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Abstract

In this paper, we refer to a decomposition of a tripartite graph
into paths of length 3, or into 6-cycles, as gregarious if each subgraph
has at least one vertex in each of the three partite sets. For a tri-
partite graph to have a 6-cycle decomposition it is straightforward to
see that all three parts must have even size. Here we provide a gre-
garious decomposition of a complete tripartite graph K(r,s,t) into
paths of length 3, and thus of K(2r,2s,2t) into gregarious 6-cycles,
in all possible cases, when the straightforward necessary conditions
on r,38,t are satisfied.

1 Introduction and necessary conditions

A complete tripartite graph K (r,s,t) has r + s 4+t vertices which are parti-
tioned into three sets of sizes r, s, t such that any pair of vertices in different
parts has an edge joining them, whereas any pair of vertices in the same
part has no edge joining them.
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A 6-cycle is a 2-regular simple connected graph with six vertices and six
edges. If the vertices are z1,72,...,z¢ and the edges are z;z;;; for 1 <
i € 5 and z;z¢, then we denote such a 6-cycle by (z1, 22, z3, %4, Zs, Zg) (Or
any cyclic permutation thereof).

We shall call a path of length three a 3-path. If such a path has edges ab, bc,
cd then we shall denote the path by [a, b, ¢, d] (or, equivalently, [d, ¢, b, a]).

A decomposition of a graph G into copies of a graph H, where H is some
subgraph of G, is an edge-disjoint partition of the edge-set of G into copies
of the graph H.

Various papers have investigated complete tripartite graph decompositions,
into subgraphs such as cycles. The paper [2] was the first to impose a par-
ticular constraint upon the decomposition, requiring that every subgraph
(a 4-cycle in [2]) should have at least one vertex in all three of the partite
sets of the tripartite graph.

The smallest simple cycle is of course a 3-cycle, and it is well-known that
there exists a 3-cycle decomposition of K(r,s,t) if and only if r = 3 = ¢;
moreover, any latin square of order r yields a 3-cycle decomposition of
K(r,r,r).

In the case that the subgraph is a 5-cycle, as in the case of 3-cycles, the
constraint that every cycle should have at least one vertex in each of the
three parts occurs naturally, because every odd length cycle in a tripartite
graph must hit all three parts. The problem of verifying that some fairly
straightforward necessary conditions for existence of a 5-cycle decomposi-
tion of K(r,s,t) are sufficient is still open. In {7], a small reward is offered
for its solution, and work towards this solution appears in [5], [6] and [1];
the case when the part sizes r,s,t (satisfying some necessary conditions)
are all odd and different, remains largely open.

So with the requirement that every cycle in a tripartite graph decomposition
has at least one vertex in every partite set, the next case to consider is
that of 6-cycles. Here, as in [2], we shall mis-use the term “gregarious” to
mean that each 6-cycle has at least one vertex in each of the three partite
sets. Apart from [2], all subsequent papers on gregarious decompositions,
such as [3, 4, 8], have required the number of partite sets in the complete
multipartite graph being decomposed into cycles to be at least as great as
the cycle length.

Suppose that there exists a gregarious 6-cycle decomposition of K(r, s,1).
Then this graph must have even degree, so r + 8, r + ¢, s + ¢ are all even,
implying that r, s and ¢ all have the same parity. Moreover, the total
number of edges must be 0 (mod 6), that is, rs + rt + st = 0 (mod 6); so
r, s and t must all be even.
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Following on from the idea of a cycle in a tripartite graph being gregarious
if it has vertices in all three parts ([2]), we shall call a 3-path in a tripartite
graph gregarious if it has its four vertices belonging to all three parts, and
not just two of the parts. So now suppose that [a, b, ¢, '] is such a gregarious
3-path in some tripartite graph (where the notation implies that b and b’
belong to the same part, with @ and ¢ in the other two parts). If we expand
each vertex two-fold (so from a vertex x, two vertices z; and z, are taken),
we double the total number of vertices, and we obtain two 6-cycles from
this one 3-path (see Figure 1):
(a1,b1,¢1,b7,¢2,b2) and (a2, by, c2, b5, c1, b2).

Figure 1: Two gregarious 6-cycles from a gregarious 3-path.

So, we will find gregarious 3-path decompositions when conditions allow,
then we will use these 3-path decompositions to create gregarious 6-cycle
decompositions as indicated in Figure 1. Of course a particular gregarious
decomposition of K(2r,2s,2t) into 6-cycles does not have to have come
from one of K(r,s,t) into 3-paths, but we only require ezistence of some
gregarious 6-cycle decomposition for each possible case.

Since the graph K(1,1,1) is just a triangle and cannot be decomposed
into a gregarious 3-path, we look separately at decomposing K(2, 2,2) into
gregarious 6-cycles. Suppose the vertex set of K'(2, 2, 2) consists of the three
partite sets {ay,a2}, {b1,b2}, {c1,c2}; then the graph can be decomposed
into the two 6-cycles (ai, b1, ¢1, b2, a2, ¢2) and (ay, b2, c2, b1, a2,¢1)-

We use V(G) and E(G) to denote the vertex set and the edge set, respec-
tively, of a graph G. We also use G \ H, where H is a subgraph of G, to
denote the graph with vertex set V(G) and edge set E(G) \ E(H).

In subsequent sections, by finding gregarious 3-path decompositions of
K(r,s,t), we shall prove the following main result of this paper:

Main Theorem: There erists a gregarious 6-cycle decomposition of the
complete tripartite graph K(p, o,7) if and only if the following two condi-
tions hold:



(a) p,o,T are all even, say p=2r, 0'=2s and 7 = 2t, and

(i) r=s=t=1 (mod 3); or
(ii) r=s=t=2 (mod 3); or
(iii) at least two of r,s,t must be congruent to 0 (mod 3);

(b) ifr <8<t then s < 4r and t(s — 2r) < 2rs.

2 Gregarious 3-paths

First, we provide some useful methods for extending a gregarious 3-path
decomposition when we increase the size of the partite sets.

Lemma 2.1 The graph K(z,z,y+3)\ K(z,z,y) has a decomposition into
gregarious 3-paths.

PROOF. Let the vertices of the first two partite sets be {a1,a2,...,a:}
and {by,bs,...,b:}, and let the three additional vertices in the last set be
¢1,¢2,¢3. Use 2z paths:

[aise1, bi,¢2], [c2,ai,¢3,b;), foralli=1,...,z.

O

Lemma 2.2 The graph K(z,2z,y + 2) \ K(z,2z,y) has a decomposition
into gregarious 3-paths.

PROOF. Let the vertices of the first two partite sets be {ay,az,...,a;} and

{b1,b2,..., b2z}, and let the two additional vertices in the last set be ¢;, co.
Use the following 2z paths:

[a'i)cls b25—17c2]1 [ai, c2’b2i, CI], fol' au i = 1,- . .,x.

From these two results, we obtain the following lemma.

Lemma 2.3 If K(z,y,2) has a decomposition into gregarious 3-paths,
where z € y £ 2z, then K(z,y, 2+6) can also be decomposed into gregarious
3-paths.
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ProOOF. Partition the first partite set X into sets X' and X" with 2z — y
and y — z elements, respectively, and the second partite set Y into Y’ and
Y" with 2z — y and 2(y — z) elements, respectively. Let Z’ be a set of
six new vertices to be added to the third partite set Z. Use Lemma 2.1
twice with the sets X', Y’ and Z’ to produce 4(2z — y) gregarious 3-paths
using precisely the edges from X' to Z' and from Y’ to Z'. Use Lemma 2.2
three times with the sets X”, Y” and Z’ to produce 6(y — z) gregarious
3-paths using precisely the edges from X" to Z’ and from Y" to Z’'. These
new 3-paths together with the (zy + zz + yz)/3 gregarious 3-paths in the
decomposition of K(z,y, z) give the (zy + z(z + 6) + y(z + 6))/3 gregarious
3-paths of the decomposition of K(z,y, z + 6). O

Henceforth, let K(r,s,t) be the complete tripartite graph on sets R, S, T
of size r, s, t, respectively. If K(r,s,t) can be decomposed into gregarious
3-paths, then the total number of edges, 7s + rt + st, must be divisible by
3, so one of the following must hold:

(i) r=s=t=1 (mod 3);
(i) r=s=t=2 (mod 3);

(iii) at least two of r, s, t must be congruent to 0 (mod 3).

Also, if r £ s < t, then every gregarious 3-path must contain at least one
edge having a vertex in R, so

(rs+rt+st)/3<r(s+1) < 2rt,

which implies that s < 4r and t(s — 2r) < 2rs. The latter is true for all ¢
whenever s £ 2r, but limits the size of ¢ otherwise. Any triple, (r, s,t), that
satisfies this condition plus one of (i), (ii), or (iii) is said to be admissible.

We now have the tools to decompose all graphs K(r,s,t), r € s < ¢,
whenever s < 2r and (r,s,t) is admissible. The methods are basically
iterative and so require a number of base decompositions. Unfortunately
these methods cannot be applied when s > 2r, since they are based on
Lemma 2.3 which requires 2r — s > 0. In order to produce the base cases,
we introduce latin representations and trades.

3 Latin representations and trades

For a detailed description of a latin representation, we refer the reader to
Section 3 of [5]. However, for convenience, we briefly describe this here as
well.
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Let the vertices of K(r,s,t) be RUSUT where R = {i, | 1< i<},
S={ip|1<i<s}and T = {ic | 1 < i<t} Alatin rectangle, £, of order
r X 8, with rows indexed by R, columns indexed by S, and entries from T,
corresponds to rs disjoint triangles in the graph K (r, s, t). Indeed, entry k.
in cell (¢4, js) corresponds to the triangle or 3-cycle (iq, s, kec)-

Now not all edges of the tripartite graph K(r,s,t) are used in £, but we
can add extra entries to the ends of the r rows so that these r rows use
all ¢ symbols in T', and we can add extra entries to the bottom of each of
the s columns so that these s columns use all ¢ symbols in T'. This then
forms what we term a latin representation; see Figure 2. This is “latin” in
the first r rows, and “latin” in the first 8 columns. Each entry within the
latin rectangle corresponds to a triangle, while the entries at the “side” (of
the first 7 rows) and the entries at the “bottom” (of the first s columns)
correspond to single edges, respectively between R and T, and between S
and T. The entry k. corresponds to the 3-cycle (., s, kc), the entry £
corresponds to the single edge i,¢;, and the entry m. corresponds to the
single edge jym.. Since all the entries are elements of the set T', we can
omit the subscripts on the entries without fear of ambiguity.

col’'n
E Jo t—s
r
TOW %q k. £
t—r me

Figure 2: Illustrating a latin representation

Throughout this paper, we make use of the following standard latin repre-
sentation. Let A* be a u % u cyclic latin square, where

0 if $ =0 (mod 3)

r ifs=r=t#0 (mod 3)

r+1 ifs=1(mod3), =0 (mod 3)
r+2 if s=2 (mod3), =0 (mod 3).

[

With this choice, s — u is always congruent to 0 (mod 3). So let B* be an

(s — u) x (s — u) array made up of 3 x 3 blocks, B;, wherei = 1,..., &3,
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arranged as a cyclic latin square. If ¢ < [7/3], then B; lies (at least partly)
within the latin rectangle, and so must be a latin square (left below); oth-

erwise, B; is of the second type below.

B;

3i—-2 3i-1 3i J3-2 3-2 3t-2
=13-1 3i 3i—-2 B;i=]3-1 3-1 3i-1
3i J3i—-2 3i-1 3 3i 3
u Ss—u t—s
s+1 t
A B* C
s+1 t
u+1 u+1
u+2 u+2
1 1
8 S u u
s+1 s+1{s+1 s+1
t t t t

Figure 3: Standard latin representation with u > 0

8

t—s

8 B*

s+1
C

s+1

s+1

t

s+1

3

Figure 4: Standard latin representation with u = 0
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Row and column numbers are given with respect to the whole latin repre-
sentation. The latin rectangle, £, consists of the entries in rows 1 to 7 and
columns 1 to 5. Let A= A*NL and B=B*NL. Rows r + 1 to ¢ are the
bottom of the latin representation, with D and E consisting of columns 1
to u and u + 1 to s, respectively. (Note that whenu=r+1lorr+2, D
and E overlap A* and B*.)

A trade gives us a way to transform a particular pattern of entries in the
latin representation into a set of gregarious 3-paths; we “trade” triangles
and edges for 3-paths. For example,

[

Ty is: | = | =] and this is the single path [r, z, ¢, y].

y

Each trade listed here may also be used in transpose format; for example,
c

Tyis r z y and this is also a single path, [¢,z,r,y]. (We use an

T

overline to indicate transpose of a trade here.) The following trades are all

useful in our subsequent decompositions.

S r T y z
a . 1 b .
R Ty
z
2 paths: 2 paths:
[37,61,1',!/], [-'B,T,Cz,?l] [r,:c,c,y], [y,r, Z,C]
C1 c2 c
T{:r ad T":ralml
y ¥y 2 T
z Y
2paths: 2 paths:
[7'13) Cl,Z], [1’, clay’c2] [y,c,r,a], [r,:z:,c,a]

Té’ . ¢4 c2 s
r —m
3 paths:
[!L', C1,T, 62]1 [.’E, T,Cs3, Z], [627 y,r Z]
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Ry
£ n 8lols
8 & e|los

T§: rla b w

Ta . T x v z
¥4

4 paths:[r,a,c1,2), [r,b,¢2,¥),
[7': ¢,w, 02], [7') C2, 2, cl]

The paths are still distinct if

z =y or if one or both of z = b
or y = a holds.

C1 c2 cs

T y =z

4 paths: [z,¢1,0,7],[c1,7,¢2,9]
[621 b1 T, 03], [1‘, w, 3, z]

The paths are still distinct if
two or more of z,y, z are equal
orifa =z

€1 c2 c3

5 v T
z z y

5 paths: [r,c1, 2, ¢o], [r, 2, €3, 2],
[y, T,C2, Z], [T) Z,C1, 3/]7 [1‘, 3,Y, Cz]

c1 ca ca

r{a b w

T8 T T =z
¥y vy

z z z

6 paths: [r,c1,z, ¢2),[r,a,c1,Y),

[7", c2,Y, C3], {T: b: c2, Z], [7‘, w,C3, x]a

[r,c3,2,¢1]
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C1

c2

€3

1 T y
T?: 2 Ty
rs Tz Yy

T T z

Yy v ¥y

4 paths: [z,71,y,¢1], [e1, 2, 72,9)
[Ts,fl?,cz,y], [’”3,!/,03;93]

c1 ca c3
T¢: r[w z vy
T y =z

4 paths: [ZB, i, w, 1‘], [cl yTyC2, y]’
[e2, z,7,c3], [ry,c¢3,2]
The paths are still distinct if

zZ=w.
c1 c2 c3
Tb‘ T a b d
5 ° T
Yy z
wow w

5 paths: [r, c1,w, ¢z}, [w, €3, 7, ¢3

[T, b: C2, y]) [r7 a, Cy, 17], [’I‘, d: C3, Z].
The paths are still distinct if

z = y = z or if one or more of

z=by=d,z=a.

(1 c2 ca

T a b d

T? - b d w
d w b

z Y z

6 paths [r,a,c1,2], [r, b, c2,9],
[T, d) C3, Z], [T, C1, b’ 63]7

[r‘l C2, d) Cl], [7‘, c3,w, c2]

The paths are still distinct if
w = a and/or if two or more
of z,y, z are equal.



Note that distinct letters denote distinct entries, unless otherwise noted.
Also entries shown to be in the same row of the bottom of a particular
trade need not in fact be in the same row, because the bottom is only
column latin. The same holds for entries in the same column of the side,
because the side is only row latin. For example, trade T may appear as:

8 n 8|02
g w n|ov8

Whenever latin representations and trades are used in the following sec-
tions, we suggest that the reader crosses off the cells in the latin represen-
tations given, as each trade is specified, in order to check that all entries in
the representations are used.

4 Small s: r<s<<2r
The following lemma holds for all r > 1.

Lemma 4.1 The graph K(r,r,r), where r > 1, can be decomposed into
gregarious 3-paths.

ProoF. Use any latin square of order r as the latin representation. We
have a great deal of choice. One possible decomposition is as follows: for
even r, take 72/2 trades T, and for odd r, take r trades T (in the first
three columns, say) and then r(r — 3)/2 trades T§'. O

41 r=s=t (mod 3)

Lemma 4.2 Let 1 <7 < s < 2r, such that r = s (mod 3). Then K(r,s, s)
can be decomposed into gregarious 3-paths.

PROOF. Suppose first that s—r =0 (mod 6). Then there exists an integer
k > 1 such that s = r + 6k. Starting with the decomposition of K(r,r,r)
from Lemma 4.1, (since » > 1), apply Lemma 2.1 precisely 2k times to
obtain a decomposition of K(r,r,r + 6k) = K(r,r,s). Since s < 2r, apply
Lemma 2.3 exactly k times to obtain a decomposition of K(r,r + 6k,s) =
K(r,s,s).
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Now suppose that s —r = 3 (mod 6) and » > 6. Then there exists an
integer k > 1 such that s = r — 3 + 6k. Starting with the decomposition
of K(r — 3,7 — 3,7 — 3), apply Lemma 2.1 to obtain a decomposition of
K(r—3,r—3,r). Since r < 2(r — 3), apply Lemma 2.3 precisely k times to
give a decomposition of K(r—3,r,r —3+6k) = K(r—3,r,s). Since s < 2r,
apply Lemma 2.3 another k times to give a decomposition of K(r,s,r—3+
6k) = K(r,s, s).

The only remaining cases (with s < 2r) are: K(3,6,6), K(4,7,7) and
K(5,8,8); these can be found in the Appendix. 0

Theorem 4.3 Let1 < r < s £t, (r,8,t) # (1,1,1), 7 = s =t (mod 3)
with 8 < 2r. Then K(r,s,t) has a decomposition into gregarious 3-paths.

PRrOOF. If » = 1, then s = 1. The graph K(1,1,4), with vertex set {a} U
{b} U {w,z,y, 2}, can be decomposed into the paths [a,z,b,w), [y,e,z,b],
[w,a,b,y]. Use Lemma 2.1 to get decompositions for the remaining graphs
K(1,1,t) with t =1 (mod 3). (Recall that ¢ is unbounded if s < 2r.)

Now consider K(r,s,t), where 1 < r £ 8 < t,r =5 =t (mod 3) and
s< 2r.

Suppose first that ¢ — s = 0 (mod 6). Then there exists an integer k with
k > 0 such that t = s + 6k. By Lemmas 4.2 or 4.1, K(r, s,s) can be de-
composed into gregarious 3-paths. Since s < 2r, we can apply Lemma 2.3,
k times, to obtain a decomposition of K(r,s,s + 6k) = K(r,s,t).

Next suppose that t — s = 3 (mod 6) and s —r = 0 (mod 6). If r = s,
then the decomposition is given by Lemmas 4.1 and 2.1. Otherwise, there
exist integers u,v > 0 such that { = s + 6u — 3 and s = r + 6v. Starting
with a decomposition of K (r,r,7), (r > 1), apply Lemma 2.1, 2v — 1 times,
to obtain a decomposition of K(r,7,r + 6v ~ 3) = K(r,7,s — 3). Since
§—3 < 8 < 2r, apply Lemma 2.3 v times, giving a decomposition of
K(r,r + 6v,5 — 3) = K(r,s,8 — 3). Then apply Lemma 2.3 u times to
obtain a decomposition of K(r,s,s — 3 + 6u) = K(r, s, t).

Finally, suppose that t — s = s —7 = 3 (mod 6). Then t —r = 0 (mod 6)
and there exists an integer w with w > 0 such that ¢t = r + 6w. Starting
with the decomposition of K (r,r,7), with 7 > 1, apply Lemma 2.1, (s—7)/3
times, to get a decomposition of K(r,r,s). Next apply Lemma 2.3 w times
to give a decomposition of K(r,s,r + 6w) = K(r, s,t), as required. ]
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4.2 Exactly two of r,5,t =0 (mod 3)

The inductive decompositions are given in Theorems 4.9, 4.10 and 4.11.
The necessary base cases are given first. Note that when r is small, s can
be larger than 27 in these lemmas. In addition, Lemma 4.4 holds for s < 4r.

Lemma 4.4 If s = 0 (mod 3), 0 < r < 8 < 4r, then K(r,5,8) has a
decomposition into gregarious 3-paths.

PROOF. If s = r, we can use Lemma 4.1; otherwise, we take the standard
latin representation with u = 0.

Clearly, s — r = 3j + k, where k € {0,1,2} and j is a non-negative integer.
If k = 1, use s/3 lots of trade T on the elements of rows r and r + 1;
if k = 2, use s/3 lots of trade T¢ on the elements of rows r, 7 + 1 and
r + 2; if £ = 0, this step is not needed. Next, use -"57- lots of trade T§ on
the remaining entries in the bottom and on j rows of B. This is possible
since j = “’—‘-;-‘—" <r-— %, so there are enough rows remaining in B. All
remaining entries in B can be used in T§ trades. O

Corollary 4.5 For r =1 (mod 3), K(r,r + 2,7 +2) has a decomposition
into gregarious 3-paths; in addition, K(r,r + 5,7 + 5) has a decomposition
ifr>1. Forr =2 (mod 3), K(r,r + 1,r + 1) and K(r,r + 4,r + 4) have
decompositions into gregarious 3-paths.

Lemma 4.6 Ifr =1 (mod 3), then K(r,r + 2,7 + 5) has a decompostion
into gregarious 3-paths. If r = 2 (mod 3), then K(r,r + 1,7 + 4) has a
decomposition into gregarious 3-paths.

PRrROOF. In each of these cases, s = 0 (mod 3), so use the standard latin
representation with v = 0.

A decomposition of K(1,3,6) is given in the Appendix, so assume that
r =1 (mod 3) and r > 4. First, use s/3 lots of trade T¢ on the entries in
rows 7,7 + 1,7 + 2. Then use r lots of trade T¢ on all the entries of C and
the entries in columns 1 to 7 and rows r+ 3,7 +4,7+ 5 of E. Use one lot of
T4 on the entries in columns r+1,7+2 and rows 1,7+ 3,7+ 4,7+ 5. The
remaining entries in the latin rectangle can be used in two lots of trade T§
and (s — 6)/3 + s(r — 2)/3 lots of trade T3'.

A decomposition of K(2,3,6) is given in the Appendix, so assume that
r =2 (mod 3) and r > 2. Use r — 2 lots of trade 77 on the entries in rows 1
to r — 2 of C and the entries in columns 1 tor—2 and rowsr+1,7+2,7+3
of E. Use (r — 2)/3 lots of T§ on the entries in columns 1 to r — 2 and



rows r, 7 + 1. This leaves the entries in three columns and four rows of the
bottom and two rows of the side. Use these side entries in six T} trades.
Finish the decomposition with r + (r — 1)(r — 2)/3 lots of trade T§. 0

Lemma 4.7 If r = 0 (mod 3), r > 0, then K(r,r,r + 1), K(r,7,7 + 2),
K(r,r+3,7+4), and K(r,r+3,7+5) all have decompositions into gregarious
3-paths.

PROOF. Suppose that r =0 (mod 3), » > 0, so u = 0 in the standard latin
representation.

First, consider K(r,r,r + 1), with r > 3. In columns 1,2,3, use the entries
1,2,3 along with the 3 entries in row r + 1 in a T trade. Repeat this with
triples of columns (4,5,6),...,(r — 2,7 — 1,r), using up all copies of the
entries 1,2,3 in B. In rows 1,2,3, use the entries 4,5,6 along with the 3
entries in column r + 1 in a T§ trade. Repeat this with the other triples
of rows using up all copies of the entries 4,5,6 in B. The remaining entries
in the latin rectangle can be used in 7§ and T§ trades. To decompose
K(3,3,4), first obtain a decomposition for K(1, 3, 3) by applying trade T}
to its standard latin representation. Then apply Lemma 2.1.

For K(r,r,r + 2), use r/3 lots of T} on the entries in C and E and r?/3
lots of trade T3.

For K(r,r + 3,7 + 4), use r lots of trade T} on the entries in C and the
entries in rows r + 3 and r + 4 and columns 1 to  of E. Then (r + 6)/3
lots of TP use up the remaining entries in E; the remammg entries of B are
used in T3 trades.

For K(r,r+3,7+5), use r/3 lots of trade T} to use up all entries in C plus
the entries in columns 1 to r and rows r +4,7+ 5 of E. One lot of T takes
care of the entries in columns r + 1,7 + 2,7 + 3 and rows r + 4,7 + 5, while
(r +3)/3 lots of T¢ finish off all the remaining entries in E. The remaining
entries of B are used in T3 trades. O

Lemma 4.8 Ifr =0 (mod 3), r > 0, then K(r,r + 1,7 + 3) and K(r,r +
2,7+ 3) can be decomposed into gregarious 3-paths.

ProoF. The decomposition of K(3,4,6) is given in the Appendix. For
K(r,r + 1,r + 3), with r > 3, use the standard latin representation with
u =171+ 1, so both B and E are omitted. Use all the entries in rows 1 to
r —3 of C in r — 3 lots of T; with the entries in row r + 3 and columns 1
to r — 3 of D. Use the entries in rows r — 2,7 — 1,7 of C in T, trades with
the entries in row 7 4+ 2 and columns 1 to 3 of D. Use one lot of T¢ and
(r — 6)/3 lots of T¢ to finish using up all the entries in columns 1 tor — 3
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of D plus the entries in columns 1 to 7 — 3 of row r. Two lots of T§ take
care of the entries in rows r to 7 + 3 and columns r — 2 to r + 1.

For K (r,r + 2,7 + 3), use the standard latin representation with u =r +2.
Use up all the entries in C in r lots of trade T; with the entries in rows
r + 2,7 + 3 and columns 1 to r of the bottom. Use one lot of T on the
entries in columns 7 + 1,7 + 2 and rows 7,7 + 1,7 + 2,7 + 3 and r/3 lots of
T¢ on the entries in rows r,7 + 1 and columns 1 to r.

In both cases, the remaining entries in the latin rectangle are used in T3
and T trades. O

The next three theorems, together with Theorem 4.3 above, complete the
problem whenever s < 2r.

Theorem 4.9 If s,t =0 (mod 3) and r = 1,2 (mod 3) with s < 2r, then
K(r,s,t) can be decomposed into gregarious 3-paths.

PROOF. Suppose first that s, = 0 (mod 6) and r = 2 (mod 6), where
8 < 2r. If r =2, then s < 4 < 6 < s, so we need only consider r > 8.
Then there exist integers ¢, v, w with » = 6¢ + 2, s = 6v and ¢ = 6w. Now
K(r,r+4,r+4) can be decomposed into gregarious 3-paths by Lemma 4.4.
Apply Lemma 2.3, (v — ¢ — 1) times, to get a decomposition for K(r,r +
4+6(v—qg—1),r+4) = K(r,s,r +4), and an additional (w — g — 1) times
to get a decomposition for K(r,s,r + 4+ 6(w — g — 1)) = K(r,s,t).

For the remaining cases, we tabulate below what may be used, similar to
this case, to obtain a decomposition of K(r, s, t).

(ry8,t) start with (ry8,t) start with
mod 6 mod 6
(2,0,3) | K(r,r + 4,7+ 1) || (1,0,0) | K(r,r + 5,7 +5)
(2,3,0) | K(r,r+1,r+4) || (1,0,3) | K(r,r + 5,7 +2)
(2,33) | K(ryr+ 1,7+ 1) || (1,3,0) | K(r,7 + 2,7 + 5)
(1,3,3) | K(r,7 +2,7+2)
(6,0,0) | K(r,r +1,7+1) || (4,0,0) | K(r,r + 2,7 +2)
(5,03) | K(r,r+1,r+4) | (40,3) | K(r,r +2,7r +5)
(5,3,0) | K(r,r +4,r+1) || (4,3,0) | K(r,7 + 5,7 +2)
(5,3,3) | K(r,r+4,7+4) || (4,3,3) | K(r,7 + 5,7 +5)

O

Theorem 4.10 Ifr =t =0 (mod 3) and s = 1,2 (mod 3) with s < 2r,
then K(r,s,t) can be decomposed into gregarious 3-paths.
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PROOF. Suppose first that r = ¢t = 0 or 3 (mod 6) and s = 2 (mod 3),
where s < 2r. Then there exist integers v and w such that t — r = 6v
and s — 7 = 2 + 3w. By Lemma 4.7, K(r,r,7 + 2) can be decomposed into
gregarious 3-paths. Apply Lemma 2.1, w times, to obtain a decomposition
of K(r,r,r +2+ 3w) = K(r,r, s). Since s < 2r, apply Lemma 2.3, v times,
to obtain a decomposition of K(r,s,r + 6v) = K(r,s,t). If s=1 (mod 3),
use the same method starting with a decomposition of K(r,r,r + 1) from
Lemma 4.8.

Now suppose that r,t = 0 (mod 3) and t — 7 = 3 (mod 6). There exists
an integer v such that ¢t — r = 3+ 6v, and if s = 2 (mod 6), there exists
an integer w such that s = r + 2 + 6w. By Lemma 4.7, K(r,7 + 2,7 + 3)
can be decomposed into gregarious 3-paths. Apply Lemma 2.3 precisely w
times to obtain a decomposition for K(r,r +2+ 6w, +3) = K(r,s,7 + 3).
Since s < 2r, apply the same lemma v times to give a decomposition for
K(r,s,7 + 3 + 6v) = K(r,s,t). If s = 5 (mod 6), then there exists an
integer ¢ such that s = 6¢ + r + 5. By Lemma 4.7, K(r,r + 3,7 + 5) can
be decomposed into gregarious 3-paths. Apply Lemma 2.3 just g times to
obtain a decomposition of K(r,r + 5+ 6q,r + 3) = K(r,s,7 + 3). Apply
the same lemma v more times to get a decomposition for K(r,s,r + 3 +
6v) = K(r,s,t). If s = 1 (mod 3), use the same methods starting with

decompositions of K(r,r + 1,7 +3) and K(r,r + 3,7 +4) from Lemma 4.8.
a

Theorem 4.11 If r = 3 = 0 (mod 3) and t = 1,2 (mod 3) with s < 2r,
then K(r,s,t) can be decomposed into gregarious 3-paths.

PROOF. Suppose that r = s =0 (mod 3),r >3 and t =1,2 (mod 3) with
8 £ 2r. We use the following initial decompositions.

s t—r start with s t—r start with
mod 6 | mod 6 mod 6 | mod 6
r 1 K(r,r,r+1) || 7+3 1 K(r,r+1,7r+3)
4 K(ryr,r +4) 4 K(r,r+ 3,7 +4)
2 K(r,r,r +2) 2 K(r,r+3,7r+2)
5 K(r,r,7 +5) 5 K(r,r+ 3,7 +5)

If r = 3, then s = 3 or 6. The graphs K(2,3,3) and K(3,3,4) can be
decomposed by Lemmas 4.4 and 4.7, respectively, so, by Lemma 2.1, there
are decompositions of K(3,3,5), K(3,3,8) and K(3,3,7). Use K(3,3,4),
K(3,3,5), K(3,3,8) and K(3,3,7) as initial decompositions.

Starting with the initial decomposition in each case, use Lemma 2.3 | 5% ]
times to get a decompositions for K(r,s,r + i), where ¢ = 1,2,4 or 5
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as appropriate. Then use Lemma 2.3 v times to get a decomposition for
K(r,s,r +1+ 6v) = K(r,s,t). D

5 Large s: 2r < s < 4r

51 t<4r

. 2rs .
Since s <t £ s—or = 4r, we note that if s = 4r, then t = 4r as well.
Theorem 5.1 If 2r < s < t < 4r, with (r,s,t) admissible, then K(r,s,t)

has a decomposition into greganous 3-paths.

Proof. Case 1: r = s =t (mod 3). Start with the standard latin repre-
sentation and use up all of C and all entries in columns 1 to r and rows
s+ 1to t in r(t — s)/3 lots of trade 7. Then (s — r)(t — 5)/9 lots of T¢
will use up the remaining entries in rows s + 1 to ¢ plus the entries in rows
1 to (¢ — 8)/3 of columns 7 + 1 to s in the latin rectangle. Note that C =0
if and only if ¢ = g, in which case no entries have been used.

(iIfr=s=1t=0 (mod 3), M lots of Tg will use up the remaining
bottom entries plus the entries in ”;" rows of the latin rectangle. (This is
fine since ‘g’ + 23 < r.) The remaining entries in the latin rectangle are

used in 4r=8e=r) 4 rldr=s) 144 of trade T

(ii) Let r = s =t =1 (mod 3). If 4 < r, use up the remaining bottom

entries in: g’—;—ﬁ lots of T on the entries in columns 1 to 4; £3* lots
—r=3)(s—r foc

of T¢ and (’_'QX_Z lots of T¢ on the entries in columns 5 to s. The

rest of the entries in the latin rectangle are used in i‘—’;’l lots of T} and

(r"4)(4'"’) + (’_')(4' Y Jots of T¢. For (r,s,t) = (1,4, 4) just use two lots
of trade T

(iii) Let r =8 =1t = 2 (mod 3). If 6 < s —r, use up the bottom entries
in columns s — 6| 25%| + 1 to s in (t — r)[’g'] lots of T¢. If s — r is even,
all entries in E have been used, so let ¢ = r If s — r is odd, the entries in
exactly 3 columns of E are unused, so use & 232 lots of Tg' to take care of the
entries in rows s + 1 to ¢t of columns r + 1,7 + 2, r+3 and let ¢ =7 + 3.
The unused bottom entries are precisely those in columns 1 to ¢ and rows
r+1 to 3. If g is even, use ﬂi‘—"l lots of T'f; if q is odd, use %3~ lots of Tg'
on the entries in columns 1 to 3 and g;sus__rl lots of ¢ on the rest. The
remaining entries in the latin rectangle ca.n be used in T“ and T3 trades.
The case (r, s,t) = (2,5, 8) is covered in the Appendix.
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Case 2: s=t=0#r (mod 3). Here t < 4r. We use the standard latin
representation with « = 0. Use up all of C and all entries in columns 1 to r
and rows s +1 to ¢ in 7(t — 5)/3 lots of trade T. Since s —r can be written
as 3a + 2b, where b =0, 1 or 2, use a(t — 5)/3 lots of T and b(t — s)/3 lots
of T to use up the remaining entries in rows s + 1 to ¢ in the bottom and
the entries in rows 1 to (¢ —s)/3 of columns r + 1 to s in the latin rectangle.

If r = 1 (mod 3), we use s/3 lots of T onrows r,r+1,r+2 and s(s—r—2)/9
lots of Tg; if r = 2 (mod 3), we use s/3 lots of T¢ on rows r,7 + 1 and
8(s —r—1)/9 lots of T¢. Finish the decomposition using T§ and T§ trades.

Case 3: r =8 =0 (mod 3),t =1 (mod 3). Sot < 4r — 2. Use the latin
representation with 4 = 0. Use columns s + 2 to ¢t of C and the entries in
rows 8 + 2 to ¢ and columns 1 to r of the bottom in (¢t — s — 1)/3 lots of
trade T¢. Use the entries in column s+ 1 of C in T} trades with the entries
in rows s and s + 1 of columns 1 to r of the bottom. For the other entries
in the bottom of columns 1 to r, use 7/3 lots of T¢ and r(s —r — 3)/9 lots
of Tg.

To finish up the rest of the bottom, use (s —r)/3 lots of T and (s —7)(t —
r—1)/9 lots of T¢. The remaining entries in the latin rectangle can be used
in T§ trades.

Case 4: r =58 =0 (mod 3), t = 2 (mod 3). Then t < 4r and u = 0 in the
standard latin representation. Use columns s + 3 to ¢t of C and the entries
in rows 8+ 3 to ¢t and columns 1 to r of the bottom in r(t — s — 2)/3 lots of
trade T?. Use the entries in columns s+ 1 and s + 2 of C in T} trades with
the entries in rows s — 1 to s + 2 of columns 1 to r of the bottom. Use r/3
lots of T{ and r(s — r — 3)/9 lots of T¢ to finish off the entries in columns
1 to r of the bottom.

To finish columns r + 1 to s of the bottom, use (s — 7)/3 lots of T¢ and
(s—r)(t —r—2)/9 lots of T¢. The remaining entries in the latin rectangle
can be used in T3 trades.

Case 5: r =t =0 (mod 3), s =1 (mod 3). Then u = r + 1 in the latin
representation. Use r(t — s — 2)/3 lots of trade T on the entries in rows
1 to r and columns s + 3 to ¢ of C and the entries in columns 5 to r + 4
and rows s+ 3 to t of D and E. Use r/3 lots of trade T} on the entries in
rows 1 to r and columns s + 1,3+ 2 of C and the entries in columns 5 to
r+4androws s+1,s+2of D and E. There are s—r = 1 (mod 3) unused
bottom entries in each of the columns 5 to r + 4, so use (r — 3)/3 lots of
trade T, one T§ trade, and (s — r — 1)/9 lots of trade T§.

There are still £ — r» unused bottom entries in each of the columns 1 to 4.
Use 2(t — r)/3 lots of trade T to finish these off.
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Use up the ¢t — r unused bottom entries in each of the columns r + 5 to s
in (s — r — 4)(t — r)/9 lots of trade T¢. Any unused entries in the latin
rectangle can be used in T and T3 trades.

Case 6: 7 =t = 0 (mod 3), s = 2 (mod 3). Use the latin representation
withu=7r+2.

Use r(t — s — 1)/3 lots of trade T} on all the entries in columns s + 2 to ¢
of C and the entries in columns 1 to 7 and rows s + 1 to ¢t of D. Use r lots
of trade T} on the entries in column s + 1 of C and the entries in columns
1tor and rows r + 2 and s + 1 of D. All entries of C have been used.
On columns 1 to r of D, use r/3 lots of trade T and r(s —r — 2)/9 lots
of trade T¢. For columns r + 1 and r + 2, use (t — r)/3 lots of trade T}.
Use (t — r)(s — r — 2)/9 lots of trade T§ to finish the bottom entries. Any
remaining entries in the latin rectangle can be used in T3 or T3 trades. O

5.2 t>4r,t even

Starting with the standard latin representation, the basic steps in each of
the theorems in this section are:

1. use A to take care of 3r rows of D and use the minimum number of
elements of C to finish off the elements in D with T; trades;

2. spread the remaining elements of C as evenly as possible over the
s —u columns of E in a cyclic fashion: pairing the r entries s +1 from
C with the r entries s+ 1 in columns u+1 to u+7 in E, the r entries
8+ 2 in C with the entries s + 2 in columns v +7 + 1 to u + 2r in
E, wrapping around to column 1 again when necessary to create the
matching pairs needed for T trades;

3. allocate the additional points from E needed for the T; trades;

4. use the rest of the entries in E in trades with elements of B (relatively
easy because the number of columns in B and E is divisible by 3);

5. use T and T3 trades to use up remaining entries in A and B.

NOTE: In the proof of Theorem 5.3, we provide specific details needed to
complete each step. In the proofs of the subsequent theorems, we provide
details only where the steps differ from those in Theorem 5.3.

Lemma 5.2 If (r,s,t) is admissible and t is even, then
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t4+r—2(¥[<3r, t+r -2 5057 <3,

t+ 7 — 2| ELRIHN | C 3y, t+7 — 2| HE2EHISL) < 3

PROOF. Since (r, 3, t) is admissible, t(s—2r) < 2rs, so 52 < &. However,

t is even, so 52 is an integer and thus £52¢ < |¥] also. Therefore,
t+r—2{¥] <3r.

The other inequalities are proved in a similar fashion. O

Theorem 5.3 If(r,s,t) is admissible with2r < s < 4r < t, s = 0 (mod 3),
r # 2 (mod 3), and t even, then K(r,s,t) has a decomposition into gregar-
fous 3-paths.

ProoF. Use the standard latin representation with « = 0. Then Step 1 is
omitted and the columns of the latin representation have been partitioned
into triples.

Step 2: Since s = 0 (mod 3), at least one of r or ¢t = 0 (mod 3),sor(t—s) =0
(mod 3). The cyclic distribution of elements of C' will end on the boundary
between 2 column-triples. Each column gets either

[1(‘—;'—’21 =|%]-7r or [Z]1 -7  elements of C.
Step 3: If = 0 (mod 3), then all columns in a given column-triple have
been assigned exactly the same elements of C. To complete the T} trades,
continue to respect the column-triples when assigning the last entry (i.e.,
pick entries in the same row for all 3 entries in a single row of a column-
triple), but the elements in any row may be used.

If  # 0 (mod 3), then the columns in some triples of E may have been
assigned different elements of C (the indicated entries are the ones that
have been matched):

i+1 i+1 i+1

To complete each of these T trades, just use whichever of ¢ or ¢ + 1 is still
available in the column. As in the 7 = 0 (mod 3) case, any row can be used
to complete the T} trades when all 3 columns in a column-triple have been
matched with the same element of C.

Step 4: There are either
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t—r=2(Z]—2r=t+r-2\2%] or t+r—2[Z]

unused bottom entries in each column and all columns in a triple have the
same number of unused bottom entries.

By Lemma, 5.2, each column contains at most 3r unused elements. Each
column-triple contains only complete rows of unused entries. If r = 1 (mod
3), use a T trade on the entries in rows r,7 + 1,7 + 2, + 3 of each column
triple. Then, in both cases, complete the decomposition by using as many
T¢ trades on each column triple as possible, ending with a T? or a T¢, if
necessary. a

Theorem 5.4 If(r,s,t) is admissible with2r < s < 4r < t, 8 =0 (mod 3),
r =2 (mod 3), and t even, then K(r,s,t) has a decompostion into gregar-
ious 3-paths.

PRoOF. First, we note that under the conditions of the theorem, s < 4r—2,
u = 0 in the standard latin representation and the columns of B and E
have been partitioned into triples.

If r = 2, the only possibility is (r,s,t) = (2,6,12), which is given in the
Appendix. If r > 5 and s = 4r — 2, then t < 2'2:" 22 =4r+2 =
10 (mod 12) and so, in fact, t € 4r—2. This case is covered by Theorem 5.1.
Henceforth, assume that » 2> 5 and s < 4r - 5.

Step 4: If t + r — 2| Zt] < 3r — 1, use a T trade on the entries in rows
7+ 1,7 + 2 of each column tnple Then complete the decomposition by
using as many T¢ trades on each column triple as possible, ending with a
T? or a T¥, if necessary.

Now suppose that ¢ + r= 2|Zt] = 3r. Thent+r —2[Z] = 3r or 3r —
depending on whether Zt : L € Z or not. In any event, {520 < = < £=2r42 59
2s(r = 1) < t(s — 2r) < 2sr. We have to revisit the T1 trades above and
make sure that we use up the entries in row r + 1 in these trades. If each
column-triple has at least one row where all 3 columns are matched with
the same entry, then we can use the entries in row r + 1 to complete these
T trades. If there are column-triples which do not have rows of this type,
we can shift things around provided there are enough of these rows in some
column-triple.

There are (r — 2)/3 column-triples where all entries in the same row are
matched with the same entry; there are ¢ — s different types of entries in C,
so we need (t—s)(r —2)/3 2> 3/3 (the number of column-triples). However,
8 € 4r — 5 implies that s — 2r < 2(r — 2) and so

s=38(r-1)—s(r-2) < t—(";—z’)—s(r—2) < t(r—2)—s(r—2) = (t—s)(r-2).
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Once we have adjusted this assignment of elements of C, we can use up all
the entries in row r + 1 in the T} trades. Finish using the entries in E in
Tg trades. O

Theorem 5.5 If (r,s,t) is admissible with 2r < s < 4r < t, r = s #
0 (mod 3), and t even, then K(r,s,t) has a decomposition into gregarious
3-paths.

PrROOF. Note that ¢ = s (mod 3) also and that the columns of B and FE
have been partitioned into triples.

Step 1: Use the last {5 entries in each column of D with all the entries in
the last £33 columns of C as the matching items in (52 lots of trade T3.
For the third elements in these trades, use the entries in rows r+1,...,7r+
t= 24' of D. There are 3r unused entries in each column of D. Since r 2 2,
7 = 2a+3b, where @ = 1 or 2, so the columns of A and D can be partitioned
into triples together with either a pair or a quadruple. Then ar lots of trade
T¢ and br T§ trades use up all the remaining entries in A and D.

Step 2: There are t —s — 5ir

t—s— 54 and s —r = 0 (mod 3), the cyclic distribution of elements of C
ends on the boundary between two column-triples in E. Each column gets
either

| Eie/2=st2r) 2—s+2r Lr(t:-_?:')_ |- or [%((’:'Tz:)l] -r elements of C.

Step 4: After completing the 73 trades, the number of unused elements in
each column of E is either

2 t+2
r-205E2] o t4r—2[EE).

By Lemma 5.2, each column contains 3r or fewer unused elements, so we
can finish in the same way as in Theorem 5.3 if s £ 2 (mod 3). fr=s=
2 (mod 3), then t = 2 (mod 6) and we can finish as in Theorem 5.4 once we

make the following observations for the case where t 4+ r — 2[%‘&%’%] = 3r.
If r = 2, then the only possibility is (r,s,t) = (2, 5,20) which is given in
the Appendix.

If r > 5, then s < 4r — 3. However, if s = 4r — 3, then ¢ < (228 ] =

4r + 3 + | 525 < 4r + 4, which actually implies that ¢ < 4r. So we may
assume that s < 4r — 6.
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When the last r(t — s — £52°) entries of C are distributed over the s —
columns of E, there are 5"—21(15 ~s—547) instances where all three columns
of a column-triple are asmgned the same entry from C. However, t > 4r

and 4r — 6 > s imply that t —2s+4r > 87 —2s > 6 and 6(r —2) > 2(s—7),
so IL;_%l(t — s — i5ir) > 227 (the number of column-triples). O

Theorem 5.8 If (r,s,t) is admissible with2r < 8 <4r < t, s =2 (mod 3),
r =0 (mod 3), and t even, then K(r,s,t) has a decompostion into gregar-
tous 3-paths.

PROOF. Note that ¢ = 0 (mod 6) and in the standard latin representation,
u = r + 2. First suppose that r > 3.

Step 1: Use the r entries in each of the last {5 columns of C in T} trades
with the entries in columns 1 to r and rows _—u to ¢t of D plus the entries
in rows r + 1 to 52~ of the same columns in ' D. Use the entries in rows
1 and 2 of columns 4r + 1 to 24' of C in T trades with the entries in
columns 7 + 1 and r + 2 and rows 4r + 1 to ‘i24—" of D and the entries in
rows 7 + 1 to £52* of the same columns in D. Each column, 1 to 7 + 2, has
t —r — (t — 4r) = 3r unused bottom entries which can be used in T (for
columns r + 1 and r + 2) and T§ trades.

Step 2: In C, we have used (r +2) 152 entries, leaving r(t —s) — (r +2) 542
entries to distribute among the s — r — 2 columns of E to use in T} trades.
Since 7(t—s) = (r+2) !5} and (s—r—2) = 0 (mod 3), the cyclic distribution
of these entries ends on the boundary between two column-triples.

Step 4: So there are t — 7 — 2[——(1'—)—‘"—" 2rodr A8 =t 41— 2Tyt 2;:-3'2 2t
ort+r— ZI.I%—?;—_'}_"—’,‘,%J unused bottom elements in each column of E.

By Lemma 5.2, t + r — 2[m'—?:—_'£‘f—’)—2—§_l 3r, so all columns have at most
3r unused bottom elements. Since » = 0 (mod 3), there are no problematic
rows in E, so we can finish as in Theorem 5.3.

Now suppose that » = 3. Then (r, s,t) = (3, 8, 18), (3,8, 24).

Cyclically distribute all the entries of C across all columns of D and E,
starting with the entry 9 in rows 1 to 3. The columns are partitioned into
2 column-triples (columns 1 to 3 and columns 4 to 6) and one column-pair.
Select the third entry for each T trade in the usual way ensuring that the
entries in rows 4 and 5 in each column are used. Finish using the entries in
columns 1 to 6 using T§ trades plus two T trades if ¢ = 18. There are 9
unused entries in each of columns 7 and 8, so use three T trades to finish.

a

118



Theorem 5.7 If(r,s,t) is admissible with2r < s < 4r < t, s =1 (mod 3),
r =0 (mod 3), and t even, then K(r,s,t) has a decomposition into gregar-
tous 3-paths.

ProoOF. Note that ¢t = 0 (mod 6) and that © = r + 1 in the standard latin
representation.

Step 1: Perform T; trades on the following sets of entries: rows 1 tor — 1
and columns &4r+2 to ¢ of C' with columns 1 to r — 1 and rows r + 1 and
4r +2to t of D row 7 and columns 42 of C to ¢ with column r and
rows 4r + 1 to ¢t of D; and row 1 and columns r +1to —“—’ of C with
column r 4+ 1 and rows 4r + 1 to t of D.

Finish using the entries in columns 1 to r+1 by using r(r —3) /3 lots of trade
T¢ on columns 1 to r —3; 2r lots of trade T on columns r —2,r —-1,r,r+1.

Step 2: There are r(t —s) — (r + 1) “;' (which is congruent to 0 (mod 3))
unused entries in C, which can be distributed evenly over the s —r —1 other
columns to be used in T} trades in the same manner as before.

Step 4: By Lemma 5.2, t — r — 2{%] £ 3r, so each column
has at most 3r unused bottom entries. Use trades T¢ plus T¢ or Tf, if
necessary, to use up these entries. O

5.3 t>4r,t odd

In this section, we use the methods of the previous section after using two
new combinations, Ty5 and Tjq, of T and T trades to use up 4 entries in
each column of D and E. For ease of reference, label the rows of D and
E with u+ 1,4+ 2,...,t, and the columns of C with s+ 1,...,¢. In the
standard latin representation, all entries in row k of D and E, and column
kof C,areequal to k, forall s+ 1< k<t

The letter a denotes the cells whose entries are used in a single T trade
(rather than the entries themselves). Similarly, the letters b, ..., f indicate
the cells used in other T§ trades. The T} trades in Ti5 use 3 entries in
column k of C' with entries in columns ¢;, ¢3,¢4 of rows k and j +2; the Ty
trades in T} use the entries in columns ¢;, ¢4 of rows & and ! plus 2 entries
from column k or from column ! of C or one from each.
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c1 c2 c3 [ Cs Ce
1{a f b ¢c e d
ila a b ¢c ¢ d
Twis: j+1|a b b c d d
i+2 f e f
k f e e
c1 c2 €3 Cq
1|la d c b
ila a b b
Tw: i+1|a ¢ c b
k d c
d d

Lemma 5.8 If (r,s,t) is admissible and ¢ is odd, then

i)t+r—4-22ct=2| < 3r-3; and
“8
(i) ¢+r—4—2|2852=3| L 3r - 3, if s = 3 (mod 6).

PROOF. We prove (ii); part (i) is similar. Suppose that t + r — 4 —
2{ 2523 | > 3r — 3,50 that t +r — 4 — 2| 2852=3| > 3r — 2. However, ¢ is
odd which means that ¢t +7 — 4 — 2| 2rbze=3 | > 3r — 1.

Then |2tz2=3| &= 2; =3 € Z and so #i;2=3 < t=2£=3 4 1  Therefore,
2rs — 3 < t(s — 2r) € 2rs. (The latter inequality fol lows since (r,s,t) is
admissible.)

Here s = 3 (mod 6), so at least one of r, t = 0 (mod 3), and both 2rs,
t(s —2r) = 0 (mod 3), so from above, t(s —2r) = 2rs. However, s and ¢t are
both odd, so we have a contradiction. Hence t+r—4—2|2rfz2=3| £ 3r -3,
as required. 0O

Theorem 5.9 If (r,s,t) is admissible with 2r < s < 4r < t, s =0 (mod 3)
and t odd, then K(r,s,t) has a decomposition into gregarious 3-paths.

PROOF. When s = 0 (mod 3) and tis odd, t+r—2|£] < 3r+1. By parity,
t+7r—2|¥] # 3r, so we can use the methods of Theorems 5.3 and 5.4
unless ¢t + r — 2["'] = 3r + 1. This would imply that some columns, say
exactly 8 of them (0 < 8 < 8), would contain 3r + 1 unused elements in
Step 4 and we could not complete this decomposition.

Suppose that t+r—2| £ = 3r+1. This means that | & | = i=2r=L &£ g 7,
t must be odd and 2rs—s < t(s—2r) < 2rs. No case with r = 2 meets these
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conditions. The only ones with r < 5 are (r,s,%) = (3,9,17), (4,9,69). Use
the method below for (3,9, 17); the case (4,9,69) is in the Appendix.

Ifr>25o0r(rst)=(3,917), then
BBr+1)+(s=B)Br—1)=(t—7)s — 2r(t — s),

which implies that 28 = t(s — 2r) — 2rs + s £ s < 4r, and since at least
one of t or r = 0 (mod 3), 28 = 0 (mod 6). We start again setting up the
trades on the standard latin representation.

First make a change to the latin representation to make it easier to specify
which trades are used. Since either (r,s,t) = (3,9,17) orr > 5, 2r < s and
8 =0 (mod 3), we have s —r > 6. The last six rows of B* (rows s—5,...,8)
consist of the blocks below.

Bysz—1 | Beyz | Bi | ... | Bosz—s
B3 By, | By |... | Bys_

Since these are outside the latin rectangle, the entries need only be column-
latin, so rearrange these by switching the blocks in every second column as
below.

Bss-1 | Bi | B1 | Bs
B;/3 B,/3 | B2 | By

Let r; be such that 7 = r; (mod 3) and 0 < r; < 3. Use (r —r;)/3 lots of
Tys, with j = s —2 and k = ¢, on columns 1 to 2(r — ;). Use [§] — 52
lots of Ty5, with j = s —2 and k =t — 1, on columns 2(r — ) +1 to 6| §].
Note that we have used Ts on at least 283 columns of FE and that we have
used the same rows in all columns of each column-triple. If s = 0 (mod 6),
then we have used all entries in row 1 of B and s/2 elements of C. If s =3
(mod 6), we have used the entries in columns 1 to s — 3 of row 1 in B and
(8 — 3)/2 entries of C.

If s = 3 (mod 6), to deal with the last 3 columns, use two T§ trades on the
entries in rows s — 1 and s, plus row 1 columns s — 2 and s. Use three T}
trades on 2 rows (these can be rows ¢t — 1 and ¢ unless s = 4r — 1) and 3
entries of C. So we have used a total of (s + 3)/2 entries in C.

Use Steps 2 and 3.
Step 4: The number of unused bottom entries per column is:
t+r—4-2[2=2] or t+r-4-2%ks if s =0 (mod 6)

t+r—4-2[FEE3] o t4r—4-2(25e=3| if =3 (mod 6).
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Each of these, by Lemma 5.8, is less than or equal to 3r — 3. Finish the
decomposition as in Theorems 5.3 and 5.4. O

Theorem 5.10 If (r, s,t) is admissible with 2r < s < 4r < t, 8 # 0 (mod 3)
and t odd, then K(r,s,t) has a decomposition into gregarious 3-paths.

PROOF. All cases are done in a similar manner. For all T}; trades, except
one in Case 3, use j = s —2 and k¥ = t — 1 or ¢; all Tjo trades use the
four rows s — 1,s,¢t — 1 and . We give complete details in Case 1 and then
indicate any changes for the others. Any unused entries left in the latin
rectange at the end can be used in T3 trades.

Case 1: Suppose that s = 4 (mod 6). Then u = 1 (mod 3), u > 4 and
t>4r+3. Inaddltlon,eltherr=t—1(mod3)and2r+2<s<4r—6
orr=t=0(mod 3)and 2r+4<s<<4r—-2.

On columns 5 to s, use 25 lots of Tys. For |§] of these use k = ¢ and for
the remaining 22 ’“‘ —5),use k=t—1. If r =0 (mod 3), there will be no
t entries and at least three t — 1 entries left in C; if r = 1 (mod 3), there
will be one ¢ entry and at least four ¢ — 1 entries left in C.

On columns 1 to 4, use a Ty trade with two £ — 1 entries from C if r =0
(mod 3) and with one ¢ entry and one ¢t — 1 entry from C if r = 1 (mod
3). All the ¢ entries in C have been used and there are r(t — s) — £ unused
entries in C.

Distribute ﬂ‘_;;ll of the remaining C elements over the s columns, in
the usual cyclic fashion, to create the matching pairs for 77 trades. This
is possible since 2rs > t(s — 2r). Note that if = 0 (mod 3), r > 6, the
first r columns of D are matched with s + 1, while the last column of D is
matched with s + 2; so in this case, switch this around so that the last 3
columns of D are matched with s + 2 and the first two columns of E with
8 + 1; use the entries in row r + 1 of D to complete the T} trades using
these s + 1 and s+ 2 in D. Now select the third entry of the bottom for
the remaining T; trades, respecting column-pairs in columns 1 to 4 and
respecting column triples elsewhere. If r = 1 (mod 3), avoid using entries
from rows r + 1,7 + 2. Each column in D and E now has 3r — 3 unused
bottom entries. For columns 1 to 4, use the remaining bottom entries in
2(r — 1) lots of trade T¢.

There are 21'—‘2(&2 = 0 (mod 3) unused entries in C to be used in more
T, trades. Distribute them over columns 5 to s, so all colums in a column
triple get the same number of matches and each column is matched with

either
[2”2—25_8;2'2] or |'2r52—:§_a;2r!-|

122



elements of C. In all cases, 2[%)—29] < 3r — 3. Use the remaining
bottom elements in as many T or T¢ trades as possible, finishing with T,
Tg, T2 or T? if needed.

Case 2: Suppose that s = 2 (mod 6). Then u =2 (mod 3) and ¢ > 4r + 3.
Also,r=t=2(mod3)and 2r+4<s<4r—-6orr =t =0 (mod 3) and
2r+2<s<4r—4. If r =3, then (r, 8,t) = (3,8,15), (3,8, 21), which are
given in the Appendix, so assume that r > 3.

Use ’—;—8- Ts trades in columns 9 to s and two T¢ trades on columns 1 to 8
so that r copies of entry ¢ and "—‘22—" copies of entry ¢ — 1 from C are used.
If r = 5 (mod 6), interchange the entries in columns r + 1,7 + 2,7 + 3 of
rows s—r — 2,8 —r — 1,8 —r with those in rows s — 2, s — 1, s to make this

possible.

Distribute ﬂt";—"ll of the remaining C elements over the s columns, in
the usual cyclic fashion, to create the matching pairs for T} trades and
complete the trades respecting the column-pair, (1,2), and column-triples
elsewhere. Each column now has 3r — 3 unused bottom entries. Use r-1 T
trades to use up the bottom entries in columns 1 and 2.

Distribute the remaining M“;—‘z—'l = 0 (mod 3) entries in C over the
columns 3 to s and complete the T} trades, respecting the column-triples.
If r = 0 (mod 3), then use two lots of ¢ on columns 3 to 8, followed by
as many T¢ trades as possible on the entries in columns 2 to s and T or
T¢ if needed. If r = 0 (mod 3) and | 25759-27) | £ 0, then each column is
matched with at least one more entry of C and so there are at most 3r — 5
unused bottom entries in each of the columns 2 to s. Use T¢ or T and T¢
trades to use up the bottom entries.

If r = 2 (mod 6) and [2%’2—%5_’—;@ ] = 0, use 25T lots of T¢ on columns
r+1tos and rows 2,7 + 1,7+ 2,7+ 3. If r = 5 (mod 6), 7 > 5, and
[”ﬁ“;-?_’—;%'lj = 0, use 2=2=3 lots of T on columns r + 4 to s and rows
2,7+ 1,7 + 2,7 + 3 and three lots of T on the entries in columns r + 1
to r + 6 of rows 3,7+ 5,7+ 6 plus row r + 1 for columns r + 1 to r + 3
and row r 4 4 for columns 7 + 4 to r + 6. Finish both cases as above. For
(r,s8,t) = (5,14, 35), see the Appendix.

Case 3: Suppose that s =1 (mod 6). Then v =1 (mod 3) and 47 + 3 < t.
Alsoeitherr =t =1(mod 3) and 2r+5 < s< 4r—3orr =t =0 (mod 3)
and 2r +1 < 8 < 4r — 5, s0 t(s — 2r) £ 2rs — 3 and there are no admissible
triples in this case with r < 6.

On column 1, use a T) trade on entries s—1,t —1and at — 1 from C plus
a T4 trade on entries in rows 1,s,t and a ¢t from C. Use % lots of Tis on
columns 8 to s, I_'g—lj of them using ¢ and the rest ¢ — 1; use T}5 on columns
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2 to 7 using rows 1,s — 1,8,¢ — 1, plus three t — 1 entries from C, if r =1
(mod 3), and two ¢ entries and one ¢ — 1 entry from C, if r = 0 (mod 3).

Distribute ﬁt—_—”;l of the remaining C elements over the s columns, in the
usual cyclic fash1on, to create the matching pairs for T} trades. Columns 1
to 3 have each been matched with s + 1, so complete these 77 trade using
the entries from row 7 + 1. Complete the rest of the 7} trades respecting
the column-pairs (4,5) and (6,7) and the column-triples elsewhere. Each
column has 3r — 3 unused bottom entries. Use up the rest of the bottom
entries in columns 4 to 7 in 2(r — 1) lots of trade T.

Distribute the remaining M‘;—l);a C entries among the s — 4 other
columns (note that 0 g Zre=fe=n=3 (3"32)("4) for all admissible
(r, 8,t) in this case) and complete the T) trades respecting the column-
triples. Finish using the bottom entries in as many T trades as possible,
ending with T or T? trades if needed.

Case 4: Suppose that s = 5 (mod 6). Then v =2 (mod 3) and 4r + 3 <
Alsoeitherr=t=2(mod3)and 2r+1 s 4r—-3orr=t=0 (mod3)
and2r+5<s<4r—"7,50t(s—2r) < 2rs — 3 and there are no admissible
triples in this case with r < 5.

On column 1, use a T} trade on entries s—1,t —1 and at—1 from C plus
a T§ trade on entries in rows 1, s,t and a ¢ from C. Use 5—;—5 lots of T15 on
columns 6 to s, I_I—g—z-J of them using ¢ and the rest ¢t — 1; a Tjp trade on
columns 2 to 5 usingat—1and atif r =2 (mod 3) and two ¢ entries from
C if r =0 (mod 3).

Distribute 1(“;—'_12 of the remaining C elements over the s columns, in the
usual cyclic fashion, to create the matching pairs for 77 trades. Complete
the trades using entries from the rows s + 1 to ¢ (possible since t — s —
1-(t—4r—1)=4r —s > 3), respecting the column-pair (1,2) and the
column-triples elsewhere. Each column now has 3r — 3 unused bottom
entries. Finish columns 1 and 2 by using r — 1 T trades.

Ifr = 2 (mod 3) and [%ﬁj = 0, use the entries in rows 2,7+1,r+

2,7 + 3 and columns 6 to s in 252 lots of T¢ (possible since r +3 < s — 2).
Each of these columns now has 31' 629 unused bottom entries. Distribute
the remaining M’;iﬂ = 0 (mod 3) unused entries of C across the
8 — 2 columns 3 to s (note that some columns will get one, others none)
and complete the T} trades respecting column-triples. Otherwise, omit
the T¢ trades and just distribute the m—"%’—”ﬂ 2 3 unused entries
in C over the columns 3 to s and use them in T} trades, selecting the
third entry for each respecting the column-triples. This is possible since
Ir—-32 [mﬁ;(%);s] for all admissible (r, s,t) satisfying the conditions
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for this case. We can use up all the remaining bottom entries in T¢, T¢,
T2, TP, T or T§ trades. O
This completes the proof of our main theorem.

Main Theorem: There ezists a gregarious 6-cycle decomposition of the
complete tripartite graph K(p,o,7) if and only if the following two cond:-
tions hold:

(a) p,o,7 are all even, say p=2r, 0 = 23 and 7 = 2t, and
(i) r=s=t=1 (mod 3); or
(ii) r=8=t=2 (mod 3); or
(iii) at least two of 1, s,t must be 0 (mod 3);
(b) ifr <8<t then s < 4r and t(s — 2r) < 2rs.

Appendix

K(1,3,6) (below left): The subscripts in the latin representation indicate
the trades used: entries subscripted 1 form a trade T¢, and entries sub-
scripted 2, 3, 4 form three trades T; .

K(2,3,6) (below right): T) trades are subscripted 1 through 6; remaining
entries form two 7§ trades.

1, 23 3114, 53 64| 1 2 3 |4 52 63
2 1 1 2 3 1 (4 55 6
hZ L, 2 s 14 2
4 4 4 4 44 4
54 53 52 51 52 By
64 63 6 6s 62 63

1, 2 3 4 5716, 7, 83
22 1lg 4 5 3|64 T5 8

K(2,5,8) (above): T} trades are subscripted 1 through 6; T trades 7 and
8. The remaining entries form T? and T§ trades.
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K (2,5,20): Use the same 8 trades as for K(2, 5, 8) plus 12 lots of T on the
remaining 24 unused entries in columns 1 and 2 with the entries 9,...,14 in
the side. The remaining entries (below) are used in 2 lots of Ty, subscripted
1 and 2, and in 12 lots of T3.

K(2,6,12) (below): All side and starred entries are used in 12 T} trades;
the rest of the entries form six T trades.

3 4, 51 153 165 177 18y 191, 2013
4, 92 3a 154 16 173 1810 1912 2044
1 1, 1
2 2 2
9, 9 9
10, 102 10,
11, 11, 11,
12, 12, 12,
133 134 135
145 14; 143
153 154 1532
165 1610 16g
17 177 173
189 1830 1834
1911 193 1912
2017 2053 2054

1 2 3 4 5 6 |7 8 9 10 11 12
2 3 1 5 6 4 |7 8 9 10 11 12
3. 1. 2 6 4. 5.
4, 4. 4 2 1. 1.
5 5 5. 1L 2 2
6 6 6. 3. 3 3
Te 7o 7 7 7 7
8 8 8 8 8 8
9 9 9. 9. 9 9
10 10 10, 10. 10 10
11 11 11 11 11, 11,
12 12 12 12 12, 12,

K(3,4,6) (below left): T§ trades are subscripted 1, 2; T trades are sub-
scripted 3, 4; remaining entries form two T3 trades.
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K(3,6,6) (below right): T¢ trades are subscripted 1, 2; remaining entries
form four T3 trades.

1 2 3 4|5 6 1 2 3 4 ) 6
2 3 4 15| 55 69 2 3 1 5 6 4
33 43 14 245 62 31 L1 2, 62 42 52
43 13 24 3 4 4 4 12 1 1
53 53 54 04 5. 51 51 22 22 2
63 63 64 64 60 6, 6. 3 32 3

K(3,8,15) (below): In column 5 of the standard latin representation, in-
terchange the entries 3 and 4 with the entries 6 and 7. T)¢ trades are
subscripted 0,1; subcripts 2 through 6 each indicate three 7} trades and
subscript 7, two T trades (set up in a cyclic way); use three T? trades and
one T3 on columns 1 to 6 and two T on columns 7 and 8.

lo 2 3% 4 5 6 71 & 14, 15¢
2 3 4 5 1 7 8 6 |... 144 15¢
3 4 5 1 2 8 6 7 14, 15;

4 5 1 2 6 1 1 1
59 1, 22 3 7 2 2 2
6o 6 60 60 31 I 3 A
7o 70 70 7o 4 4 4 4
8o 8 8o 8o 83 53 5 5
9, 99 99 9 9 9 9 9
10 10 10 103 103 103 10 10

11, 11 115 11 11 11 11, 114
124 125 125 125 12¢ 12¢ 124 124
13¢ 13; 13; 135 13g 13¢ 13 13
14¢ 147 14; 143 14, 14, 14, 14,
150 150 15 15¢ 15y 15 15; 15

K (3,8,21): In column 5 of the standard latin representation, interchange
the entries 3 and 4 with the entries 6 and 7. Then use two Tj¢ trades on
rows 1, 6, 7, 19 (columns 1 to 4), 17 (columns 5 to 8) and 21, using three
21 entries and one 19 entry from C. Distribute the entries 9 through 18
and the two remaining 19 entries from C in the usual cyclic manner and
select the remaining entry for T trades respecting the column-pair (1,2)
and the 2 column-triples, except that 18 in column 5 should be matched
with 19 rather than 17 to accommodate one Tg trade. Use the three 20
entries in 7 trades with columns 6,7, 8. This leaves 6 unused entries in
each of columns 1 through 5 and four unused entries in columns 6,7, 8. Use
two T, one T¢, two T¢ and one T§.
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K(4,7,7) (below left): T¢ trades are subscripted 1, 2; T3 trades 3, 4; a Tg
and a Tf trade are marked 5 and 6, respectively; rest of entries form six T3¢
trades.

2 3 4 5 6 7T 1la 4 1 3 7 8 5 6
36 48 S 6 7T 1 29, 3 5 1 8 7 6 5
4515 25 (135 '171 il 32 22 5. 61 T2 8 13 23 34 44
65 15 25 21 21 42 42 6, 51 8 T2 23 13 44 34
75 75 75 31 31 52 52 v 71 82 52 33 33 1 1
6 T6 6 =1 v %2 92018 8 62 6, 43 43 2 2

K(5,8,8) (above right): T trades are subscripted 1 to 4; remaining entries
form 16 T3 trades.

K(4,9,69): First, 240 lots of trade T} are used; the first bottom element
for each can be selected in a cyclic manner as in Step 2 of Section 5.2; the
freedom of choice is such that after selecting the second entry for each 71
trade we can have the following (below right) unused entries remaining in
the latin representation. Three T¢ trades are subscripted 1, 2, 3; one T¢
marked 4; three T¥ trades, 5, 6, 7; the remaining entries are used in seven
T§ trades.

15 2¢ 3z 44 54 64 Te 8 Qg
2 3 1 5 6 4 8 9 7
3 1 2 6 4 5 9 7 8
4, 5, 61 T 8 9 13 23 33
o1 61 4, 8 99 T2 23 33 13
61 4, 51 9, T2 82 33 13 23
71 71 71 1, 12 1, 43 43 43
8 8 8 2 2 2 5 5 5
9 9 9 3 3 3 6 6 6
11 11 11 12 12 12 10 10 10
13 13 13 14 14 14 15 15 15
18 18 18 16 16 16 17 17 17
20 20 20 21 21 21 19 19 19
67; 67¢ 677 23, 234 235 24 24 24
69 69 68, 254 254 254 26 26 26
28 28 28
687 695 69

K(5,14, 35): To make the decomposition easier to see, rearrange the entries
in rows 6 through 15 of column 5 of the standard latin representation as
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below. Use 7 lots of T on rows 2,6,7,10; 7 lots of T¢ on rows 3,8,9,10;
Tip on rows 1 and 12-15 of columns 1-4 and 2 copies of the entry 15 in
the side; T15 on rows 1 and 12-15 of columns 9-14 and the remaining 3
copies of the entry 15 in the side; plus 4 lots of T§, subscripted 1 to 4,
on the indicated entries and the entries in the same columns of row 1.
Distribute the remaining 100 side entries in the usual cyclic manner over
the 14 columns {each gets 7) with the 2 extra entries going to columns $
and 6. Complete T; trades in the usual way, respecting pairs of columns
for columns 1 to 8 and triples for columns 9 through 14. Finish up with 8
lots of T on columns 1 to 8 and 4 lots of T§ on columns 9 to 14.

6 6 6 6 1 1 9 10 14 12 13 8 6 7
o7 v 7 12 12 12 12 6 6 6 9 9 9
8§ 8 8 8 13 13 13 13 7 7 7 10 10 10
9 9 9 9 14 14 14 14 8 8 8 11 11 11
10 10 10 10 10 1 1 1 11 1 1 1 1
11 11 11 11 6 2 2 2 2 2 2 2 2 2
12 12 12 12 7 3 %% 3% 3 3 3 3 3 3
13 13 13 13 8 4 4 4 4 4 4 4 4 4
14 14 14 14 93 5, 5 5 5 5 5 5 5 5
15 15 15 15 153 154 154 153 156 15 15 15 15 15
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