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Abstract

A broadcast on a graph Gisa function f : V — {0, 1,...,diam G}
such that f(v) < e(v) (the eccentricity of v) for all v € V. The
broadcast number of G is the minimum value of 3~ ., f(v) among
all broadcasts f for which each vertex of G is within distance f(v)
from some vertex v with f(v) > 1. This number is bounded above
by the radius of G. A graph is uniquely radial if its only minimum
broadcasts are broadcasts f such that f(v) = rad G for some central
vertex v, and f(u) = 0 if u # v. We characterize uniquely radial
trees.
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1 Introduction

A broadcast on a graph G is a function f : V(G) — {0,1,...,diam G}
such that f(v) < e(v) (the eccentricity of v) for all v € V. The broadcast
number of G is the minimum value of 3 ., f(v) among all broadcasts f
for which each vertex of G is within distance f(v) from some vertex v with
f(v) > 1, and is bounded above by the radius of G. A graph is radial if
its broadcast number is equal to its radius, and uniquely radial if its only
minimum broadcasts are broadcasts f such that f(v) = rad G for some
central vertex v, while f(u) =0 if u # v.

*Supported by an NSERC discovery grant.
tSupported by an NSERC undergraduate student award.

JCMCC 93 (2015), pp. 131-152



We characterize uniquely radial trees, thus solving a problem posed in
[5]. Before stating the characterization in Section 4, we give some defini-
tions and background in Section 2, and some useful results and tools to aid
the visualization and exposition of our results in Section 3. The proof of the
main result is divided into three lemmas, which are also stated in Section
4. Their proofs are given in Section 6. Section 5 contains two corollaries,
the first giving a simple characterization of uniquely radial caterpillars, and
the second showing that there is no forbidden subtree characterization of
uniquely radial trees.

2 Definitions and background

For undefined concepts see [1, 8]. A broadcast vertez is a vertex v for which
f(v) > 1. The set of all broadcast vertices is denoted V. For v € V
the f-neighbourhood Ny[v] of v is the set {u: d(u,v) < f (' v)}, while the f—
private neighbourhood PN[v] of v consists of all vertices in Ny[v] that are
not also in Ny[w) for any w € Vf'" —{v}. A vertex u hears a broadcast from
vE Vf+, and v broadcasts to u, if u € N¢[v]. A vertex v is overdominated

if f(u) — d(u,v) > 0 for some u € V"

A broadcast f is a dominating broadcast if every vertex hears at least one
broadcast. The cost of a broadcast f is defined as cost(f) = ZvGV(G) f(v).
The broadcast number of G is denoted ,(G), that is, v5(G) = min{cost(f) :
f is a dominating broadcast of G}. If f is a dominating broadcast such
that f(v) = 1 for each v € V{7, then V" is a dominating set of G, and the
minimum cost of such a broadcast is the usual domination number v(G).
A dominating broadcast f of a graph G for which cost(f) = v,(G) is called
a Yp-broadcast.

A diametrical path (abbreviated d-path) of a tree T is a path of length
diamT. A path is even or odd, corresponding to the parity of its length.
A tree is either central or bicentral, depending on whether it has one or
two (adjacent) central vertices; any d-path of a tree contains its centre. A
broadcast f of a tree is called central if Vf"' = {v} and f(v) = radT for
some central vertex v of T, otherwise it is called non-central. A stem of a
tree is a vertex adjacent to a leaf, and a branch vertex is a vertex of degree
at least three. If f is a y,-broadcast of T # Kj such that V' contains a
leaf u, and v is the stem adjacent to u, then the broadcast g defined by
g9(u) = 0, g(v) = f(u), and g(w) = f(w) otherwise, is a 7,-broadcast of
T such that [V}| = |Vf+|. Therefore we consider only broadcasts without
leaves as broadcast vertices.

Erwin {6, 7] was the first to consider the broadcast domination prob-
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Figure 1: A tree with split-sets {uv} and {zy}

lem, and to observe the trivial bound v,(G) < min{rad G,~v(G)} for any
graph G. The problem of characterizing radial trees was first addressed
by Dunbar, Erwin, Haynes, Hedetniemi and Hedetniemi in [4] and also
studied in [5, 12], and was solved by Herke and Mynhardt {11] (see Theo-
rem 3.1). Minimum broadcast domination is solvable in polynomial time
for any graph (Heggernes and Lokshtanov (9]) and in linear time for trees
(Dabney, Dean and Hedetniemi [3]).

3 Radial trees, shadow trees and isosceles
right triangles

A set M of edges of a d-path P of a tree T is a split-P set if, for each
component TV of T — M, the path PNT’ is a d-path of T’ of even, positive
length. A split-set of T is a split-P set for some d-path P of T, and a
mazimum split-set of T is a split-set of maximum cardinality. For example,
{uv} and {zy} are maximum split-P sets of the tree in Fig. 1. Radial trees
are characterized as follows.

Theorem 3.1 [10, 11] A tree is radial if and only if it has no nonempty
split-set.

The broadcast number of a tree can be expressed in terms of its radius
and the cardinality of a maximum split-set.

Theorem 3.2 (10, 11] For any tree T, let M be a mazimum split-set of
T of cardinality m >0, and T4, ..., Tim+1 the components of T — M. Then
m+1

(T) =rad T — [%] = > ().

i=1

We shall also need the following result from [5].
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Figure 2: The triangles of a shadow tree

Proposition 3.3 [5] If T’ is a subtree of T, then w(T") < v(T).

Let P = vy, ..., vq be a d-path of the tree T. For each i, let A; be the set
of all vertices of T' that are connected to v; by a (possibly trivial) path that
is internally disjoint from P. Let B; be a longest path in T'(A;] that has
initial vertex v;. The shadow tree of T with respect to P, denoted St p, is
the subtree of T induced by |Ji V/(B;). If B; has length at least one, it
is called a bough of St p at v;. If the d-path P is understood or irrelevant,
we abbreviate St p to Sy. The relevance of shadow trees to the study of
broadcast domination was demonstrated in [11].

Theorem 3.4 [11] For any shadow tree St of T, v(ST) = 7o(T).

Let S be a shadow tree with d-path P = vp,...,v4. Draw S in the
positive X — Y plane with P on the X-axis, vy at the origin, each edge of
unit length, and each edge not on P parallel to the Y-axis. We henceforth
assume that all shadow trees are drawn as described above. We may thus
describe a vertex v; as being to the left of v;, or v; as being to the right of
Vi, ifi < _7

Let H(t) be the tree obtained from K 3 by subdividing each edge ¢t — 1
times. If H(t) is a subtree of S, then the leaves of H(t) lie at the (geometric)
vertices of an isosceles right triangle A whose hypotenuse lies on P and has
length 2t; we say that A has radius t. We use this observation below to
better describe the positions of the boughs of S.

The vertices of the bough B of length ¢ that begins at the vertex v; are
labelled v; = u;,ui,1, ..., ui;. If £ > 1, we place an isosceles right triangle
A = A; of radius ¢ with its hypotenuse on P, centred at v;, with B; on
the median and u;, at the apex of A (see Fig. 2). We say that the vertices
Viety ooy Vidty Ui,1y..., Ui, are vertices of A, and that A is a triangle of S.
An edge v;vi41 of P is free if it does not lie on a triangle of S. Note that
all split-edges of S are free, but not all free edges are split-edges.
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h=0 <—p,=3-> hy=-2
A= HQO) <A, = H4) ——> A= H(1)

A, = H(4) ——>

Figure 3: Enhanced shadow tree with overlaps h; =0, hy = 3 and hg = -2

A triangle of S is a nested triangle if it is contained in another triangle.
Suppose A is a nested triangle and let S’ be the tree obtained by deleting
the vertices on the bough of A. An edge is a split-edge of S if and only if it
is a split-edge of S’, hence 75(S’) = 75(S) by Theorem 3.2. Thus removing
nested triangles from S does not change the radius or the broadcast number
of S.

If deg vy = 2 (degvg—1 = 2), join a new leaf to v; (vq4—; respectively) to
form the tree S*. The addition of these leaves does not change the radius
or the broadcast number of S, but it simplifies the statement of the main
theorem and other results. Note that the triangles A; and Aj (the last
triangle) of S* have radius one and may or may not be nested. Now remove
all nested triangles of S* except A; and A (i.e., delete the vertices on the
boughs of the triangles). The resulting tree Z is called an enhanced shadow
tree. While the shadow trees St p and St pr can be non-isomorphic if P, P’/
are distinct d-paths of T', the enhanced shadow trees Zr p and Z7 p: are
isomorphic, hence the choice of d-path is irrelevant when considering the
enhanced shadow tree of 7.

Let ve,, ..., uc, be the branch verticeson P, let B; : v, = u;0, %31, ..., Ui,
be the bough of Z at v, and let A; be the triangle of Z with centre v,
and radius ¢; associated with B;. Let v, (v, respectively) be the vertex
on P at distance ¢; to the left (right) of v.,; that is, vy, is the first and v,
is the last vertex of A; on P. Define the overlap h; of A; and A4, by
h;=1r;—¥€;41 fori=1,...,k — 1. See Fig. 3. Note that h; may be positive,
zero or negative. Thus A; and A;;; may have a negative overlap, which
indicates that there are free edges on the v,, —vg,,, pathin Z. We use the
notation defined here throughout the rest of the paper.
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4 TUniquely Radial Trees

Let T be a tree with d-path P = vy, ...,vq¢ and enhanced shadow tree
Z = Zr,p. We state a number of conditions that will determine whether
T is uniquely radial or not.

Al The bough B; of Z of length £; > 4 occurs at v.,, where ¢;
¢ (mod 2), and h;_1,h; < 2.

A2 The bough B; of Z of length ¢t; > 2 occurs at v, where ¢; #
¢; (mod 2), and h;_1,h; < 1.

A3 The bough B; of Z of length t; > 3 occurs at v, where {;
¢i (mod 2), and hj—; <2, h; <2t; — 3.

A4 The bough B; of Z of length ¢; > 3 occurs at v.,, where t; #
¢; (mod 2), and h;—1 <2t; -3, h; £ 2.

B Let d be even.

Bl Z has no free edges.

B2 Z does not have a zero overlap at a vertex labelled with an even
subscript.

B3 If Al holds, then T has a vertex w at distance ¢; — 2 or t; — 1 from
v, such that w ¢ V(2Z).

B4 If A2 holds, then T has a vertex w at distance ¢; — 1 or ¢; from v,

such that w ¢ V(Z) and the v, — w path is internally disjoint from
B;.

C Let d be odd.

Cl Z has no free edges and no zero overlaps.

C2 Z has no overlap i =1 of the form vg;_1v9;, 1 < j < -g—.

C3 If A3 holds, then T has a vertex w at distance t; or ; + 1 from v, 49
such that w ¢ V(Z) and the v., 42 —w path Q contains v¢,+1; if vo,+1
is the last vertex of P on @, then d(w, vc,42) = t;.

C4 If A4 holds, then T has a vertex w at distance ¢; or ¢; + 1 from v, _»

such that w ¢ V(Z) and the v.,_o — w path contains v¢,_; if ve,—1
is the last vertex of P on Q, then d(w, v, 4+2) = t;.

Examples of uniquely radial trees and their enhanced shadow trees are
displayed in Fig. 4 and Fig. 5, where the vertex w is indicated whenever
conditions B3, B4, C3 or C4 hold. The statement of our main theorem
follows.
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\{] V3 \4] Vi3 Vie

Vo V3 Vs vis Vie

Figure 4: Uniquely radial tree of even diameter and enhanced shadow tree

Yo V3 Vs V2 Vis
T
w w
w
Vo V3 Vg Viz Vis

Figure 5: Uniquely radial tree of odd diameter and enhanced shadow tree
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Theorem 4.1 The tree T is uniquely radial if and only if B1 - B4 or C1
- C4 hold.

The proof of Theorem 4.1 is divided into three lemmas, which we now
state. We defer their proofs to Section 6. Lemmas 4.2 and 4.3 show that
B1 - B4 or C1 — C4 are necessary conditions for T to be uniquely radial,
while Lemma 4.4 shows that they are also sufficient. Theorem 4.1 follows.

Lemma 4.2 If T is a tree such that one of Bl, B2, C1 and C2 does not
hold, then T is not uniquely radial.

Lemma 4.3 Let T be a tree with enhanced shadow tree Z such that Bl,
B2, C1 and C2 hold. If one of B3, B4, C3 or C4 does not hold, then T is

not uniquely radial.

Lemma 4.4 IfT is a tree with enhanced shadow tree Z such that Bl - B4
or C1- C4 hold, then T is uniquely radial.

5 Corollaries

A caterpillar C consists of a d-path P = vy, ..., vq together with any non-
negative number of leaves attached to v, ...,v4—1. The next result follows
immediately from Theorem 4.1.

Corollary 5.1 A caterpillar of order at least three is uniquely radial if
and only if its diameter vy, ..., vq is even and each v;, where © is even and
i ¢ {0,d}, is a stem.

A tree with diameter three is also called a double star. If the two stems of
a double star have degrees a and b respectively, we denote it by S(a,b). By
Corollary 5.1, S(a, b) is not uniquely radial. Moreover, the only supertrees
of S(a,b) with diameter three are double stars S(a’,b’) with a’ > a and
b > b. Hence S(a,b) is not contained in a uniquely radial tree of the same
diameter. We show that double stars are the only trees with this property.

Corollary 5.2 Every nontrivial tree T with diamT = d # 3 is a subtree
of a uniquely radial tree with diameter d.

Proof. Let T be a tree with d-path P = vy, ..., v4. If d is even, add leaves

to vy, ..., ¥4—1 until each v; with 7 even is a leaf or a stem. By Proposition
6.1 and Corollary 5.1, the resulting tree is uniquely radial.
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If d is odd, let r = rad T = [$]. The result is obvious if d = 1, so
assume d > 5. For i € {r — 1,7}, add the path B; = v;,ui,...,uir—1 Of
length 7 — 1 to T to form the tree S with diam S = d. Theorem 4.1 implies
that S is uniquely radial. |

6 Proofs of lemmas

We begin with a proposition which shows that for trees with fixed diameter,
being uniquely radial is a superhereditary property.

Proposition 6.1 If the tree T has a uniquely radial subtree T' with the
same diameter as T, then T is uniquely radial.

Proof. Suppose to the contrary that T has a non-central ~y,-broadcast f.
Since lVf"'l > 2, f(v) < p=radT = rad T’ for each v € V}}, otherwise
cost(f) > rad T, which is impossible. ‘

For each u € V(T) — V(T"), let u* be the unique vertex of 7" nearest to
u. For each v € V(T"), let D, = {v} U{u € V(T) - V(T') : v = u*} (note
that D, N Dy = @ if v # v') and g, = max{f(z) : € D,}. Define the
broadcast g on T” by g(v) = g, for each v € V(T”). Then g is a dominating
broadcast of T” such that cost(g) < cost(f) = p = 1(T”), so that g is
a Yp-broadcast of T'. But g(v) < p for each v € V¥, which implies that
|V5t] 2 2, contrary to T” being uniquely radial. a

We need one more lemma before proving Lemma 4.2.

Lemma 6.2 Let B : v = ug, uy,...,ut, t 2> 2, be a bough of a shadow tree S
attached to the vertex v of the d-path of S. If S has a ~y,-broadcast f such
that the leaf u, of B hears a broadcast from u;, 1 < j <t —1, then S has
a Yp-broadcast g such that g(us—y) = 1.

Proof. If j =t —1and f(u;) > 1, or if j < ¢t — 2, then u;_; ¢ V/,
otherwise there exists a broadcast f’ with cost(f’) < cost(f). Define g by
g(ue—1) =1, g(uj—1) = f(u;) — 1, and g(z) = f(z) otherwise. Then g is a
~p-broadcast of S. |

Proof of Lemma 4.2. Bl and part of C1 Let P = vy, ...,vq be a d-path
of T and suppose v;v;4+1 is a free edge of Zy. Then 2 < ¢ < d —3. First
assume that d = diam T is odd, so that p = radT = dizl. Depending on
the parity of ¢, the paths vy,...,v; and vi41,...,vq are both even or both
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odd. Define the broadcast g of T as follows. If i is odd, say ¢ = 2m — 1,
2<m<p-2let

9(vm) = m, g(Vm4p-1) = p — m and g(v) = 0 otherwise. (1)
Ifiiseven,sayi=2m,1<m<p—2 let
9(vm) = m, g(Vm+,) = p— m and g(v) = 0 otherwise. 2)

Then g is a dominating broadcast of T such that cost(g) = p and |V;t| = 2.
Therefore T is not uniquely radial.

Now assume d is even, so p = %. Then one of vy, ..., v; and v;41, ..., 04
is even and one is odd; assume without loss of generality that the former
path is even and say i = 2m, 1 < m < p — 2. The result follows as above
by defining g as in (2).

B2 Leti=2m, 1< m < p—1 and define the broadcast g as in (2).

Rest of C1 Consider d-paths P = vy,...,v4 and P~! = wug,...,uq, where
u; = v4-i, and apply B2.

C2 In this case the paths vy,...,v2m and vam_1,...,94 = v2,—1 are both
even. Define g as in (1). n

An easy consequence of Theorem 3.2 is that v,(Pa) = [%], a result
that was first proved by Erwin [6, 7]. Theorem 3.2 can also be used to
determine the broadcast number of spiders. A spider S(ay,...,a,) is a tree
with exactly one branch vertex v and s > 3 paths of lengths a,, ..., a5, where
a; £ ... £ ag, from v to a leaf. To simplify notation in the following formula,
which is stated without proof, we write S(a,,...,a5_3,a,b,¢) instead of
S(ay, ..., Gg)-

Proposition 6.3 For any integersa; < ...<as;—3<a<b<cg,

a+1+42e2e=2  jfp_g=c—a

7(S(ay,...,as-3,a,b,¢)) = =1 (mod 3)
{ a+ [-"'T°1 + [c—gg otherwise.

Let P = vg,...,vq be a d-path of the enhanced shadow tree Z. For
any ¢ € {0,...,d}, let L; (R;, respectively) be the subtree of Z induced by
vg, .-, Y5 (Vi, ..., Ud, Tespectively) together with all boughs of Z attached to
these vertices.
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Proof of Lemma 4.3. Since Z has no free edges, Z is radial. Let A; be
the triangle that covers the bough B; = v, u1, ..., uy, of Z. To simplify the
notation we abbreviate A;, B;, t; and ¢; to A, B, t and ¢. Then v._; and
Uo4t are the leftmost and rightmost vertices of A respectively.

Al holds but B3 does not. Since t; =c¢; (mod 2), ¢+t and ¢ % (¢ —2) are
even. Since Z has no zero overlaps at ve4t, hi—1, h; > 1. Since h;_1,h; < 2,
the rightmost vertex of A;_; is v;, where j € {c—t+1,c—t+ 2}, while the
leftmost vertex of A;4y is vjr, where 5/ € {c+t—1,c+t ~2}. Consider the
subtrees L = L._ty0 and R = R.y;—2 of Z. Sincet > 4 and h;_1,h; < 2,
degvc—i+2 = degvcy:—2 = 2 and thus vg, ..., v.—¢+2 is a d-path of L while
Vett—2, ..., U4 is a d-path of R. Since d is even, diam L and diam R are even,
hence radZ —radL —radR = }[(c+t~2) — (c—t+2)] = t — 2. Let
H =Z — L — R and note that H = S(t — 3,t — 3,¢).

The limits on j and 5/ and the radiality of Z imply that L and R are
radial. Let f; and fr be central v,-broadcasts of L and R respectively.
By Proposition 6.3, 4,(H) = t — 2. Define the 7,-broadcast fy of H by
flue—1) = 1, f(vc) = t — 3 and f(v) = 0 otherwise, and the broadcast
gof Z by g(v) = fu(v) if v € V(L), g(v) = fr(v) if v € V(R) and
g(v) = fy(v) if u € V(H). Then g is a dominating broadcast of Z and
cost(g) = rad L+rad R+t—2 = rad Z, hence g is a non-central ;-broadcast
of Z.

Since B3 does not hold, each vertex w of T — Z is either at distance at
most t — 3 or at distance at least ¢ from v.. If d(w, v.) < t—3, then w hears
the broadcast from v.. If d(w,v.) > ¢, then by definition of Z and A;, the
vertex of Z nearest to w belongs to A;, j # 7, so w hears a broadcast from
the vertex in Vi or V. If d(w,v;) = t, then w is an isolated vertex of
T — Z (otherwise T' — Z has a vertex at distance ¢t — 1 from v.), hence w is
adjacent to Yc_t41, Uett—1 OF u;—1 and hears a broadcast from a vertex in
VT, a vertex in V7 or from u;—;. Hence g is a non-central -y,-broadcast of
T, which shows that T is not uniquely radial.

A2 holds but B4 does not. Since ¢; # ¢; (mod 2), ¢+ (¢ — 1) is even while
c=+tis odd. Since h;_1,h; < 1, the rightmost vertex of A;_; is v;, where
j € {¢ —t,c—t+ 1}, while the leftmost vertex of A;;; is v;/, where
j' € {c+t,c+t—1}. Consider the subtrees L = L.—t+1 and R = Rcy1
of Z and define H = Z — L — R. Similar to the above paragraph, rad Z —
radL —rad R=t— 1. In this case H = S(t —2,t — 2,t) and w(H) =t -1
(Proposition 6.3). By defining fy by fu(uw1) = t —1 and fy(v) = 0
otherwise, and fr, fr and g as above, we can show as above that Z is not
uniquely radial.

141



Since B4 does not hold, each vertex w of T — Z is either at distance
at most ¢t — 2 or at distance at least £ + 1 from v.. If d(w,v.) <t~ 2,
then w hears the broadcast from u;, while if d(w,v;) > t + 1, then w hears
a broadcast from the vertex in V;" or V. As above g is a non-central
~p-broadcast of T' and the result follows.

A3 holds but C3 does not. Since ¢; = ¢; (mod 2), cxt and c—t + 2 are
even and ¢ —t + 3 is odd. Since h;—; < 2 and C1 holds, the rightmost
vertex of A;_; is v;, where j € {c—t+1,c—t+2}. Since h; < 2t -3
and C1 and C2 hold, the leftmost vertex of A;4; is vjr, wherec—t+3 <
j' < ¢+t — 2. Consider the subtrees L = L._44+2 and R = R._;43 of
Z — {up—2,us—1,u}. Since t > 3 and hi—y < 2, degve—t42 = 2. If £ = 3,
then ve—;43 = vc; otherwise, since h; < 2t — 3, degvc—t4+3 = 2. In either
case Z — {us_g,us—1,uc} = LUR.

Since d is odd, diam R is even, and clearly diam L is also even. Hence
radZ—radL—rad R= 3[(d+1) — (c—t+2) —(d—c+t—3)] = 1. Also,
any split-set of L or R has even cardinality. The limits on j’ imply that
the only possible free edge of R is Veqt—3Vc+e—2, SO R is radial, while L is
clearly radial. Let f; and fg be the unique central v,-broadcasts of L and
R. Define the broadcast g of Z by g(v) = fr(v) if v € V(L), g(v) = fr(v)
if v € V(R), g(u;—1) = 1 and g(v) = 0 otherwise. Then g is a dominating
broadcast of Z and cost(g) =rad L + rad R + 1 = rad Z. Therefore g is a
non-central v,-broadcast of Z, which is thus not uniquely radial.

Since C3 does not hold, each vertex w of T — Z is either at distance
at most t — 1 or at least t + 2 from v.y2. Since ¢t > 3 and ¢+ ¢ # d, the
central vertex = of R lies to the right of v.41. If d(w,vo42) <t — 1, then
d(w,veq1) <t — 2. But d(ve—t43,Vc+1) =t — 2 and, by definition of fg,
vc—¢+3 hears the broadcast from z. Hence w also hears the broadcast from
z. If d(w,veq2) >t + 2, it follows similar to the case where Al holds that
w hears at least one broadcast.

The result where A4 holds, but not C4, follows from the previous case by
reversing the direction of the d-path P of Z. |

Lemma 6.4 If Z is an enhanced shadow tree such that Bl and B2, or C1
and C2, hold, and f is a non-central y,-broadcast of Z, then Vf'+ ¢ V(P).

Proof. Since Z has no free edges, it is radial. Suppose to the contrary
that f is a non-central y,-broadcast of Z such that V¥ C V(P); say V" =
{vays---sVa.}, where s > 2 and @y £ --- £ a,. For i = 1,...,5, define
Ai = a; — f(vg,) and p; = a; + f(ve;). Suppose p; < Aiy; for some i.
Since Vj" C V(P) and each vertex on P hears at least one broadcast,
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pi = Ai+1 — 1. Since Z has no free edges, the edge v,,vy,,, is contained in

a triangle A of Z. Let u be the vertex at the apex of A and let = € V(P)

be the vertex that broadcasts to u. Then z broadcasts to v,, and to vy, ,,

$0 T € {Va,,%a,,,}. But v,, does not broadcast to v,,,,, and v,,,, does

not broadcast to v,,, a contradiction. Hence p; > Ai4; for each ¢. Let

o= Zf;ll (pi — A\;). Since f is a dominating broadcast and Z is radial,
d=diamZ <2 Z f(:c)—o=2radT—a=2|¥]—a. 3)

zGVf

Therefore 0 = 0 and p; = A4 for each i = 1,...,8 — 1 if d is even, while
0 <1 and p; = ;4 for at least s — 2 values of 7 if d is odd.

Suppose p; = A;j+1 and Z does not have a zero overlap at v,,. Then
some triangle A of Z contains both edges v,, _1v,, and v,,v,,4+1. Let u be
the vertex at the apex of A and let € V{P) be the vertex that broadcasts
to u. Then z broadcasts to v,,—1 and to v, 41, 0 £ € {va;,Va,,,} and
a contradiction follows as above. Hence if p; = A;41, then Z has a zero
overlap at v,,.

Assume d is even. By B2 each p; and \;;; are odd; in particular, p;
and X, are odd. Since p; — A; = 2f(v;) is even and f is a dominating
broadcast, Ay < 0 and p, > d. Thus vp and vy are overdominated. Hence
221.6‘,;, f(z) > diam Z + 2, i.e. cost(f) > rad Z + 1, a contradiction.

Assume d is odd. Since Z has no zero overlaps, p; # A;;; for each . By
(3), s=2and p; = A2 +1. By C2, ), is even and p; is odd, thus the paths
Vg, ..., /1 and Ag,...,vg are odd. As above vy and vy are overdominated,
giving a contradiction as before. |

The next lemma forms the first part of the proof of Lemma 4.4. We
state it as a separate lemma because the proof of Lemma 4.4 is quite long.

Lemma 6.5 Let Z be an enhanced shadow tree with diam Z = d such that
B1 and B2 hold, but neither Al nor A2 if d is even, and Cl1 and C2 hold,
but neither A3 nor Ad if d is odd. Then Z is uniquely radial.

Proof. Suppose Z has a non-central broadcast f. By Lemma 6.4, Vf
contains a vertex that does not lie on P. Let B; = v, uy, ..., u; be a bough
that contains a vertex of V; — V(P). By Lemma 6.2 we may assume that
t > 2 and f(ut—1) = 1. Let A; be the triangle that covers B;. Then A; is
neither the first nor the last triangle of Z, as these triangles have radius 1.
Let A’ be the triangle immediately preceding A;, and B’ = ver, U1, ..., Uy
the bough of A’. If ¢t = 2, let Z’ = Z — {uy,ua}, otherwise let Z’ =
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Z — {ut—2,u¢—1,u}. Then radZ’ = radZ. Let f’ denote the restriction
of f to Z' and note that cost(f’) < cost(f). We consider three cases,
depending on the parities of ¢, d, and t.

Case 1 diseven and t = ¢ (mod 2). Then any split-set of Z’ has an even
number of edges. Also, ¢+t is even, and since Z does not have free edges
or zero overlaps at vcys, hi_1,h; = 1. We consider the subcases ¢t = 2 and

t > 3 separately.

Subcase 1.1 t = 2. Since A; is not a nested triangle, h;_;, h; < 3. Since
hi_1,h; > 1, the only possible free edges of Z' are v..jv. and vevey.
Hence Z’ is radial. Since rad Z’ =rad Z, 1(2’) = v%(Z). If v. € Nf[w] for
some w € V;' — {u;}, then f’ is a dominating broadcast of Z’, which is a
contradiction since cost(f’) < cost(f) = 7,(Z’). Hence v, € PN¢{u,}, so f’
is a dominating broadcast of Z’ — v..

Let L (R, respectively) be the component of Z — v, that contains vy (vq,
respectively). Then the vy, ..., v subpath of P, followed by the bough B’,
is a d-path of L, the path vy, ver 41, ..., U1 is & bough of L, and diam L =
¢ — 2+ hi_;. Since Z has no free edges, the only possible split-sets of L
are {Ver—¢'Ve'—tr41} OF {Ver—pr41Ver—pr2} if hici = 3, or {ver—pver—pqr} if
hi—y = 2, while L has no free edges if h;_; = 1. In each case Theorem
3.2 implies that y,(L) > [¢52] = §. Similarly, y(R) > %3°. Since f' is a
dominating broadcast of Z’ —v, = LUR, cost(f’) = -‘23 =rad Z = cost(f) >
cost(f’), a contradiction.

Subcase 1.2 t > 3. Then u;_; does not broadcast to v, and f’ is a
dominating broadcast of Z’. Since h;_1,h; > 1, Z’ has at most four free
edges if ¢t = 3, namely the edges of the subpath v._2,vc—1,Vc, Vet 1, Ves2.
But as ¢ £ 2 is odd, Z’ has no nonempty split-set in this case, so Z’ is
radial. If ¢ > 4, then max{h;_;,h;} > 3 since Al does not hold. Assume
without loss of generality that h; > 3. Then Z’ has at most two free edges,
namely ve_;41Vc—t+2 and ve_t+9Vc_143. Since these edges are adjacent, Z’
has no nonempty split-set and is radial. In either case cost(f’) =rad 2’ =
rad Z = cost(f) > cost(f’), a contradiction.

Case 2 diseven and ¢t # c (mod 2). Then cxt is odd. Since A2 does not
hold, max{h;_1,h;} > 2. Assume without loss of generality that h; > 2.
If t = 2, we proceed as in Subcase 1.1 to show that v,(L) > <! and
w(R) > d;;‘ﬂ, and obtain a similar contradiction, so we assume t > 3.
Now Z’ has at most four free edges, and if Z’ has exactly four free edges,
then h;—; = 0 and h; = 2, so that the free edges are the edges of the path
Ue—ty Vemt41) Ue—t4+2y Uo—t+3 and the edge veyt—3Vcys—2. The parity of the
subscripts implies that no pair of these edges forms a split-set. Hence Z’
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is radial and we obtain a contradiction as in Subcase 1.2.

Case 3 dis odd and t = ¢ (mod 2). As d is odd, a free edge v;v;4; is
a split-edge of Z’ if and only if j is even. Since Z has no zero overlaps,
h;—1,h; > 1. If h; = 1, then the edge v,y1—1vVc4: is an overlap. Since
¢+t — 1 is odd, this contradicts C2. Thus h; > 2. Again we consider the
cases t = 2 and t > 3 separately.

Subcase 3.1 t = 2. Since Z has no nested triangles, h;_1,h; < 3. Since
h; > 2, vo—1v, is the only possible free edge of Z’. Since ¢ — 1 is odd,
{ve-1vc} is not a split-set of Z’. Hence Z’ is radial. Proceeding as in
Subcase 1.1 we show that (L) > § and v(R) > d;gﬂ. Thus cost(f’') >
d—'*'zi =rad Z and this leads to a contradiction as before.

Subcase 3.2 t > 3. As shown above, h; > 2. Since C3 does not hold,
hi_1>3orh; >2t—2. If h;_; > 3, then voy¢_3Vc4t—2 is the only possible
free edge of Z’, and since c+t — 3 is odd, Z’ is radial. If h; > 2t — 2, then
Ve—t+1Ve—t+2 is the only possible free edge of Z’, and since ¢ —t + 1 is odd,
Z' is radial. A contradiction follows as in the previous cases.

The case where d is odd and ¢t Z ¢ (mod 2) follows from Case 3 by
reversing the direction of the path P. |

Proof of Lemma 4.4. Let I = {i : the bough B; of Z satisfies one of
Al - A4}. By Lemma 6.5 we may assume that [ # @. For each i € I,
let w; be a vertex of T' whose existence is guaranteed by condition B3,
B4, C3 or C4 respectively. Let W = J;c;{w:} and let H be a minimal
subtree of T that contains V(Z) U W. Then each w; is a leaf of H. Also,
diam H = diam T = diam Z and 1, (H) = 7(T) = 1(Z). We show that H
is uniquely radial; the result will then follow from Proposition 6.1.

Suppose to the contrary that H is not uniquely radial. For any broadcast
o, let Ay ={ue€ V; — V(P) : u broadcasts to the leaf u;, of B; for some
i}. Let f be a non-central v,-broadcast of H such that 3° . f(u) is

minimum. Let U = V;* — V(Z). For y € V(H — Z), let z be the vertex
of Z nearest to y. We first show that

(1) if u € U, then f(u) = 1, u is adjacent to z,, and z, € PN[u].

Foru e U,let D, = {y € U : zy = z,,} and g, = max{f(z4), >yep, f(¥)-
1}. Then g, = 0 if and only if D, = {u}, f(u) = 1 and f(z,) = 0. Let
H' be the subtree of H obtained by deleting all y € V(H — Z) such that
T, = T. If g, # 0, define the broadcast ¢ on H' by g(zy) = gu. and
g(v) = f(v) otherwise. Then g is a dominating broadcast of H’ such that

145



cost(g) < cost(f). Hence y(H’) < v5(Z), contradicting Proposition 3.3.
Therefore g, = 0, so that f(u) = 1 and u is adjacent to z,. If z, ¢ PNy[u],
then z, hears a broadcast from some vertex of Z, so that the restriction g’
of f to H' is a dominating broadcast of H’ such that cost(g’) < cost(f),
which is impossible.

By (I) and our convention that leaves are not broadcast vertices, each
vertex in U is adjacent to a vertex in W. We show that

(II) Vf"' contains a vertex of B; — P for some i.

Consider the broadcast f’ of Z defined by f/(z,) = 1 for each v € U and
f'(v) = f(v) otherwise. By (I), PNy/(z,] = {z.} for each u € U and
f’ is a dominating broadcast of Z with cost(f’) = cost(f), hence a ~;-
broadcast of Z. Also, |V, +| = ]Vf+1, so f’ is non-central. By Lemma 6.4,
V * contains a vertex y’ of B; — P for some i. If y' € V"’ we are done,
hence suppose ¥y’ = x,, for some v € U and let w € W be adjacent to u.
Since t; > d(w, ve) = d(w, z,,) + d(Zy, vc) = 2+ d(Ty, V), d(Ty,ve) <t —2
and so z, is not the stem of B;. Since f(z.) = 1, some vertex y € V

broadcasts to the leaf u,, of B;. Since y does not broadcast to z,, (because
PNy[zu] = {zu}), y € V(Bi - P). 4

Let z be the vertex on B; — P that broadcasts to u; = u;, and say
f(z) = a. We may assume that d(z,u;) = a, i.e., z = u¢.o, otherwise we
may redefine f so that this is the case. Thena <t -1.

(III) If w = w; € Ny[2], then the w — z path = is contained in PN{z]:

Suppose some vertex y € V"‘ broadcasts to a vertex of 7. By (I), y ¢ U.
Also, y does not lie on the z — uy path, nor on the z — w path, other-
wise there exists a dominating broadcast of H with cost less than that
of f, which is impossible. Therefore either y = u,, where d(us,v.) <
min{d(z,v.), d(zw,vc)}, or y € V(Z — B;).

Suppose z,, lies on the z — u; path. If d(w,2) = a, then d(w,v.) =
a+(t—a) = t. But d(w,v.) < t unless B4 holds, in which case the v.—w path
is internally disjoint from B;, a contradiction; hence d(w, z) < a. Now y
broadcasts to z but not to w, otherwise there exists a dominating broadcast
of H with cost less than that of f. Thus, if § = d(y,w) — f(y), then § > 0.
Since d(w, 2) < a = d(2,u;) and y broadcasts to z, § < d(y,u:) — f(y) < a.
Define g by g(y) = f(y) + 6, g(tt—a+s) = a — 4, 9(2) = 0 and g(v) = f(v)
otherwise; note that u; € Ng[u;—qa45]. Then g is a non-central «,-broadcast
of H such that 3 . A, g(uw) <X e a,f (u), contrary to the choice of f.

Suppose z,, lies on the v, — z path and z,, # 2. Then y broadcasts to
Z,. As above, § = d(y,w) — f(y) > 0, and since z,, # 2z, § < a. Defining g
as above we contradict the choice of f.
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Hence assume z,, does not lie on B;. Since d(v.,w) < tin all cases, z,, €
{Vemt41y ey Vem1} U {Vet1, ooy Vept—1}. Assume without loss of generality
that z,, € {vc—t+41,--., Ve—1}. Since y does not lie on the z —u; or the z —w
path, y is to the right of v, and broadcasts to v, or y is to the left of xz,,
and broadcasts to z,,. In either case we obtain a contradiction similar to
the above two cases. ¢

(IV) a=1if and only if w; ¢ N¢[z]:

If w = w; ¢ Ny[2], then either w does not exist (i.e., ¢ ¢ I) or w hears
a broadcast from 2’ # z. If a > 1, define the broadcast g as in the proof
of Lemma 6.2. Then g(u;—;) < g(z), hence g is a y,-broadcast of H that
violates the choice of f. Conversely, if a = 1 and w € Ny[z], then w is
adjacent to z and d(w,v;) = t. But d(w,v;) = t only if B4 holds, and we
get a contradiction as in the proof of (III). ¢

Let F = H — PNy[z] and let f’ be the restriction of f to F. Then f’
is a dominating broadcast of F' with cost(f’) < cost(f). Hence F is either
disconnected, or connected and non-radial, because diam F = diam H if F
is connected. We prove next that

(V) F is connected.

Suppose F is disconnected. If K is a component of F that consists of
vertices of H — Z, then w € V(K). Hence w ¢ PNy[z], so by (III), w ¢
Ny|z]. Since no vertex of K is adjacent in F to a vertex of Z, some vertex
y of the w — z,, path is contained in PNy[z]. Hence z,, € N¢[z]. Thus,
if u is any vertex that broadcasts to w, then (I) implies that u ¢ U. So
u € V(Z). Since y € PNy[2], u = 2, a contradiction. Hence no component
of F consists of vertices of H—Z only. Since F is disconnected, v, € PNy[z]
and a > [£]. By (IV) there are two cases: a =1 and w; ¢ Ny[2], anda > 2
and w; € Ny[z]. The first case was considered in Subcase 1.1 of Lemma
6.5, hence we assume henceforth that a > 2 and w; € Ny|z].

Since z broadcasts to precisely the vertices v.9q4t, ..., Vet2a—t Of P,
Vet (2a—t+1) & Ny[z] and F contains the subtree L = L._204¢—1 of H con-
sisting of the path vy, ..., Uc—24+:—1 and all boughs and vertices in W con-
nected to this path, and the subtree R = R.42,—:41 of H defined similarly.
Since PNy[z] C N¢[z] and this inclusion may be strict, it is possible that
some of the vertices v._2q4t, ..., Vet2a—t belong to F, and that some of them
are broadcast vertices that broadcast to L or R. Suppose v € Vf"’ for some
v € {Ve—2a4ts -y Vet2a—t}- Since v, € PNy[z], v does not broadcast to v,
and similarly v does not broadcast to w. Assume without loss of generality
that v is to the left of v.. If f(v) = 1, then v = v,_g44+, else Ny[v] C Ny[z].

147



Then f’ defined by f'(ve-za4t-1) =1, f'(v) = 0, and f'(z) = f(z) oth-
erwise, is a dominating broadcast of H such that cost(f’) = cost(f), and
we consider f’ instead of f. If f(v) > 1 and v’ is the vertex of P im-
mediately preceding v, then f” defined by f”(v') = f(v) — 1, f"(v) =0,
and f”(x) = f(z) otherwise, is a dominating broadcast of H such that
cost(f”) < cost(f), which is impossible. Therefore we may assume that
the restrictions f; and fp of f to L and R, respectively, are dominating
broadcasts of L and R. Hence

rad H = vw(H) = 1(F) + a 2 1(L) + 7(R) + a. (4)

Say L (R, respectively) has a maximum split-set of cardinality m (m’,
respectively). By Theorem 3.2, 2v,(L) = diamL — m and 2v(R) =
diam R — m’. From (4) we have

2rad H > diam L + diam R+ 2a — m — m/. (5)

Suppose d is even and t = ¢ (mod 2). Then Al holds, c+ ¢ is even and
Z has no zero overlaps at v.x;. Hence 1 < h;—1,h; < 2. Let A’ be the
triangle immediately preceding A;, and B’ = vy, u},...,u}, the bough of
A Ifa=1t—1and h;_; = 2, then the leftmost and rightmost vertices of
A’ are vy_y and verpy = Uo_zq2, Tespectively, the vy, ..., v subpath of P
followed by the bough B’ is a d-path of L, the path Pp : v/, Ugt g1, ey Vot 41
is a bough of L, diam L = ¢ — ¢t + 2 (which is even), and the only free edges
of L on Py, are uy, _,u; and vy —p41. Since diam L is even, m is even.
But uj,_,u; is not a split-edge (being the last edge of Pr), thus m = 0.
Similarly, if a =t —1 and h; = 2, thendiam R =d —(c+t—2) and m’ = 0.

For all other values of a and h;_y,h;, diamL = ¢~ 22+t —1 and
diam R =d — (c+2a—t +1). The possible free edges of L are the edges of
the path Q = ve_¢41, ..., Ve—2a+¢—1 Of length 2(¢ — @ — 1). Similarly, R has
2(t — a — 1) possible free edges. But since ¢+ (£ — 1) is odd and d is even,
neither ve_;41vc—¢42 NOT Veyt_oVeqt—1 is a split-edge. Thus by symmetry,
and regardless of the values of h;_; and h;, m = m/, and (5) becomes

diam H > diam L + diam R + 2a — 2m. (6)

If L has a split-set M C E(Q) with |M| = m, then @ — M has m + 1 com-
ponents. It is possible that one component consists of ve—¢41ve—t+2 only,
because v.—;+1 is adjacent to a vertex of L — @, but all other components
have at least two edges, giving a total of at least 2m + 1 edges on Q. Hence
2m+1<2(t—-a—1),ie,2m <2(t-a—1). Now, ifa=t—1 and
hi—y = hi = 2, then (5) becomes

d=diamH > (c—t+2)+d—-(c+t—-2)+2(t—-1)=d+2,
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which is impossible. Similarly, if exactly one of A;_; and h; is equal to
2, then we still have m = m' = 0, and (5) gives diam H > d+ 1, a
contradiction. In all other cases (6) gives

d=diamHd >(c—-2a+t-1)+d~(c+2a—t+1)+2a—-2m
=d+2(t—-a-1)-2m >d,

a contradiction.

Suppose d is even and t # ¢ (mod 2). Then by B4, d(v.,w) € {t,t — 1}
and z,, € V(P), so d(z,w) > t — 1 and z does not broadcast to w, a
contradiction.

Suppose d is odd and t = ¢ (mod 2). Since Z has no zero overlaps and
no overlap vgj_1v25, hi—1 = 1 and h; > 2. The possible free edges of L
are the edges of the path @ = ve—t41, ..y Ve—20+t—1 Of length 2(¢ — a — 1),
and since ¢ — t + 1 is odd, vs-¢4+1Vc—t+2 is not a split-edge. The possible
free edges of R are the edges of the path @' = vcy20—t41, ..., Vest—2. Hence
again m = m’ and we obtain a contradiction as above. The case d is odd
and ¢t # ¢ (mod 2) follows by symmetry. Hence F is connected. ¢

Since v4(F) < v(H) and rad F = rad H, F is nonradial and has a non-
empty split-set. Also, v, ¢ PNy[z] (otherwise F would be disconnected).
Now we prove that

(VI) a # 1 and thus w € PNg|z].

Suppose a = 1, i.e. f(ui—1) = 1. Then the path Bf = B; — PNy¢[z] has
length at least t — 3. First suppose d is even and ¢ = ¢ (mod 2). Then
w satisfies B3. Since d is even, any split-set of F' has an even number of
edges. Since Z has no zero overlaps at vo4¢, hi—1, hi = 1. Therefore the
only possible split-set of F is M = {Ve—t+2Vc—t+3, Vet t—3Vct—2}. 1f Bp has
length at least ¢t—2, then these edges are not free, and M is not a split-set, a
contradiction. Hence assume Bg has length t—3 > 1. Now, if z,, € V(BF)
(including the possibility z,, = v;), then by B3, d(w,v.) >t — 2 and w is
the leaf of the bough B of the enhanced shadow tree Zr p. Again M is not
a split-set. Therefore z,, € V(P) — {v.}. Assume without loss of generality
that z,, is to the left of v, say z, = v;, 7 <c. ByB3,c—t+2<j<c—-1
But then w is the leaf of the bough B; of Zp p attached to v;, and in all
cases Ve—t42Vc—t+3 is contained in the triangle that covers B;. Thus M is
not a split-set, once again a contradiction.

Suppose d is even and ¢ # ¢ (mod 2). Then w satisfies B4. If t = 2, the
only possible free edges are the edges of the path v._s2,vc—1, Ve, Vet 1, Vet2,
and since ¢ & 2 is odd, F does not have a nonempty split-set. Hence
assume ¢ > 3. Then the only possible free edges are the edges of the paths
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Veety Vomt41) Vomt 42, Vort+3 AN Vi3, Vett—2, Vett—1, Vett. Since c k¢ is
odd, {Ve—t4+1Vc—t+2,Vett—2Vcrt—1} is the only possible split-set. By B4
we may assume that z,, = v; where c -t +1 < j < ¢ and we obtain a
contradiction as above.

Finally, assume d is odd and ¢t = ¢ (mod 2), so that C3 holds. By C1
and C2, h;_; > 1 and h; > 2. The only possible split-set is {ve—¢42Vc—t43}-
If Br has length at least ¢t — 2, or if z,, € V(BF), or z., lies on P to the left
of v,, we obtain a contradiction as in the case where d is even. If z,, lies
on V(P) to the right of v, then z,, = vc41 and d(z,,w) =t — 1. Again it
is easy to see that ve—_¢+ovc—s43 is not a free edge of Zr p. The case where
d is odd and t # ¢ (mod 2) follows by symmetry, hence we have proved
(VD). ¢

Thus a > 2 and Bf has length at least t—2a—1. Also, since w € PNy/[2]
but v, ¢ PN¢[z], (III) implies that z,, € V(B;) — {v.}. Hence B4 and thus
A2 does not hold. Suppose Al and B3 hold. As before, h;—1,h; > 1. It
is easy to see that {ve—t42Vc—t4+3,Vort—3Vetrt—2} is a split-set of F, and,
moreover, is contained in a maximum split-set of F. Consider L = L;_; 2
and R = R.y¢—2. Then L and R are radial and have even diameters, and
by Theorem 3.2,

Y5(F) = (L) + 7(R) + v(F — L — R). (7)

If u; ¢ PNy|z], then F — L — R contains the spider S(t —2a—1,t—3,¢t—3)
as subgraph, and if u; € PNy[z], ie. if @ > [&5], then F — L — R is the
path Py,_s. Since diam H — diam L — diam R = 2t —- 4,

Y6(H) = v(L) + 1(R) +t — 2. (8)
But by Proposition 6.3,

o _J t—2a+ 426 if a =0 (mod 3)
(S((t —2a - 1,t -3¢ 3))_{ t—2a—1+2[2852] otherwise
t—a+ 238 if a =0 (mod 3)
2{ t—a—1+[254] otherwise
>t—a-1,

and, as shown in (7], 15(P2e—s) = [252). Therefore if u, ¢ PNy[z], then
Yo(H) = (L) +76(R) + Ww(F — L — R) +a > (L) + 1(R) +t — 1,

contrary to (8). If u; € PNy[z], then a > 5! and

a+7(F-L—-R)> [t;1]+[2t;5-‘ _>_t—1+[t—gz.| —t—1

150



since t > 2. This again contradicts (8).

Suppose A3 and C3 hold. By C1 and C2, h;_; > 1 and h; > 2. Sinced is
odd, any split-set of F" has an odd number of edges. Let €1 = vo_;42Vc—t43
and ez = Ve4t—4Vc+t—3. Then {e;} and {ez} are split-sets, each of which is
contained in a maximum split-set of F'. If such a set consists of one edge,
then by Theorem 3.2, v, (F) = i“‘Tl =rad F—-1=rad H -1, hence y,(H) =
a+rad H —1 > rad H, which is impossible. Therefore any maximum split-
set contains at least three edges. But if ¢t = 3, then e; = e; is the only
possible split-edge of F', so we assume that ¢ > 4.

Since L = L;_¢42 and R = R.4.—3 are radial and have even diameters,
{e1,e2} can be extended to a maximum split-set of F by adding edges of
P between e; and ez. Again (7) holds. If u; ¢ PNy[z], then F - L - R
contains the spider S(t—2a—1,t—4,t—3) as subgraph, and if u; € PNj[z],
then F — L — R is the path P;_g. Thus diam H —diam L —diam R = 2t -5
and dtl

WH) = 5= = (L) +W(R) +1 -2 ©)

By Proposition 6.3,

a+7(S((t —2a - 1,t —4,t - 3))
2a -3 20 -2
=a+t—20—1+[ 3 ]+[ 3 1
4a-3 ifa=0(mod 3), a>3
=t—a-—-1+

2(21-;—2) ifa=1(mod 3), a>4
2(2:1) ifa=2(mod 3), a>2

>t—-1

and

t—1 2 —6 t—9
&) > Sto1- |12 =¢—
a+7b(P2t6)_[2-|+[ 3 ]~t 1 [6-’ t—1

since t > 4. Following the method above we obtain a contradiction of (9)
in each case. The case where A4 and C4 hold follows by symmetry. This
completes the proof of Lemma 4.4. |
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