liar’s dominating set of T}, contains X. Let T, be
the tree obtained from T, by deleting Dr, (1) and attaching a path P, = =y
to u so that y becomes a pendent vertex of T,. By Proposition 2.3, every
minimumn liar’s dominating set of T, contains {z,y}. Let L’ be a minimum
liar’s dominating set of T,. Clearly, L = (L' \ {z,y}) U X is a liar's dom-
inating set of T,,. Hence, yLr(Tv) < vLr(T)) + k1 + 3kz + 3k4 — 2. On
the other hand, let L be a minimum liar’s dominating set of T,,. Clearly,
L' = (L\ X)VU {=z,y} is a liar’s dominating set of T. Thus, yLr(T)) <
’yLR(Tv)—kl—3k3—3k4+2. So ’YLR(Tv) = ’)‘LR(T{,)-‘I'kl +3k3+3ks—2. Hence
L is a minimum liar’s dominating set of T}, if and only if L' = (L\ X)U{z, y}
is a minimum liar’s dominating set of T7.

(a) Suppose that v € ALp(T}) and L is an arbitrary minimum liar’s
dominating set of T,. As seen above, L’ = (L \ X) U {z,y} is a minimum
liar’s dominating set of T}, and so v € L’. Since v ¢ {z,y}, v € L. Hence,
v € ALr(T).

Conversely, suppose that v € Ay g(T,) and L' is an arbitrary miniinum
liar’s dominating set of T,. Then L = (L' U X) \ {z,y} is a minimum liar’s
dominating set of T, and so v € L. Now since v ¢ X, v € L. Hence
v € ALr(T})-

Hence v € ALp(T,) if and only if v € ALg(T") in this case.

Case 3: ky =1 and ky =0.
(i) k3 > 1.

Let X = {al}U{zl}U(U',:zg" {zk, Yk, zk})u(ufzf‘ {qi, 71, s1}). By Propo-
sition 2.3, every minimum liar’s dominating set of T, contains X. Let
T, = T, \ (Dr,(u) \ {x1,11}). Let L’ be a minimum liar’s dominating
set of T/. Clearly L = L’ U X is a liar’s dominating set of 7,,. Hence,
Yor(Ty) € YLr(T!) + 3(kz — 1) + 3k4 + 2. On the other hand, let L be
a minimum liar's dominating set of T;,. Clearly, L’ = L\ X is a liar’s
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dominating set of 7). Thus, YL r(T,) < vLr(Tv) — 3(k3 —1) — 3kq4 — 2. So
YLr(Ty) = vLr(T)) +3(k3 — 1)+ 3ks +2. Hence L is a minimum liar’s dom-
inating set of T, if and only if L’ = L\ X is a minimum liar’s dominating
set of T.

(a) Suppose v € ALgr(T) and L be an arbitrary minimum liar’s domi-
nating set of T,,. As seen before, L’ = L\ X is a minimum liar’s dominating
set of T/ and so v € L' C L. Hence, v € ALr(Ty).

Conversely, suppose that v € ALr(T,) and L’ is an arbitrary minimum
liar’s dominating set of 7. Then L = L'UX is a minimum liar’s dominating
set of T, and so v € L. Now since v ¢ X, v € L'. Hence, v € ALr(T}).

Hence v € ALg(Ty) if and only if v € ALr(T}) in this case.

(ii) k3 =0, k4 > 2 and u € Cr, (v).

Let X = (Uf:'zc4 {ai,m1,81}). By Proposition 2.3, every minimum liar’s
dominating set of T}, contains X. Let T, = T,\ (Dr, (u)\{e1,P1,01,71,51})-
Let L’ be a minimum liar's dominating set of T,. Clearly, L=L'UX is a
liar’s dominating set of T,,. Hence, y.r(Tv) < YLr(T,) +3(k4 —1). On the
other hand, let L be a minimum liar’s dominating set of T,,. By Proposition
2.3, (Uf:’f‘{ql,r,,sl}) C L. Note that, at most one of p;, 1 < i < k4 can
belong to L because otherwise by deleting p, form L for some 1 <t < kq
such that p, € L we get a new liar’s dominating set whose cardinality is
less than |L|. Now if {pi|1 <! < k4}NL =0, then L' = L\ X is a liar’s
dominating set of T,. So, without loss of generality, let p; be the only
vertex such that p; € {p|1 <! < k4} N L. In this case also L' = L\ X
is a liar’s dominating set of T,,. So v r(T,) < YLr(T») — 3(k4 — 1). Thus
YLr(Ty) = vLr(T)) + 3(kg — 1). Hence L is a minimum liar’s dominating
set of T, if and only if L’ = L\ X is a minimum liar’s dominating set of T,.

(a) Suppose that v € Ay gr(T,) and L is an arbitrary minimum liar’s
dominating set of T,. As seen before, L’ = L\ X is a minimuin liar’s
dominating set of T, and so v € L' C L. Hence v € AL r(Ty).

Conversely, suppose that v € AL g(7T,) and L’ is an arbitrary minimum
liar’s dominating set of T),. Then L = L'UX is a minimum liar’s dominating
set of T, and so v € L. Now since v ¢ X, v € L’. Hence v € A p(T}).

Hence v € ApLr(Ty) if and only if v € ALr(T}) in this case.

(iii) k3 =0, k4 > 1 and d7, (v,u) > 2.

Let X = (U,:'f‘ {q1,71,51}). By Proposition 2.3, every minimum liar’s
dominating set of T, contains X. Let TV = T \ (Dr,(u) \ {a1}). Let
L’ be a minimum liar’s dominating set of T). Clearly, a;,u,p(z) € L' and
L = L'UX is a liar’s dominating set of T,,. Hence, yLr(Tv) < vLr(T))+3k4.
On the other hand, let L be a minimum liar’s dominating set of T,,. First
note that, at most one of {p1|]1 <! < k4} can be in L (say p1). If pr ¢ L,
then clearly L' = L\ X is a liar’s dominating set of T,. Now, if p, p(u) € L,
then L is not a minimum liar’s dominating set. So if p; € L, then p(u) ¢ L.
Hence, clearly L” = L\ (X U {p1}) U {p(u)} is a liar’s dominating set of T,.
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In any case, yLr(T') < vLr(T) — 3k4. Hence v p(Ty) = vLr(T?) + 3k4.

(a) Suppose that v € ALp(T,) and L is an arbitrary minimum liar’s
dominating set of 7,,. As seen above, depending on L, either L' or L"
is a minimum liar’s dominating set of T,,. Since v € L' and v € L” and
v # p(u), v € L. Hence v € ALr(T}).

Conversely, let v € ALgr(T,) and L' be an arbitrary minimum liar’s
dominating set of T,. Clearly L = L’ U X is a minimum liar’s dominating
set of T,. Sinceve Landv ¢ X,ve L. Sov e A p(T)).

Hence v € ALgr(T,) if and only if v € ALg(T}) in this case.

Case 4. k; + ko = 0.
(i) k3 > 1 and k4 > 1.

Let X = {z1} U (UF=52 {2y, yx, 2 }) U (Uj=¥4 {1, 71, 51}). By Proposition
2.3, every minimum liar’s dominating set of T, contains X. Let T =
To\ (Dr,(u)\ {z1,11}). Let L' be a minimum liar’s dominating set of T;,.
Clearly, L = L' U X is a liar's dominating set of T,,. Hence v r(T}) <
YLr(T,) + 3(ks — 1) + 3k4 + 1. On the other hand, let L he a minimum
liar’'s dominating set of T,,. If u € L, then clearly L' = L\ X is a liar’s
dominating set of T!. If u ¢ L, then by minimality we have k4 = 1, and so
p1 € L. In that case, L” = L\ (X U {p1}) U {u} is a liar’s dominating set
of T). Thus vy r(T)) £ yLr(T,) — 3(ks — 1) — 3k4 — 1. Hence v.r(T,) =
’)’LR(T,’,) + 3(k3 - 1) + 3k4 + 1.

(a) Suppose that v € AL r(T!) and L is an arbitrary minimum liar’s
dominating set of T,,. As seen above, depending on L, either L' or L” is
a minimum liar’s dominating set of T,. Since v € L/, v € L”, and v # u,
v € L. Hence v € ALr(Ty).

Conversely, let v € ALr(T},) and L’ be an arbitrary minimnumn liar’s
dominating set of T,. Clearly L = L' U X is a minimum liar’s dominating
set of T,,. Now, sincev € Land v ¢ X, v € L'. Hence v € A r(T}).

Hence v € A p(Ty,) if and only if v € ALp(T)) in this case.

(ii) k3>3,ky=0and ue CT',(’U).

Let X = (U::'g" {zk, Yk, zc}). By Proposition 2.3, every minimum liar’s
dominating set of T;, contains X. Let T, = T, \ (Dr, (u) \ {21, y1, 21, T2, ¥2,
22}). Let L' be a minimum liar’s dominating set of 7. Clearly, L = L’'UX
is a liar’s dominating set of T,,. Hence, yLr(Ty) < yLr(T}) + 3(k3 —2). On
the other hand, let L be a minimum liar’s dominating set of T,. Clearly L' =
L\ X is aliar’s dominating set of T,. Thus, ypr(T") < yLr(Ty) — 3(k3 —2).
Hence, 7L r(Tov) = vLr(T3) + 3(ks — 2).

(a) Suppose that v € App(T!) and L is an arbitrary minimumn liar’s
dominating set of T,,. As seen before, L' = L\ X is a minimum liar’s
dominating set of T, and so v € L’ C L. Hence v € ALr(T).

Conversely, suppose that, v € Apr(T,) and L’ be an arbitrary minimum
liar’s dominating set of T),. Then L = L'UX is a minimum liar’s dominating
set of T,, and so v € L. Now since v ¢ X, v € L'. Hence v € ALr(T}).
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Hence v € AL r(T,) if and only if v € ALg(T}) in this case.
(iii) k3 > 2, k4 = 0, dT, (v, u) = 2 and p(u) ¢ B(T,).

Let X = (UF=%3{xx, yk, z}). By Proposition 2.3, every minimum liar’s
dominating set of T, contains X. Let T, = T, \ (Dr, (u) \ {z1,11,21})-
Let L' be a minimum liar’s dominating set of T,. Clearly L = L'U X is
a liar’s dominating set of T,. Hence vy r(Tv) < vLr(T,) + 3(k3 — 1). On
the other hand, let L be a minimum liar's dominating set of T,,. If u € L,
then clearly L’ = L\ X is a liar’s dominating set of T,. And if u ¢ L, then
p(u) € L. So, in this case also, L’ is a liar’s dominating set of 7,,. Thus
YLr(T)) < vLr(Ty) — 3(ks — 1). Hence vpr(To) = 1Lr(Ty) + 3(ks — 1).

(a) Suppose that v € ALr(T}) and L is an arbitrary minimum liar’s
dominating set of T,. As seen above, I’ = L\ X is a minimum liar’s
dominating set of T%,. So v € L’ C L. Hence v € ALr(Ty).

Conversely, let v € ALr(T,) and L' be an arbitrary minimum liar’s
dominating set of T),. Clearly L = L' U X is a minimum liar’s dominating
set of Ty,. Sinceve Land v¢ X, v e L'. Hence ve ALp(T}).

Hence v € ALg(T,) if and only if v € ALr(T}) in this case.

(iv) k3 > 2, kg = 0 and either dr, (v,u) > 3 or p(v) € B(T,) \ {v}.

Let T = T\ Dr,[u]. Let L' be a minimum liar’s dominating set of T.
Let X = (U::'f’ {Zk,Yk, 2x}). Clearly L = L' U X is a liar’s dominating
set of T,. Hence vLr(T,) < vLr(T,) + 3ks. On the other hand, let L be
a minimum liar’s dominating set of T,,. If u ¢ L, then L' = L\ X is a
liar’s dominating set of T,. Now assume that v € L. If p(u) ¢ L, then
L" = L\ (X U {u}) U {p(u)} is a liar’s dominating set of T,. If p(u) € L,
then by minimality of L, L" = L\ (X U {u}) U {z} is a liar’s dominating
set of T, where z € N(p(u)) \ {u} and hence vLr(T}) < vLr(TV) — 3ks.
Hence yLr(Ty) = vLr(T,) + 3ks.

(a) Suppose that v € ALr(T,) and L is an arbitrary minimum liar’s
dominating set of T,,. As seen above, depending on L, one of L', L” and
L" is a minimum liar’s dominating set of T),. Since v € L',v € L",v € L',
and v ¢ {p(u),z}, v € L. Hence v € A g(T).

Conversely, let v € ALr(Ty,) and L' be an arbitrary minimum liar’s
dominating set of T,,. Clearly, L = L' U X is a minimum liar’s dominating
set of T,,. Sincev € L and v¢ X, ve L. Hence v € A r(T)).

Hence v € Apr(T,) if and only if v € AL p(T}) in this case.

(v) k3 =0and k4 > 2.

Let T, = T, \ (Dr, () \ {p1,91,71,51}). Let L’ be a minimum liar’s
dominating set of T). Let X = (U;=54{q, 71, :}). Ifu € L', then L; = L'\X
is a liar's dominating set of T,,. If u ¢ L, p1,p(u) € L’ and then L, = L' U
(Xu{u})\{p1} is a liar’s dominating set of T,,. Hence yLr(Ty) < vLr(T})+
3(ks —1). On the other hand, let L be a minimum liar’s dominating set of
T,. If u € L, then without loss of generality, p; ¢ L for l € {2,...,k4} and
so L' = L\ X is a liar's dominating set os T,. And if u ¢ L, then by the
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minimality of L, ks = 2 and so py,p2 € L. Now L” = L\{p, g2, 72, s2}U{u}
is a liar's dominating set of T, of cardinality y.r(T,) — 3(kq — 1) where
ks = 2. It follows that v r(T)) < vLr(T) — 3(ks — 1). Hence v r(Ty,) =
YLr(Ty) + 3(ks — 1).

(a) Suppose that v € A r(7T,) and L is an arbitrary minimum liar’s
dominating set of T,. As seen above, depending on L, one of L’ and L” is
a minimum liar’s dominating set of T,,. Since v € L',v € L"” and v # u,
v € L. Hence v € Apr(Ty).

Conversely, let v € ALgr(T,) and L' be an arbitrary minimum liar’s
dominating set of T),. Again as above, depending on L', one of L; and L, is
a minimum liar’s dominating set of T,,. Since v € L, Ls and v ¢ X U {u},
v € L. Hence v e A r(T}).

Hence v € ALr(T,) if and only if v € ALg(T}) in this case. O

Since T, is obtained from T, by applying the pruning process a finite
number of times, the following corollary follows from Lemimna 3.4.

Corollary 3.5. Let T, be a tree rooted at v and T, be the pruning of T,.
Then

(a) v € ALr(T,) if and only if v € ALr(T,,).
(b) v € NLr(Ty) if and only if v € NLr(Ty).

3.2 The Tree Reduction Technique

If neither T, = T nor T, € CT(v), then we apply reduction technique
which will produce a tree T, rooted at v such that either T, = Ty or
T, € CT(v). The tree T, is called the reduction of T,.

m try u
T,

Figure 3: The reduction of T,,.

In Figu{e 3, the tree T, rooted at v contains wy,ws € W*(T,). Hence
we reduce T}, to obtain a tree T, rooted at v which contains only one vertex
wy € W*(Ty,).
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Lemma 3.6. Suppose that neither T, = T* nor T, € CT(v) but degr, (u) <
2 for allu ¢ U*(T,) uW*(T, JU {v}. IfCT ('U)\W"(T )#0, then let S =
W*(To) \ {w1}, where wy € W*(T,,). IfCr, (v)\W‘(T )=0, then let S =
W*(T,) \ {w1,ws}, where wy,ws € W*(T,,). Let T, =T,[V(T)\ Dy, [S]]
Then v € ALr(T,) (respectively v € Nir(Ty)) if and only if v € ALr(T,)
(respectively v € Npr(T3,)).

Proof. By Lemma 2.5 we can assume without loss of generality that all the
leaves of T, in Dy, (w) are at distance 3 for each w € W*(T,).

Case 1: Cp, (v)\W‘(T ) # 0.

Let X = UyesD(w). Let L’ be a minimum liar’s dominating set of
T Clearly L = L' U X is a liar’s dominating set of T,. Hence y.r(T}) <
v1r(T,) +]X|. On the other hand, let L be a minimum liar’s dominating
set of T,,. Note that at most two vertices from W* (T' ) can belong to L since
L is a minimum liar’s dominating set. If |W*(T,,) N L| < 1, then clearly

= L\ X is a liar’s dominating set of T,. So assume that [W* (T )NL| = 2.
Let W*(T,) N L = {z1,z2}. If there exists u € Cr, (v) \ W*(T,) such that
u € L, then L\ {z2} is a liar’s dominating set of T, of cardinality less than
|L| which is a contradiction to the minimality of L. So (Cr, (v) \W*(Ty))N
L =0 Now L" = (L\(XU/{z3})) U {u} is a liar’s dominating set of
Ty, where u € (Cr,(v)\ W*(T,)). So vLr(Ty) < vLr(Ty) —|X|. Hence
e = wr(T) + | X|.

Let v € ALR(T )} and L be an arbitrary minimum liar’s dominating
set of T,,. As we have seen above, either L' or L” is a minimum liar’s
dominating set of T,. Since v € L/, v € L”, and v # u, v € L. This
implies that v € ALg(T,). On the other hand, let v € AL g(T,) and L’
be an arbitrary minimum liar’s dominating set of T;,. Then L = L' U X is
a minimum liar’s dominating set of T}, and so v € L. Now since v ¢ X,
v € L'. Hence v € ALr(T,). )

Thus v € ALR(T,,) if and only if v € Apr(Ty).

Let v € NLg(T,) and L be an arbitrary minimum liar’s dominating
set of T,. As we have seen above, either L’ or L" is a minimum liar’s
dominating set of T,. Now v ¢ L’ and v ¢ L”. Since neither v = u nor
v € X, v ¢ L. This implies that v € Ny r(T,). On the other hand, let
v E NLR(TU) and let L’ be an arbitrary minimum liar’s dominating set of
T,. Now L = L’UX is a minimum liar’s dominating set of T}, and so v ¢ L.
Since L' € L, v ¢ L'. Hence v € Npgr(T}).

Thus v € Npr(Ty) if and only if v e Nor(To).

Case 2: Cp (v) \W*(T},) =

In this case T, = T, Let X = V(T.,) \ ({v} U Cr, (v)). By Proposition
2.3, X C L for every minimum liar’s dominating set L of T;,. By definition of
liar’s dominating set, | Nz [v]N L| > 2 for every minimum liar’s dominating
set L of T,. So X U{v, wl} is a minimum liar’s dominating set of T,,, where
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wy € Ny, (v). Similarly X U {w;, ws} is a minimum liar’s dominating set of
Ty, where wy, wy € Ny, (v). Hence v ¢ Ay r(T,,) and v ¢ N p(Ty). Using
the similar arguments it can be shown that v ¢ A p(T,) and v ¢ Npr(T,).
Thus v € ALg(T},) if and only if v € ALg(T,) and v € Ny r(T,) if and
only if v € Npr(Ty). O

3.3 Characterization

Let T be a tree having at least three vertices. Let T, be the rooted tree
obtained from T by making a vertex v of T the root of T,,. By Corollary 3.5
and by Lemma 3.6, v € ALpr(T,)( respectively v € Ny r(T5)) if and only if
ve ALr(To)( respectively v € N, r(T, )). So we first find the characteriza-
tion for v € ALR(TU) and for v € N, LR(T ). We then characterize the sets
Apr(T) and N g(T) for a tree T.

Theorem 3.7. Let T be a tree having at least three vertices and v be any
vertex of T. Let T, be the pruning of T, and let T,, be the reduction of T,,.
Then

(a) v € ALr(T,) if and only if at least one of the following conditions
is satisfied:

(1) degp (v) = 1.

(2) Cg (v) contains a leaf of T,.

(3) C:T‘u (v) contains a vertez x such that Cy () = {y} and y is a leof of

Ty.

(4) |P°(w)| = 3.

(5) |1P'(v)] = 2.

(6) |1P*(v)] = 2.

(7) |P°(v)| = 2 and |P3(v)| > 1.

(8) |P°(v)| = 2 and |P'(v)| = 1.

(9) |P°(v)| € {1,2} and |P%(v)| = 1.
(10) |P'(v)| = |P*(v)| = 1.
(11) |P°(v)| = |P'(v)| = 1 and |P%(v)| 2 1.
(12) (U(T,)| > 2.

(13) [U*(T,)| = 1 and |P°(v) U P}(v) U P2(v)| > 1.
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(14) |P°(v)U P} (v)UP%(v)UP3(v)| = 0 and |U*(T})| = 1 and [W*(T,)| =
1.

(15) |P*(v)| = 1, [W(T,)| = 1 and |P3(v)| =0.

(b) v € Ny r(T,) if and only if |P?(v)| 2 2 and P°(v)U P! (v) U P3(v)U
U~(T,) =9.

Proof. If any of the conditions (1), (2) and (3) is true, then by Proposition
2.3, v € L and hence v € ALgp(T,). So let us assume that v is neither a
pendant vertex nor a support vertex nor there exists a pendant vertex y
with Ny (y) = {z} such that dy (y,v) = 2 and degy, (x) = 2. Let b he a
leaf vertex of T,. If b € Pi(v) for 0 < i < 2, then replace the path from
v to b in T, with a path from v to b of length i + 4. If b € P3(v), then
replace the path from v to b in T, with a path from v to b of length 3.
Likewise for every w € W*(T,) we replace the path from w to b with a
path from w to b of length 3 if b € P3(w) and for every u € U*(T,) we
replace the path from u to b with a path from u to b of length 1 if b € P(u)
and we replace the path from u to b with a path from u to b of length 4 if
b € PO%(u). Let the tree obtained using the above replacement be T*. So
every leaf of T" is at a distance 2,3,4,5 or 6 from v and if a leaf z is at a
distance two from v then degr.(p(z)) > 2. By Lemma 2.5, v € ALr(T%)

if and only if v € ALp(T) and v € N p(T,) if and only if v € Ny p(T2).
Hence without loss of generality we can assume that every leaf of T, is at
a distance 2, 3,4,5 or 6 from v and if a leaf z is at a distance two from v
then degy (p(z)) > 2.
Sufficiency:
Sufficiency for (a):

Let L be an arbitrary minimum liar’s dominating set of T;,.

Case 1. |P°(v)| > 3.

Let z,y and z be any three vertices of P°(v). Let Py = v,z1, 29, z3, T,
Py, = v,y1,¥2,¥3,¥, and P, = v, z3, 20, 23, z be the paths from v to z, y,
and z, respectively. By Proposition 2.3, {z, 3, Z2,¥, ¥3, ¥2, 2, 23, 22}
C L. Ifv¢gL,then {z1,y1,21} C L. In this case, L' = LU {v}\ {y1,21} is
a liar’s dominating set of T, of cardinality |L| — 1. This is a contradiction
to the minimality of L. So v € L and hence v € ALR(Tv).

Case 2. |P(v)| > 2.

Let = and y be two vertices of P'(v). Let P, = v,xy,x2,73,%4,Z and
P, = v,y1,Y2,¥3, Ya, y be the paths from v to x and y in T, respectively. By
Proposition 2.3, {z,z4,3,¥,¥a,¥3} € L. If v ¢ L, then {x1,z2,91,¥%2} C
L. In this case, L’ = (L U {v}) \ {22, 2} is a liar’s dominating set of T,
of cardinality |L| — 1. This is a contradiction to the minimality of L. So
v € L and hence v € ALr(T,).
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Case 3. |P2%(v)| > 2.

Let = and y be two vertices of P?(v). Let P, = V,T1, T2, T3, T4, T5, T
and Py, = v,y1,¥2,¥3,¥4,Ys, ¥ be the paths from v to =z and y in T, re-
spectively. By Proposition 2.3, {z,5,%4,y,y5,y4a} € L. If v ¢ L, then
{z1,22,%3,91, 92,93} C L. In this case, L' = (LU {v}) \ {z3,y3} is a liar’s
dominating set of T, of cardinality |L| — 1. This is a contradiction to the
minimality of L. So v € L and hence v € App(T,).

Case 4. |P°(v)| = 2 and |P3(v)| > 1.

Let P°(v) = {z,y} and let z € P3(v). Let P, = v,1},%2,%3,%, P, =
v,Y1,%2,¥3,y and P, = v, 2,22,z be the paths from v to z, y and z in
T., respectively. By Proposition 2.3, {z,z3,2,v,¥3,¥2, 2, 22,21} C L. If
v & L, then {z;,y1} C L. In this case, L' = LU {v} \ {z1,y1} is a liar’s
dominating set of T, of cardinality |L| — 1. This is a contradiction to the
minimality of L. So v € L and hence v € ALg(T,).

Case 5. |P°(v)| =2 and |Pl(v)| =1

Let P°(v) = {z,y} and P!'(v) = {z}. Let P, = v,x1,22,23,%, P, =
v,Y1,¥2,¥3,Y, and P, = v, 23, 23, 23, 24, z be the paths from v to z, y and z
in T, respectively. By Proposition 2.3, {z, z3, 22, v, y3,

Y2,2,24,23} © L. If v ¢ L, then {T1,y1,21,22} C L. In this case, L' =
Lu{v}\{z1,41} is a liar’s dominating set of T, of cardinality |L| —1. This
is a contradiction to the minimality of L. So v € L and hence v € ALr(Ty).

Case 6. |P°(v)| € {1,2} and |P2%(v)| = 1.

Let z € P%v) and y € P?(v). Let P, = v,x,72,23,z and Py =
v, Y1,Y2, ¥3, ¥4, Y5,y be the paths from v to z and y in T,, respectively. By
Proposition 2.3, {z, z3, 72, ¥,¥s,ys} C L. If v ¢ L, then {z1,41,%2,y3} C L.
In this case, L' = (L U {v}) \ {z1,¥3} is a liar’s dominating set of T, of
cardinality |L| — 1. This is a contradiction to the minimality of L. Sov € L
and hence v € App(T).

Case 7. |Pl(v)| = |P%(v)| = 1.

Let P'(v) = {r} and P%(v) = {y}. Let P, = v,T), T2, T3,%4,Z and
P, = v,y1,%2,¥3,¥4,¥s,y be the paths from v to z and y in T,, respec-
tively. By Proposition 2.3, {z,z4,Z3,¥,y5,94} € L. If v ¢ L, then
{z1,22,¥1,¥2,y3} € L. In this case, L' = (LU {v}) \ {z2,y3} is a liar’s
dominating set of T, of cardinality |L| — 1. This is a contradiction to the
minimality of L. So v € L and hence v € ALR(T.,).

Case 8. |P°(v)| = |P'(v)| =1 and |P3(v)| > 1.

Let P°(v) = {z}, P'(v) = {y}, and z € P3(v). Let P, = v, 1,22, 23,2,
P, = v, 41,92, Y3, ¥4, ¥, and P, = v, z1, 22, z be the paths from v to z, y and
zin 'f'.,, respectively. By Proposition 2.3, {z,z3,z2,y, V4, ¥3, 2, 22,21} C L.
Ifv ¢ L, then {x1,%1,y2} C L. In that case, L' = (LU {v}) \ {z1,42} is a
liar’s dominating set of T, of cardinality |L| — 1. This is a contradiction to
the minimality of L. So v € L and hence v € Apgr(T,).
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Case 9. |U*(T,,)| > 2.

Let u; and uy be any two vertices of U* (T )- Let P, =wu;,ayand P, =
uy, b11, b12, b3, b1 be the paths from u; to @, and b in T,, respectively and
Py, = uz,az and Py, = ug, ba1, ba2, baa, bz be the paths from u; to a3 and b2
in T}, respectively. By Proposition 2.3, {a, u1, b1, b13, b2, @2, u2, b2, bas, baa}
CL Ifv ¢ L, then {bu,bgl} C L. In this case, L' = (L U {'U}) \ {bu, b21}
is a liar’s dominating set of T, of cardinality |L| — 1. This is a contradiction
to the minimality of L. So v € L and hence v € Apr(T})-

Case 10. |U*(T,)| = 1 and |P°(v) U P}(v) U P2(v)]| > 1.

Let U*(T,) = {u} and z € P°(v) U P!(v) U P?(v). Let P, = u,a and
P, = u,b;, bs, b3, b be the paths from u to a and b in T, respectively. If
z € P°(v), then let P, = v,z),%2,73,2. If £ € P}(v), then let P, =
v,T1,T2,Z3,Z4,2. If If z € P?(v), then let P, = v,z1,%2,23, 74,5, T.
Now, if v ¢ L, then {b,z1} C L. In this case, L' = (LU {v}) \ {b1, 71} is
a liar’s dominating set of T, of cardinality |L| — 1. This is a contradiction
to the minimality of L. So v € L and hence v € ApLr(T%). _

Case 11. |P°(v) U P}(v) U P%(v) U P3(v)| = 0 and |U*(T})| = 1 and
W(E) =1

Let U(T,) = {u} and W*(T,) = {w}. Let P, = u,a and P, =
u, by, b, b3, b be the paths from u to a and b in T,, respectively. Let
P. = w,e1,¢3,¢c and P; = w,d;,ds,d be the paths from w to ¢ and d
in T,, respectively. By Proposition 2.3, a,u, b, b3, bs, ¢, c2,¢1,d,d2,dy € L.
Ifv ¢ L, then {w,b;} C L. In that case, L' = (LU {v}) \ {w, b1} is a liar’s
dominating set of T, of cardinality |L] — 1. This is a contradiction to the
minimality of L. Thus v € L and so v € ALR(T )-

Case 12. |P%(v)| =1, |W‘(T )l =1and |P3(v)| = 0.

Let P'(v) = {z} and W*(T}) = {w}. Let P; = v,z1,%2,%3,%4, 75,2
be the path from v to z in T}, and P, = w,ay,az,a¢ and P, = w, by, by, b
be the paths from w to a and b in T}, respectively. By Proposition 2.3,
{z,z5,24,a,02,a1,b,b2,b0:} C L. If v ¢ L, then {xy,z2,z3,w} C L. In this
case, L' = (LU {v})\ {w,z3} is a liar’s dominating set of T, of cardinality
|L| — 1. This is a contradiction to the minimality of L. Thus v € L and so
v € ALp(Ty).

Sufficiency for (b):

Case 13. |P3(v)| > 2 and P°(v) U P'(v) U P2 () UU*(T,) =

Since |P3(v)| > 2 and P°(v) U P'(v) U P2(v) U UX(T,) = 0 every
liar’s dominating set of T, must contain V(T}) \ {v}uw* (T.,)). Since
V(T, )\({v}UW‘(T )) is a liar’s dominating set of T,,, V(T,)\({v}uW*(T%))
is the only minimum liar’s dominating set of T.,. Thus v € NLH(T ).
Necessity:

Necessity for (a):

Let v € A p(T,). We will show that at least one of the conditions (1)

to (15) of Theorem 3.7 will be satisfied. If possible let us assume that none
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of the conditions (1) to (15) of Theorem 3.7 are satisfied. It can be seen
easily that at least one of the following conditions will be true.

- |P3(w)] 2 2 and P°(v) U Pl(v) U P2(v) UU*(T,) = 0.

- |P%(v)| = 2 and |P!(v)| = |P2(v)| = [P3(v)| = [U*(Ty)| = 0.

- |PO%(v) U Pl(v)| = 1, P2(v) = P3(v) = U*(T,) =0 and [W*(T},)| = 1.
- |PO(v) U PY(v) U P%(v)| =1, |P3(v)| > 1 and U*(T},) = 0.

- |P°(v)| = |PY(v)| = 1 and P2(v) = P3(v) = U*(Ty,) = 0.

- |P3(w)| = 1, P°(v) = P (v) = P?(v) = U*(Ty) =0 and [W*(T},)| = 1.
- P%(v) = Pl(v) = P2(v) = 0, |P3(v)| = 1 and |U*(T,)| = 1.

[W*(T3,)| = 2 and P%(v) = Pl(v) = P2(v) = P3(v) = U*(T,) = 0.

We show that in all of these above cases v ¢ ALR(T.,).
Case 1. |P3(v)| > 2 and P°(v) U P (w) U P2(v) UU~(T,) = 0
Under this condition, we have already seen in the sufficiency of (b) that
v ¢ ALR(Tv)' -
Case 2. |[P°(v)| = 2 and |P)(v)| = |P%(v)| = |P3(v)| = |U*(Ty)| = 0.
Let P°(v) = {z, y}. Let P, = v,1,,Z2,23,7 and P, = v, Y1,¥2, 93,y be
the paths from v to z and y in T,,, respectively. If W*(T,) = @ then T, =
P,UP,. By Proposition 2.3, vor(T,) = 8. Clearly {z,z3,z2, 1,91, Y2, Y3, ¥}
and {:c T3,T2,v,Y1,¥2,¥3,y} are two minimum liar’s dominating set of
T,. Hence, v & ALr(Ty) U Ner(Ty). So let W*(T,) = {w}. Then
V(T \ {z1,11} and V(T})\ {v,w} are minimum liar’s dominating sets
of Ty,. Thus v ¢ ALr(T,) UNLr(T,). i
Case 3. |P%(v)U P'(v)| = 1, P*(v) = P3(v) = U*(T,) = 0, and
W*(T,)] = 1.
O(Lc)at W*(T,) = {w)}. Since |P°(v) U P(v)| = 1, either P1{v) = @ or
P°(v
First suppose that P*(v) = §. Let P°(v) = {z}. Since V(T )\ {v} and
V(T,) \ {w} are minimurmn liar’s dominating sets, v ¢ Apr(T, ) UNLr(To).
Next suppose that P(v) = 0. Let P'(v) = {z}. Since V(T,) \ {v} and
T,) \ {w} are minimum liar’s dominating sets, v ¢ AL r(T,) UN LR( v)-
Case 4. |P°(v) U PY(v) U P%(v)| = 1, |P3(v)| > 1, and U*(T},) =
Since [P°(v) U P!(v) U P?(v)| = 1, exactly two of the sets P°(v), P‘(v),
and P2%(v) are empty.
Let P!(v) = P*(v) = @ and P°(v) = {z}. Let P, = v,z1,%5,%3,2 be
the path from v to the leaf vertex z. Then V(T,)\ (W*(T,) U {z:1}) and
V(T,) \ (W=( (T,) U {v}) are minimum liar’s dominating sets of T,. Thus
v ¢ ALp(Ty) UNLr(TY).
Let P°(v) = P%(v) = 0 and P'(v) = {z}. Let P; = v,21,%2,%3,%4,%
be the path from v to the leaf vertex z. Then V(T,)\ (W* (T YU {zz}) and
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V(T.,) \ (VY'(T,,) U {v}) are minimum liar’s dominating sets of T,. Thus
v ¢ ALr(Ty) UNLR(TS).

Let P°(v) = P'(v) = 0 and P%(v) = {z}. Let P: = v,z), 23,73, T4, T5, T
be the path from v to the leaf vertex z. Then V(T,)\ (W*(T},)U {z3}) and
V(T)\ (W"(T ) U {v}) are minimum liar’s dominating sets of T,. Thus
v ¢ ALR(T ) UNLR(T )

Case 5. |P°(v)| = |P!(v)| = 1 and P?(v) = P3(v) = U*(T}) = 0.

Let P°(v) = {z} and P}(v) = {y}. Let P; = v,z1,z2,73,x and
Py = v,y1,¥2,¥3,¥a,y be the paths from v to the leaf vertices z and v,
respectively. Then V(T,) \ (W*(T},) U {z1}) and V(T,) \ (W"(T ) U {v})
are minimum liar’s dominating sets of T,,. Thus v ¢ Arp(T,) UNLR(T,).

Case 6. |P3(v)| = 1, P°(v) = P'(v) = P?(v) = U*(T,) = 0, and
W(T,)| = 1.

Let P3(v) = {z} and W*(T,,) = {w}. Then V(T))\{w} and V(T,)\ {v}
are minimum liar’s dominating sets of T;,. Thus v ¢ ALr(T}) UNLR(T ).

Case 7. P°(v) = P(v) = P*(v) =0, |P3(v)| 2 1, and \U(T2)]| = 1.

Let U‘(T) {u}. Let P, = u,a and B, = u,b;,bs,b3,b be the
paths from u to leaf vertices a and b. Then V(T,)\ (W*(T,) U {b1}) and
V(T,) \ (w+ (T,) U {v}) are minimum liar’s dominating sets of T,. Thus
v ¢ ALr(T,) UNLR(TL)-

Case 8. |W*(T,)| = 2 and P°(v) = P'(v) = P%(v) = P3(v) =
U (Tv) = 0 _

In this case, T, = T*. Let W*(T) = {w;,wz}. Then V(T})\ {w1}
and V(Ty) \ {v} are minimum liar’s dominating sets of T,. Hence v ¢
App(Ty) UNLR(T).

Necessity for (b):

Let v € Npr(Ty). If possible suppose that either |P3(v)| < 1 or PO(v)U
P'(v) U P?(v) U U*(T,) # ©. Then one of the following conditions must
hold.

(i) degy (v)=1.
(i) Cg, (v) contains a leaf of T
(iii) Cg, (v) contains a vertex x such that Cr (z) = {y} and y is a leaf of T,
(iv) |P°()| 2 3.
(v) [PY()| 2 2.
(vi) |P3(v)| 2 2.
(vii) |P%(v)| = 2 and |P3(v)| > 1.
(viii) |P°(v)| =2 and |P!(v)| = 1.
(ix) |P°(v)| € {1,2} and |P2(v)| = 1.
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(x) |PY(v)] = |P?(v)| = 1.
(xi) |PO(v)| = |P}(v)] =1 and |P3(v)] > 1.
(xii) |U*(T)| > 2.
(xiii) |U*(Ty)! =1 and |PO(v) U P (v) U P2(v)| > 1.
(xiv) |P%(v) U P}(v) U P%(v) U P3(v)| = 0 and [U*(T3,)| = 1 and |W*(T},) = 1.
(xv) |P%(v)| =1, [W*(Ty)| = 1 and |P3(v)| = 0.
(xvi) |P°(v)| = 2 and |P!(v)| = |P?(v)| = |P3(v)| = [U*(T3)| = 0.
(xvii) |P%(¥) U Pl(v)] =1, P?(v) = P3(v) = U*(T,) = 0 and |W*(T},)| = 1.
(xviii) |P°(v) U P(v)UP2(v)| =1, |P3(v)| > 1 and U*(T,) = 0.
(xix) |P%(v)| = |[P}(v)| =1 and P?(v) = P3(v) = U*(T,) = 0.
(xx) 1P3(v)| =1, P%(v) = P(v) = P2(v) = U*(T3) =0 and |W*(T},)| = 1.
(xxi) P%(v) = P}(v) = P¥(v) =0, |P*(v)| 2 1 and |U*(T})| = L.
(xxii) [W*(T%)| = 2 and P°(v) = P)(v) = P%(v) = P3(v) = U*(T,) = 0.

We have already seen in the proof of the sufficiency part of (e) and in the
necessity part of (a) that under each of the above condition, v ¢ Ny r(T%).
Hence necessity of (b) is proved. O

By Corollary 3.5, Lemma 3.6, and Theorem 3.7, we have the following
characterization.

Theorem 3.8. Let v be a vertex of a tree T having at least three vertices.
Let T, be the pruning of T, and let T, be the reduction of T,,. Then

e ve ALr(T) if and only if v € ALR(T,,).
o v € N r(T) if and only ifv € NLR(T,,).

4 Computation of Arp(T) and Npg(T) of a
tree T

In this section, we propose a polynomial time algorithin to compute
ALr(T) and Npg(T) of a tree T. Let T be a tree having at least three
vertices. By Proposition 2.3, (P(T)U S(T)) € ALr(T). Let V' = V' \
(P(TYuS(T)). Let v € V'. We construct a rooted tree T, rooted at v from
the given tree T. Next we compute the sets W*(T,) and U*(T,,). If there
exists a vertex u such that u ¢ U*(T,) UW™*(T,)U{v} having degr, (v) > 3,
we apply tree pruning on T, to get T,,. If neither T, = T nor T}, € CT(v),
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we apply the reduction technique on T, to get T.,. We apply Theorem 3.7
to decide whether v € ALp(T) or v € NLgr(T). We repeat this process
for all v € V' to compute the sets Apr(T) and Nyr(T). The steps for
computing Apr(T) and N g(T) are summarized in Algorithm 1.

Algorithm 1: ALL_.ORNO

Input: A tree T = (V, E) having at least three vertices.
Output: The sets AL r(T) and NLr(T)
ALr(T) + (P(T)L S(T));
NLr(T) « &;
begin
for for all ve V\ (P(T)U S(T)) do
Construct the rooted tree T,; _
Apply the tree pruning technique on Ty to obtain Ty;
if neither T, = T; nor T, € CT(v) then
I_ Apply the tree reduction technique on T} to obtain To;

if one of the conditions of Theorem 38.7(a) is satisfied then
| ALr(T)=ALr(T)V{v};

else if the condition of Theorem 3.7(b) is satisfied then
| Nor(T)=Nor(T)U {v};

| Output((AL(T), NL(T)):

We show that Algorithm 1 can be implemented in O(n3) time. Assume
that the tree T = (V, E) is given in adjacency list representation. The sets
P(T) and S(T) can be computed in O(n) time. Let V' = V\ (P(T)uS(T))
and v € V', Use BFS ( breadth first search) at v to make T a rooted tree
T,. We then partition the set of vertices according to their distance fromn
v such that all the vertices with same distance from the root v are in the
same class. These two steps can be done in O(n) time using BFS. Next we
compute the sets W*(T,) and U*(T,). If there exists a vertex u such that
u ¢ U*(T,) UW*(T,) U {v} having degr, (u) > 3, we apply tree pruning on
T, at u. At this point, degr, (z) < 2 for all z € D, (u). Now we count the
number of leaves which are the descendants of u and having distance i(mod
4) from u for each 7 = 0,1, 2 and 3. Depending upon the cases of the pruning
technique we form a new tree T, rooted at v. This can be done in O(n) time.
Now we check that whether degr: (u) < 2 for all u ¢ U*(T}))UW*(T;)u{v}.
If degy: (u) < 2 for all u ¢ U*(T;) UW*(T,;) U {v} then T, = T,; otherwise
we repeat the process at most O(n) time to obtain T,. Hence the pruning of
T,, T, can be computed in O(n?) time. Next we verify whether T}, = T} or
T, € CT(v) or not. Since degy, (v) < 2 for all u ¢ U~(T,)u W’(T yu {v}
this verification will take O(n) time. If neither T, = T} nor T, € CT(v),
we apply the reduction technique on T Again clearly thls reduction of T,
can be done in O(n) time to obtain T,,.

After having the rooted tree T}, we are now in a position to check the
conditions of Theorem 3.7 to decide whether v € ALr(T},) or v € Npr(Ty)
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or v ¢ ALr(T,) UNLR(T,). Note that the conditions of Theorem 3.7 can
be checked in O(n) time. Since we have to repeat this step for all the
vertices of V’, the overall complexity of algorithm 1 is O(n3) time. The
proof of correctness of algorithm 1 follows from Proposition 2.3, Lemma
3.4, Corollary 3.5, Lemma 3.6, Theorem 3.7, and Theorem 3.8.

In view of the above discussions, we have the following theorem.

Theorem 4.1. For a tree T having at least three vertices, the sets ALr(T)
and Npp(T) can be computed in O(n3) time.

After computing Apr(T), it can be checked in O(n2) time whether
ALr(T) is a liar's dominating set of T. If it is, then T has a unique liar’s
dominating set. Hence, we have the following theorem.

Theorem 4.2. Recognizing whether a tree T has a unique liar’s dominating
set can be done in O(n3) time.

5 Conclusion

In this paper, we have characterized the set, Az r(T), of vertices of a tree
T that are present in all minimum liar’s dominating set of T. Similarly, we
have also characterized the set, N g(T'), of all vertices which are not present
in any of the minimum liar’'s dominating set of T. We have shown that
ALr(T) and Npr(T) can be computed in O(n?) time. If Az r(T) becomes
a liar’s dominating set of T, then T has a unique liar’s dominating set of
T. We have shown that trees having unique minimum liar’s dominating set
can be recognized in O(n?) time. It would be interesting to design a linear
time algorithm to compute Ag(T) and Npr(T) of a tree.
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