A note on the security number of grid-like graphs*

Erfang Shan^{1,2}† Hengwu Jiang²

¹School of Management, Shanghai University, Shanghai 200444, China ²Department of Mathematics, Shanghai University, Shanghai 200444, China

ABSTRACT. For any graph G = (V, E), a non-empty set $S \subseteq V$ is secure if and only if $|N[X] \cap S| \ge |N[X] - S|$ for all $X \subseteq S$. The cardinality of a minimum secure set in G is the security number of G. In this note we give a new proof for the security number of grid-like graphs.

Keywords: Security number; Cartesian product; Grid.

1 Introduction

Let G = (V, E) be a graph with vertex set V and edge set E. The degree $d_G(v)$ of a vertex v is the number of edges incident to the vertex. We denote by $\delta(G)$ the minimum degree of the vertices of G. The open neighborhood $N_G(v)$ of a vertex v is the set of all vertices adjacent to v, and the closed neighborhood of v is $N_G[v] = \{v\} \cup N_G(v)$. Similarly, we can define an open and closed neighborhood of a set $X \subseteq V$, i.e., $N_G(X) = \bigcup_{v \in X} N_G(v) \setminus X$ and $N_G[X] = \bigcup_{v \in X} N_G[v]$. We write N(v), N[v], N(X) and N[X] for short if G is clear from the context. In a graph G with at least one cycle, the length of a shortest cycle is called its girth. A vertex v in G is a cut vertex if G - v has more connected components than G.

Brigham et al. [1] introduced the concept of a secure set as a generalization of a defensive alliance [6]. To better serve our purpose, we use the following characterization as our working definition in lieu of the formal definition given in [1].

Theorem 1 ([1]). A non-empty set $S \subseteq V$ of a graph G = (V, E) is secure if and only if $|N[X] \cap S| \ge |N[X] - S|$ for all $X \subseteq S$.

^{*}This research was partially supported by the National Nature Science Foundation of China (No. 11171207)

[†] Corresponding author. Email address:efshan@shu.edu.cn

For a subset S of vertices of G, if the vertices in S are regarded as defenders, then the vertices in N[S]-S are called attackers of S. If S is not a secure set of G, then there exists a $X \subseteq S$ such that $|N[X] \cap S| < |N[X]-S|$ by Theorem 1, such a set X of vertices is called a witness set of S.

The cardinality of a minimum secure set in G is the security number of G and is denoted s(G). A secure set of cardinality s(G) is called an s(G)-set. By Theorem 1, it is easy to see that the induced subgraph by a minimum secure set of G is connected. Previous work on secure sets in graphs can be found in [1, 2, 3, 4, 5].

Let P_n and C_m , respectively, denote a path on n vertices and a cycle on m vertices. The Cartesian product of graphs G_1 and G_2 is denoted $G_1 \square G_2$, where $V(G_1 \square G_2) = V(G_1) \times V(G_2)$ and $E(G_1 \square G_2) = \{(v_i, u_i)(v_j, u_j) : v_i = v_j \text{ and } u_i u_j \in E(G_2) \text{ or } v_i v_j \in E(G_1) \text{ and } u_i = u_j\}$. The class of graphs which contains exactly $P_m \square P_n$, $P_m \square C_n$ and $C_m \square C_n$ is the class of grid-like graphs.

Brigham et al. [1] established the following upper bounds on the security number of grid-like graphs, and conjectured that the equalities hold.

Proposition 2 ([1]). For grid-like graphs, we have

- (a) $s(P_m \square P_n) = \min\{m, n, 3\}.$
- (b) $s(P_m \square C_n) \leq \min\{2m, n, 6\}.$
- (c) $s(C_3 \square C_3) = 4$ and $s(C_m \square C_n) \le \min\{2m, 2n, 12\}$ for $\max\{m, n\} \ge 4$.

In 2009, Kozawa et al. [5] proved that the conjecture is true. That is, the equalities hold in Proposition 2. In this note we give a new proof for the result.

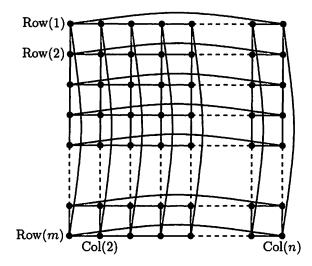


Figure 1: $C_m \square C_n$

2 New Proof

For convenience, we say that the graph $C_m \square C_n$ has m rows and n columns, which is shown in Fig. 1. Clearly, each row has n vertices and each column has m vertices. We begin to prove our main result.

Theorem 3. $s(C_m \square C_n) = \min\{2m, 2n, 12\}$ for $\max\{m, n\} \ge 4$.

Proof. We write $G = C_m \square C_n$ for short in this proof. By Proposition 2, we only need to show that $s(G) \ge \min\{2m, 2n, 12\}$. The proof is by contradiction. Suppose that $s(G) < \min\{2m, 2n, 12\}$. Let S be an s(G)-set of G and the subgraph induced by S is denoted by H. As mentioned before, H is connected. Since G is 4-regular, each vertex in H has at least two neighbors in S by Theorem 1, that is, $\delta(H) \ge 2$. This implies that H contains at least a cycle. To complete the proof, we first consider the structure of H.

Claim 3.1. S could meet neither all rows nor all columns of G.

Suppose not, without loss of generality, let S meet the m rows of G. If S meets at most n-2 columns of G, then clearly each row of G contains at least two attackers of S. Hence $|N[S]-S| \geq 2m > |S|$, contradicting our assumption that S is a secure set.

If S meets n-1 columns of G. Since H is connected, then $m+n-2 \le |S| < \min\{2m,2n,12\} \le \min\{m+n,12\}$. So |S| = m+n-2 or m+n-1. For the latter case, we have $m+n-1 = |S| \le \min\{2m-1,2n-1,11\}$, which leads to $m=n,\ 4\le m\le 6$. However, for both cases of S, it is routine to verify that there is a pendant vertex, a contradiction.

If S meets n columns of G. Similarly, we have |S|=m+n-1 and $m=n, \ 4 \le m \le 6$. The only case S without pendant vertex is depicted in Fig. 2. However, |N[S]-S|=2(m-1)+2(m-3)=4m-8>2m-1=|S|, again a contradiction. \square

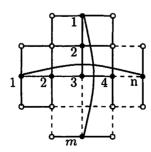


Figure 2: S meets m rows and n columns of G without pendant vertex $(\bullet \in S, \circ \in N[S] - S)$.

Note that each cycle of odd length in H must meet either all rows or all columns of G. Then H doesn't contain any cycle of odd length by Claim 3.1.

Claim 3.2. H contains no cut vertices.

Suppose not, let u be a cut vertex of H. If H-u has at least three components, then $d_H(u) \geq 3$. Since $\delta(H) \geq 2$, H contains at least three vertex-disjoined cycles. Note that the girth of H is at least 4. This implies that $|V(H)| \geq 12$, contradicting our assumption that |V(H)| = s(G) < 12.

If H-u has exactly two components. Let H_1 and H_2 be two components of H-u and $|V(H_1)| \leq |V(H_2)|$. So $|V(H_1)| \leq 5$ as |S| < 12.

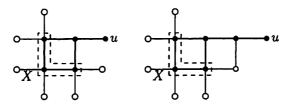


Figure 3: The graphs H_1 and $H_1 + u$ when $d_H(u) = 2$ ($\bullet \in S$, $\circ \in N[S] - S$).

If $d_H(u)=2$, then each H_i contains at most one vertex of degree one of H-u, which is the neighbor of u in H. Hence each H_i contains an induced cycle of length at least 4. Since $|V(H_1)| \leq 5$, H_1 is isomorphic to either C_4 or the graph obtained from C_4 by attaching a pendant edge (see Fig. 3). Hence $|S| \geq 2|V(H_1)| + 1 \geq 9$. This implies that $m, n \geq 5$ as $|S| < \min\{2m, 2n, 11\}$. Denote by X the set of three vertices of degree two of H_1 that are not neighbors of u in H. Clearly $|N[X] \cap S| = 4 < 6 = |N[X] - S|$, contradicting the fact that S is a secure set of G.

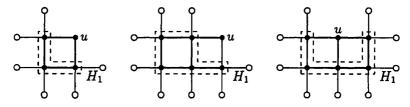


Figure 4: The graphs H_1 and $H_1 + u$ when $d_H(u) \ge 3$ ($\bullet \in S$, $\circ \in N[S] - S$).

If $d_H(u) \geq 3$, then u lies in a cycle of H, since the removal of u produces exactly two components. So $H_1 + u$ is isomorphic to either C_4 or C_6 (see Fig. 4) other than the cases shown in Fig. 3. If $H_1 + u$ is the graph as

described in Fig. 3, we then obtain a contradiction as before. If $H_1 + u$ is the graph as described in Fig. 4, then $|S| \geq 2|V(H_1)| \geq 8$ and thus $m, n \geq 5$. Let $X = V(H_1)$. Since X has the unique neighbor u in S, it is easy to see that $|N[X] \cap S| < |N[X] - S|$, which is a contradiction. \square

Claim 3.3. Each vertex in H lies in a cycle C_4 .

As mentioned above, H contains no cycles of odd length. By Claim 3.2, each vertex in H lies in a cycle of even length of H. Suppose that there exists a vertex $w \in H$ that is not contained in any cycle C_4 of H. By Claim 3.1, H has no induced cycle C_6 . Thus w must lie in an induced cycle C_{2k} ($4 \le k \le 5$) of H by the restriction of s(G) < 12. If $\min\{m,n\} < 5$, our assumption implies that s(G) < 8, then H contains no induced cycle C_8 or C_{10} , a contradiction.

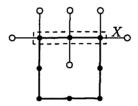


Figure 5 ($\bullet \in S$, $\circ \in N[S] - S$)

So $\min\{m,n\} \geq 5$. For the cycle C_{10} of H. By Claim 3.1, the embedding of induced C_{10} in G is obviously unique, which is a 3×4 rectangle. Then $|N(C_{10})| \geq 13$. Furthermore, S can contain at most one vertex from $N(C_{10})$ by the restriction of s(G) < 12. Thus, $|N[C_{10}] - S| \geq 13 - (11 - |C_{10}|) = 12$, so the cycle C_{10} itself is a witness set, a contradiction. For the cycle C_8 of H. As before, the embedding of induced C_8 is a unique 3×3 rectangle. By $\delta(H) \geq 2$, the other at most three possible vertices could be adjacent to at most three sides of the rectangle, leaving three consecutive vertices, say x_1, x_2, x_3 , lying on a side of the rectangle C_8 that are exposed to six attackers (see Fig. 5). Let $X = \{x_1, x_2, x_3\}$. Thus, $|N[X] \cap S| = 5 < 6 = |N[X] - S|$, so X is a witness set of S, a contradiction. Therefore, each vertex in H lies in a cycle C_4 , as claimed. \Box

All the possible induced subgraphs of $C_m \square C_n$ with less than 12 vertices and satisfying with Claims 1-3 are exhibited in Fig. 6. Thus H must be one of the Tetris graphs. By our assumption $|S| = |V(H)| < \min\{2m, 2n, 12\}$, it is verified that |S| < |N[S] - S| by a simple calculation in each case, a contradiction. Therefore, $s(G) \ge \min\{2m, 2n, 12\}$.

For the security number of $P_m \square C_n$, we need the following result due to [5].

Lemma 4 ([5]). $s(C_{2m} \square C_n) \leq 2s(P_m \square C_n)$.

By Lemma 4 and Theorem 3, $s(P_m \square C_n) = \min\{2m, n, 6\}$ can be easily derived.

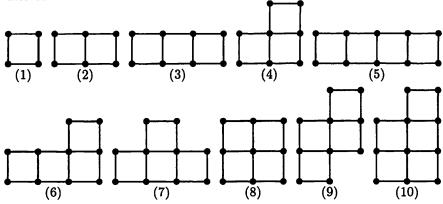


Figure 6: Tetris graphs

References

- [1] R.C. Brigham, R.D. Dutton, S.T. Hedetniemi, Security in graphs, Discrete Appl. Math. 155 (13) (2007) 1708-1714.
- [2] R.D. Dutton, Secure set algorithms and complexity, Congr. Numer. 180 (2006) 115-121.
- [3] R.D. Dutton, On a graphs security number, Discrete Math. 309 (13) (2009) 4443-4447.
- [4] R.D. Dutton, R. Lee, R.C. Brigham, Bounds on a graphs security number, Discrete Appl. Math. 156 (2008) 695-704.
- [5] K. Kozawa, Y. Otachi, K. Yamazaki, Security number of grid-like graphs, Discrete Appl. Math. 157 (11) (2009) 2555-2561.
- [6] P. Kristiansen, S. M. Hedetniemi, S. T. Hedetniemi, Alliances in graphs, J. Combin. Math. Combin. Comput. 48 (2004) 157-177.