Decompositions of AK,, into S(4,3)’s

Derek W. Hein and Dinesh G. Sarvate

ABSTRACT. A Stanton-type graph S(n, m) is a connected multigraph
on n vertices such that for a fixed integer m withn -1 < m < (’2'),
there is exactly one edge of multiplicity i (and no others) for each i =
1,2,...,m. In a recent paper, the authors decomposed MK, (for the
appropriate minimal values of A} into two of the four possible types
of 5(4,3)’s. In this note, decompositions of AK, (for the appropriate
minimal values of A) into the remaining two types of S(4,3)’s are
given.

1. Introduction

A simple graph G is an ordered pair (V, E') where V is an n-set
(of points), and F is a subset of the set of the ('2‘) pairs of distinct
elements of V' (the edges). This definition can be generalized to that
of a multigraph (without loops) by allowing E to be a multiset, where

edges can occur with frequencies greater than 1.

DEFINITION 1. A complete multigraph AK,, (for A > 1) is a graph
on n > 2 points with A edges between every pair of distinct points.

A graph can be decomposed into a collection of subgraphs such
that every edge of the graph is contained in one of the subgraphs. In
particular:
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DEFINITION 2. A G-decomposition of AK, is a collection of sub-
graphs (each isomorphic to G) such that the multiunion of their edge
sets contains A copies of all edges of K.

Decomposing AK, into simple graphs has been well-studied in
the literature. For a well-written survey on the decomposition of a
complete graph into simple graphs with small numbers of points and
edges, see [1]. The decomposition of copies of a complete graph into
proper multigraphs has not received much attention (see [2, 5, 6, 7]).

DEFINITION 3. [2] A Stanton graph S, is a multigraph onn > 2
vertices such that for eachi=1,2,..., (’2'), there is ezactly one edge
of multiplicity ¢ (and no others).

EXAMPLE 1. The unique (up to isomorphism) Stanton graph S3
onV = {1,2,3} with edge set E = {{1,2},{1,3},{1,3},{1,3},{2,3},
{2,3}} can be drawn as
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Chan and Sarvate [2] decomposed AK,, into Stanton graphs S3
for the appropriate minimal A. El-Zanati, Lapchinda, Tangsup-
phathawat and Wannasit [3] have proved that the necessary con-
ditions are sufficient for a decomposition of AK,, into S3’s.

DEFINITION 4. [4] Given a positive integer n > 2 and an integer
m such that n — 1 < m < ('2'), a Stanton-type graph S(n,m) is
a connected multigraph on n vertices such that for i = 1,2,...,m,
there is ezactly one edge of multiplicity i (and no others).

NOTE 1. It should be noted that an S(n,n — 1) is a cycle—free
connected multigraph.

NOTE 2. It is also true that an S(n, (3)) is the same as an S,.

There are exactly 4 nonisomorphic 5(4, 3) (each having 6 edges):
the LOE-type and OLE-type graphs (described in [4]), and the so-
called LEO-type and ELO-type graphs (described in the sequel).

DEFINITION 5. [4] Let V = {a,b,c,d}. An LOE-type graph
(a,b,c,d) on'V is a graph with 6 edges where the frequencies of edges
{a,b}, {b,c} and {c,d} are 1, 2 and 3 respectively.



EXAMPLE 2. Consider G, = (V, E) where V = {1,2,3,4} and
E = {{1,2},{2,3},{2,3},{3,4}, {3,4}, {3, 4}}. Then G, is an LOE-
type graph, denoted (1,2, 3,4).
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DEFINITION 6. [4] Let V = {a,b,c,d}. An OLE-type graph
[a,b,c,d] on V is a graph with 6 edges where the frequencies of edges
{a,b}, {b,c} and {c,d} are 2, 1 and 3 respectively.

EXAMPLE 3. Consider Gy = (V, E) where V = {1,2,3,4} and
E = {{1,2},{1,2},{2,3},{8,4}, {3,4},{3,4}}. Then G, is an OLE-
type graph, denoted [1,2,3,4].
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Hein and Sarvate [4] showed how to decompose AK,, into LOE-
type and OLE-type graphs. In the sequel, we show how to decom-
pose AK, into LEO-type and ELO-type graphs (described in the
next section), thereby completing the result for all nonisomorphic
S5(4, 3). Though the main technique used is to construct appropriate
base graphs and to develop them cyclically, an additional lemma is
used in each type of decomposition. Another difference is that when
n = 4, the minimum X for LEO-decompositions is 6 (not 3, as it is
for LOE-, OLE- and ELO-decompositions).

2. Preliminaries

DEFINITION 7. Let V = {a,b,c,d}. An LEO-type graph |a,b,¢,d|
on V is a graph with 6 edges where the frequencies of edges {a, b},
{b,c} and {c,d} are 1, 3 and 2 respectively.

EXAMPLE 4. Consider Gy = (V, E) where V = {1,2,3,4} and
E = {{1,2},{2,3},{2,3},{2,3},{3,4},{3,4}}. ThenGs is an LEO-
type graph, denoted |1,2,3,4|.
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DEFINITION 8. Let V = {a,b, c,d}. An ELO-type graph (a,b, c,d)
on V is a graph with 6 edges where the frequencies of edges {a,b},
{a,c} and {a,d} are 1, 2 and 3 respectively.

EXAMPLE 5. Consider G4 = (V,E) where V = {1,2,3,4} and
E = {{1,2},{1,3},{1,3},{1,4},{1,4},{1,4}}. Then Gy isan ELO-
type graph, denoted (1,2,3,4).

=l
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LEMMA 1. The multigraph AK,, can be decomposed by LEO~type
or ELO-type graphs only if 6 divides A(3).

THEOREM 1. The minimum number of copies A of the com-
plete graph K, that could be decomposed into LEO-type or ELO-type

graphs is
a) A=3, whenn=0,1,4,5,8,9 (mod 12),

b) A\ =4, when n=3,6,7,10 (mod 12) and

c) A=6, when n=2,11 (mod 12)
with the exception of an LEO-decomposition for n = 4, which has a
minimum A = 6.

PROOF. The results can be obtained by two-way counting, di-
visibility requirements and Lemma 1. We now address the exception.
We let V = {v},...,vs}, e1 = {v1,v2}, e2 = {v3,v4}, and note that
we must have A\ LEO-type graphs in each decomposition.

Suppose that an LEO-decomposition of 3K4 exists. Without
loss of generality, if the edge e; has frequency 1 in a graph (say, G;)
in this decomposition, then there are two cases for the remaining
frequencies on edge e;: either e; has frequency 1 in each of two
other graphs (say, G and G3) in the decomposition, or else e; has
frequency 2 in another graph (say, Gs) in the decomposition. In the
former case, the edge es occurs in Gy, Go and G3 with total frequency
6, which cannot occur. In the latter case, the edge ey has frequency
2 in G) and frequency 1 in G5. Hence, graphs in this decomposition
occurs in pairs; that is, there must be an even number of graphs
in this decomposition. This contradicts the fact that the number of
graphs in the decomposition is odd. Hence, the minimal A # 3. ¢

Suppose that an LEO-decomposition of 4K, exists. Without loss
of generality, if the edge e; has frequency 3 in a graph (say, G1) in
this decomposition, then it must have frequency 1 in another graph
(say, G2) in the decomposition. Then edge e; has frequency 2 in Gs.
There are two cases for the remaining frequencies on edge e;: either
ez has frequency 1 in each of two more graphs (say, Gz and G4) in
the decomposition, or else e; has frequency 2 in another graph (say,
G3) in the decomposition. The former case gives edge e; frequency 2
in each of G3 and Gy, for a total frequency of 8, which cannot occur.
The latter case gives edge e; frequency 1 in G3, for a total frequency
of at least 5, which cannot occur. Hence, the minimal XA # 4. ¢

Suppose that an LEO-decomposition of 5K, exists. Suppose
that the edge e; has frequency 1 in two distinct graphs (say, G; and



G») in this decomposition. Then the edge e; has frequency 2 in each
of Gy and G3. Then, es must have frequency 1 in another graph
(say, G3) in the decomposition. But, e; will have frequency 2 in G3,
and thus must have frequency 1 in another graph (say, G4) in the
decomposition. This implies that es has frequency 2 in G4, giving eg
frequency at least 7, which cannot occur. Thus, we cannot have an
edge of frequency 1 in two distinct graphs in this decomposition. Now
suppose that e; has frequency 2 in two distinct graphs (say, G; and
Gs) in this decomposition. Then the edge e; has frequency 1 in each
of G and G3. This situation cannot occur, as shown above. Thus,
we cannot have an edge of frequency 2 in two distinct graphs in this
decomposition. Of course, we cannot have an edge of frequency 3 in
two distinct graphs in this decomposition, for then A > 6. Hence,
no edge can occur more than once with the same multiplicity in this
decomposition. By simple counting, there must be at least 3 edges
that occur once with multiplicity 1, once with multiplicity 2 and
once with multiplicity 3, which cannot occur (since it forces A > 6).
Hence, the minimal A # 5. ¢

Thus, the minimal A for LEO-decompositions of K4 is 6, for
which an LEO-decomposition exists (as given below). |

The following examples illustrate the development of base graphs
into decompositions of AK,,. We use difference family-type construc-
tions to achieve decompositions of AK,. In general, we exhibit the
“base graphs”, which can be developed (modulo either n or n—1) to
obtain the decomposition. We note that special attention is needed
with the base graphs containing the “dummy element” oco; the non—
oo elements are developed, while oo is simply rewritten each time.
We further note that the multiplicity of the edges is fixed by position
(as per the LEO- or ELO-type of the graph). Lastly, we remark that
LEO- and ELO-type graphs have 4 vertices; hence, n > 4.

EXAMPLE 6. Considering the set of points to be V = Z3 U {00},
the LEO-type base graphs |0,1,00,2| and |00,0,2,1| (when developed
modulo 3) constitute an LEO-decomposition of 6Kj.

0 1 ) 2 oo 0 2 1
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EXAMPLE 7. Considering the set of points to be V = Zs, the
LEO-type base graph |0, 1, 3, 2| (when developed modulo 5) constitutes
an LEO-decomposition of 3Ks.
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EXAMPLE 8. Considering the set of points to be V = Zs, the
ELO-type base graph (0,1,4,2) (when developed modulo 5) consti-
tutes an ELO-decomposition of 3Ks.
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3. Decompositions of MK,

We are now in a position to prove the main results of the paper.
We remind the reader that Theorem 1 gives the minimum number A
of copies of K,, under discussion in each case.

THEOREM 2. The minimum number of copies of K, can be de-
composed into graphs of the LEO-type.

PRrROOF. We begin with A = 3. The values of n that correspond
to this A aren =0,1,4,5,8,9 (mod 12) with the exception of n = 4.
(We recall that for LEO-decompositions of AKy, the minimal X is
6. Such a decomposition is given in Example 6.) These cases are
equivalent to n = 0,1 (mod 4).



Case: n =0 (mod 4)
Let n = 4t with ¢t > 2. We consider the set V as Z4;—1U{co}.
Then the differences we must achieve (modulo 4t — 1) are
1,2,...,2t — 1. The number of graphs required is 3"—(1"2:1—) =
Mth_l—) = t(4t — 1). Thus, we need ¢ base graphs (mod-
ulo 4t — 1). For the first ¢ — 2 base graphs, we use |2z —
1,0,2z,4z - 1| for x = 1,2,...,t — 2. For the last two base
graphs, use |oo, 2t — 3,0,2¢t — 2| and |4t — 3,2t — 1,0, co].
Hence, in this case, an LEO-decomposition of 3K, exists. 4

Case: n =1 (mod 4)
Let n =4t + 1 with t > 1. We consider the set V as Zg;4,.
Then the differences we must achieve (modulo 4t + 1) are

1,2,...,2t. The number of graphs required is w =
(—4#4—‘) = t(4t + 1). Thus, we need ¢ base graphs (mod-
ulo 4t + 1). We use |2z — 1,0,2z,4z — 1| for z = 1,2,...,¢.
Hence, in this case, an LEO-decomposition of 3K, exists. ¢

We now address A = 4. The values of n that correspond to this A
are n = 3,6,7,10 (mod 12). These cases are equivalent to n = 0, 1
(mod 3).

Case: n =0 (mod 3)
First note that LEO-decompositions of 4K3 do not exist
since LEO-type graphs have 4 vertices. We consider two
subcases (t even and t odd) for n = 3t with ¢t > 2.

Let n = 3t and t = 2s; that is, let n = 6s. We con-
sider the set V' as Zg;—1 U {0o0}. Then the differences we
must achieve (modulo 6s — 1) are 1,2,...,35s—1. The num-
ber of graphs required is 4"({‘2“1) = (Gs)(gs—l) = 25(6s — 1).
Thus, we need 2s base graphs (modulo 6s - 1). For the first
2s — 1 base graphs, we use |0, 1,2s,5s — 1|, |0,2,2s, 5s — 2|,
10,3, 2s, 55 — 2|, |0, 4, 2s, 55 — 3|, |0, 5,2s,55 — 3|,...,|0,2s —
2,2s,4s| and |0,2s — 1,2s,4s|. For the last base graph, use
|1,00,0,3s — 1|. Hence, in this subcase, an LEO-decom-
position of 4K,, exists. e

Let n = 3t and t = 2s+1; that is, let n = 6s+3. We con-
sider the set V' as Zgz12U{o0}. Then the differences we must
achieve (modulo 6s + 2) are 1,2,...,3s + 1. The number of




graphs required is 4”%"1) = (6’+3)3(63+2) = (25 + 1)(6s + 2).
Thus, we need 2s + 1 base graphs (modulo 6s + 2). For the
first 2s base graphs, we use |0,1,2s + 1,5s + 1|, |0,2,2s +
1,5s+1}, 10,3,2s+1, 53, |0,4,2s+1,5s|,...,]0,2s— 1,25+
1,45+ 2| and |0, 2s,2s + 1,4s + 2|. For the last base graph,
we use |1,00,0,3s + 1|. Hence, in this subcase, an LEO-
decomposition of 4K, exists. A

Case: n =1 (mod 3)
We again consider two subcases (t even and t odd) for n =
3t+1witht > 2.

Let n = 3t +1 and ¢t = 2s; that is, let n = 6s + 1.
We consider the set V as Zgs+1. Then the differences we
must achieve (modulo 6s + 1) are 1,2,...,3s. The number

. . 4n(n—=1) _ (6s+1)(6s) __
of graphs required is —5— = 3 = 2s(6s+1). Thus,
we need 2s base graphs (modulo 6s + 1). We use the base
graphs |0, z, 2z+s, 3z+3s| and |0, z+s, 2245, 3z+3s| for z =
1,2,...,s. Hence, in this subcase, an LEO-decomposition
of 4K, exists. e
For t odd, we note the following interesting lemma.

LEMMA 2. Let n = 3t + 1 with t even. If a specified
cyclic LEO-decomposition of 4K, exists, then a cyclic LEO-
decomposition of 4K, 3 exists.

ProOF. Notice that n = 3t + 1 implies that n + 3 =
3(t + 1) + 1, and that ¢ even implies that ¢ + 1 is odd.
Let an LEO-decomposition of 4K, exist with specified base
graphs (developed modulo n to give the decomposition) as
given in the subcase above. Adjoin to these base graphs
the base graph |0,3s + 1,6s + 2,3s|. Then, when all base
graphs are developed modulo n+3, the aggregate is an LEO-
decomposition of 4K, 3. A

Hence, in this subcase, an LEO-decomposition of 4K, ex-
ists. ¢

Lastly, we address A = 6. The values of n that correspond to this A
are n = 2,11 (mod 12).
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Case: n =2 (mod 12)

Let n = 12t + 2 with ¢ > 1. We consider the set V as
Z13t+1 U {oo}. Then the differences we must achieve (mod-
ulo 12¢ 4 1) are 1,2, ...,6t. The number of graphs required
is 6"({‘2_1) = (12”2)2(12""1) = (6¢t+1)(12t+1). Thus, we need
6t + 1 base graphs (modulo 12¢+1). For the first 6¢ — 1 base
graphs, we use |0, 1, 6¢,12¢—1{, |0, 2, 6¢,12t-2|, |0, 3, 6¢, 12t —
3/,...,]0,6t—2,6¢,6t+2| and |0,6t—1, 6¢,6t+1|. For the last
two base graphs, use |00, 0, 6¢,12¢| and |6¢,0,00,1|. Hence,
in this case, an LEO-decomposition of 6 K, exists. A

Case: n =11 (mod 12)

Let n = 12t + 11 with ¢ > 0. We consider the set V as
Zy2t+11. Then the differences we must achieve (modulo 12¢+
11) are 1,2,...,6t + 5. The number of graphs required is
6"("_1) (12””)2(12“10) = (6t+5)(12¢+11). Thus, we need
6t+5 base graphs (modulo 12¢ 4 11). We use |2, 1,6t+ 6, 0],
|0,2,6¢t+ 6,12t + 10|, |0, 3,6t + 6,12t + 9, |0, 4, 6t+6 12t +
8|,...,|0,6t+4,6t+6,6t+8|, and |0, 6t + 5,6t + 6,6t + 7|.
Hence, in this case, an LEO-decomposition of 6K, exists.

THEOREM 3. The minimum number of copies of K, can be de-
composed into graphs of the ELO-type.

PROOF. We begin with A = 3. The values of n that correspond
to this Aaren =0,1,4,5,8,9 (mod 12). These cases are equivalent
ton=0,1 (mod 4).

Case: n =0 (mod 4)

Let n = 4t with ¢ > 1. We consider the set V as Zs;—1U{0c0}.
Then the differences we must achieve (modulo 4t — 1) are
1,2,...,2t — 1. The number of graphs required is =52 3"(" D
M#l = t(4t — 1). Thus, we need ¢ base graphs (modulo
4t —1). If t = 1 (so that n = 4), we use the base graph
(0,2,1,00). If t > 2, for the first ¢ — 1 base graphs, we use
(0,22 — 1,2z + 1,2z) for z = 1,...,t — 1. For the last base
graph, we use (0,2t —1,1, 00). Hence, in this case, an ELO-
decomposition of 3K, exists. A
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Case: n =1 (mod 4)
Let n = 4t + 1 with £ > 1. We consider the set V as Z4;11.
Then the differences we must achieve (modulo 4¢ + 1) are

1,2,...,2t. The number of graphs required is w =

(i“"'iﬂz = t(4t + 1). Thus, we need t base graphs (modulo
4t +1). If t = 1 (so that n = 5), we use the base graph
(0,3,2,1). If t > 2, for the first ¢ — 1 base graphs, we use
(0,2z,2z + 2,2z — 1) for z = 1,...,t — 1. For the last base
graph, we use (0, 2¢,2,2¢ — 1). Hence, in this case, an ELO-
decomposition of 3K, exists. ¢

We now address A = 4. The values of n that correspond to this A
are n = 3,6,7,10 (mod 12). These cases are equivalent to n = 0,1
(mod 3).

Case: n =0 (mod 3)
First note that ELO-decompositions of 4K3 do not exist
since ELO-type graphs have 4 vertices. We consider two
subcases (t even and t odd) for n = 3t with ¢t > 2.

Let n = 3t and t = 2s; that is, let n = 6s. We consider
the set V as Zgs—1 U {o0}. Then the differences we must
achieve (modulo 6s — 1) are 1,2,...,3s — 1. The number of
graphs required is 4"(1‘2'1) = Gs(ﬁg—l) = 25(6s—1). Thus, we
need 2s base graphs (modulo 6s—1). For the first 2s—2 bhase
graphs, we use (0,3z—2,3z—1,3z) and (0, 3z,3z -1, 3z—2)
for z = 1,2,...,5 — 1. For the last two base graphs, use
(0,00,3s—1,3s—2) and (0,3s—2,3s—1,00). Hence, in this
subcase, an ELO-decomposition of 4K, exists. e

Let n = 3t and t = 2s+1; that is, let n = 65+3. We con-
sider the set V' as Zgs12U{oc0}. Then the differences we must
achieve (modulo 6s + 2) are 1,2,...,3s + 1. The number of
graphs required is 4"‘{‘2_1) = (65'*'3);6"*'2) = (2s+ 1)(6s + 2).
Thus, we need 2s + 1 base graphs (modulo 6s + 2). For the
first three base graphs, we use (0,00,3s + 1,1), (0,1, 2, 00)
and (0,3,2,6s — 1). For the last 2s — 2 base graphs, we
use (0,3z — 2,3z — 1,3z) and (0,3z,3z — 1,3z — 2) for z =
2,3,...,s. Hence, in this subcase, an ELO-decomposition
of 4K, exists. A
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Case: n =1 (mod 3)

We note the following interesting lemma:

LEMMA 3. If an ELO-decomposition of 4K, ezists for
m = 3t with t > 2, then an ELO-decomposition of 4Km11
exists.

PROOF. Let m+1 = 3t + 1 and V = {0,1,...,3¢}.
Let an ELO-decomposition of 4K, exist on the 3t points
V — {0}. (Simply relabel points in the construction in the
above case as z — z + 1 and oo — 3t.) Adjoin to this de-
composition the graphs (0, 3z - 2,3z -1, 3z) and (0, 3z, 3z —
1,3z—-2) forz = 1,2,...,t. Then, the aggregate is an ELO-
decomposition of 4K,,41 on V. A

Let n = 3t+ 1 witht > 1. If t = 1 (so that n = 4), we
use the base graph (0, 1,2, 3) developed modulo 4. If ¢t > 2,
use Lemma 3. Hence, in this case, an ELO-decomposition
of 4K,, exists. ¢

Lastly, we address A = 6. The values of n that correspond to this
Aaren =2,11 (mod 12).

Case:

Case:

n =2 (mod 12)

Let n = 12¢t + 2 with t > 1. We consider the set V as
Zygt41 U {o0}. Then the differences we must achieve (mod-
ulo 12t 4 1) are 1,2,...,6t. The number of graphs required
is sn(" D = (12t+2)(12ﬂ = (6t + 1)(12¢t + 1). Thus, we
need 6t + 1 base gra.phs (modulo 12t + 1). For the first
6t — 3 base graphs, we use (0,z,12t + 1 — z,z + 1) for
z = 1,...,6t — 3. For the last four base graphs, we use
(0,6t — 2,6t + 3,1), (0,6t,6t — 1,00), (0,00,6t,6¢ — 1) and
(0,6t—1, 00, 6t). Hence, in this case, an ELO-decomposition
of 6K, exists. A

n =11 (mod 12)

Let n = 12t + 11 with ¢ > 0. We consider the set V as
Z12t+11- Then the differences we must achieve (modulo 12¢+
11) are 1,2,...,6t + 5. The number of graphs required is
6"(1'2_1) = (12t+11)2(12t+m) = (6t+5)(12¢t+11). Thus, we need
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6t+5 base graphs (modulo 12¢+11). For the first 6¢+-4 base
graphs, we use (0,z,12t+11—z,z+1) forz =1,...,6t+4.
For the last base graph, we use (0,6t + 5,6t + 6,1). Hence,
in this case, an EL.O-decomposition of 6K, exists.

4. Conclusion

We have completed the problem of finding cyclic decompositions
of AK,, (for the appropriate minimal ) using the two types of the
four nonisomorphic S(4, 3)’s not considered in [4]; namely, the LEO-
and ELO-type graph decompositions. This completes the result for
all nonisomorphic S(4, 3)’s.
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