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Abstract

A 2-rainbow dominating function of a graph G is a function g
that assigns to each vertex a set of colors chosen from the set {1,2}
so that for each vertex v with g(v) = @ we have U,en(v)g(u) = {1,2}.
The minimum of g(V(G)) = ¥, ¢ v (c) |9(v)] over all such functions is
called the 2-rainbow domination number 4,9(G). A 2-rainbow dom-
inating function g of a graph G is independent if no two vertices
assigned non empty sets are adjacent. The independent 2-rainbow
domination number #,2(G) is the minimum weight of an independent
2-rainbow dominating function of G. In this paper, we study inde-
pendent 2-rainbow domination in graphs. We present some bounds
and relations with other domination parameters.
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1 Introduction

We consider finite, undirected, and simple graphs G with vertex set V =
V(G) and edge set E = E(G). The number of vertices |V (G)| of a graph G
is called the order of G and is denoted by n = n(G). The open neighborhood
of a vertex v € V is N(v) = Ng(v) = {u € V | uv € E} and the degree
of v, denoted by dg(v), is the cardinality of its open neighborhood. The
mazimum and minimum degrees of a graph G are denoted by A and §,
respectively. A vertex of degree one is called a leaf and its neighbor a
support vertez. A tree T is a double star if it contains exactly two vertices
that are not leaves. A double star with, respectively p and g leaves attached
at each support vertex is denoted by S 4.

A set D C V(G) is a dominating set if every vertex of V(G) — D has a
neighbor in D. The independent domination number i(G) is the minimum
cardinality of a set that is both independent and dominating. The concept
of domination in graphs and its many variations are now well studied in
graph theory (see for example [6]). A set S C V(G) is a packing set of G if
N[z] N N[y] = 0 for all pairs of distinct vertices z and y in S. The packing
number p(G) is the maximum cardinality of a packing set in G.

For a graph G, let f : V(G) — {0,1,2} be a function, and let (Vp; V4; V2)
be the ordered partition of V = V(G) induced by f, where V; = {v €
V(G) : f(v) =i} for i =0,1,2. Thereis a 1 — 1 correspondence between
the functions f : V(G) — {0,1,2} and the ordered partitions (Vp; V;; V2)
of V(G). So we will write f = (Vo; V1; V2).

A function f : V(G) — {0,1,2} is a Roman dominating function (RDF)
on G if every vertex u of G for which f(u) = 0 is adjacent to at least one
vertex v of G for which f(v) = 2. The weight of an RDF is the value
f(V(G)) = Yuev(c) f(u). The Roman domination number vr(G) is the
minimum weight of an RDF on G. Roman domination was introduced by
Cockayne et al. [4]. A function f = (Vp; V1; V) is called an independent
Roman dominating function (IRDF) on G if f is a RDF and no two vertices
in VUV, are adjacent. The independent Roman domination number ig(G)
is the minimum weight of an independent Roman dominating function of
G. Independent Roman domination was studied in (1, 5, 7).

Let f be a function that assigns to each vertex a set of colors chosen
from the set {1,2}; that is f : V(G) — P({1,2}), where P({1,2}) is the
power set of {1,2}. If for each vertex v € V(G) such that f(v) = 0, we
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have U f(u }, then f is called a 2-rainbow dominating function
uEN(v)
(2RDF) of G. The weight of a 2RDF f is defined as w(f) = > [f(v)].
veV(G)

The minimum weight of a 2-rainbow dominating function is called the 2-
rainbow domination number of G, denoted by v,2(G). We say that a func-
tion f is a v,2(G)-function if it is a 2RDF and w(f) = 7r2(G). For a 2RDF
f we let Vlf ={v: f(v)={1}}. W/, Vlfg, and Vof are similarly defined. 2-
rainbow domination was introduced by Bre3ar et al. (3], and further studied
for example in [8, 9].

Relations between Roman domination and 2-rainbow domination were
studied for example in {2, 9]. In this paper we initiate the study of 2-
rainbow dominating functions f such that V./ UVy/ UV, is independent. A
function f : V(G) — P({1,2}) is called an independent 2-rainbow dominat-
ing function (I2RDF) of G, if f is a 2RDF and no two vertices in V(G)—
are adjacent. The independent 2-rainbow domination number i,2(G) is the
minimum weight of an independent 2-rainbow dominating function of G.
Clearly for any graph G, i,2(G) 2 r2(G). Thus if G has a ~,2(G)-function
such that V;/ UV U V4] is independent, then i,2(G) = 7r2(G). We in-
vestigate independent 2-rainbow domination in graphs. We present some
bounds, characterizations and relations with other domination parameters

2 Bounds and extremal graphs

We begin with the following which shows that i,9(G) is well-defined in a
graph G.

Proposition 1 Any graph G of order n admits an RRDF of weight at
most n.

Proof. If A(G) =0, then f defined on V(G) by f(z) = {1} is an I2RDF
with weight n. Thus assume that A(G) > 0. Without loss of generality
assume that G is connected. Let z; be a vertex of maximum degree in
G, and G; = G — N[z;]. If A(G;) = 0, then f; defined on V(G) by
fr(@) = {1,2}, fi(u) = 0 if u € N(=1), and f1(u) = {1} if u & Nlzs] is
an I2RDF for G, and clearly w(f1) < n. Thus assume that A(G;) > 0.
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Let z2 be a vertex of maximum degree in Gy, and G2 = G; — N[zg). If
A(G2) =0, then f; defined on V(G) by fa(z1) = fa(z2) = {1,2}, fo(u) =0
if u € N(z))UN(z2), and fo(u) = {1} if u & N[z;])UN[zs] is an I2RDF for
G, and clearly w(f2) < n. By continuing this process we obtain an I2RDF
of weight at most n. =

According to Proposition 1, we have the following two observations.

Observation 2 IfG is a disconnected graph with components G, Ga, ..., Gn,
then i:9(G) = i,2(G1) + 4r2(G2) + ... +12(Gr)-

Observation 3 If G is a graph of order n > 2, then 2 < i.9(G) < n.

Proposition 4 Let X C V(G) be an independent set of a graph G and let
G' =G — N[X]. Then i o(G) <2|X|+n—|N[X]|.

Proof. Let us define for any i,o-function f of G/, a function g on V(G) by
9(v)={1,2} ifv e X, g(u) = 0 if v € N(X), and g(u) = f(u) if v € N[X].
By Observation 3, i,2(G’') < n—|N[X]| and so0 i,2(G) < 2|X|+n—|N[X]|.
u

According to Proposition 4, if we choose X = {v}, where v is a vertex of
maximum degree, we obtain:

Corollary 5 For any graph G, i.2(G) <n—-A+1.

Moreover, since |N[X]| 2 (6+1) | X| for every packing set X, Proposition 4
gives a relationship between the independent 2-rainbow domination number
and the packing number of a graph:

Corollary 6 For every graph G, ir2(G) < n — (8 — 1)p(G).

Next we give extremal graphs attaining each bound in Observation 3. Let
K3 ., where m > 2, be the graph obtained from a complete bipartite graph
K3 . by adding edges (possibly none) between vertices belonging to partite
set of size m.
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Proposition 7 For a graph G of order n > 2, i,5(G) = 2 if and only if
G =2K,, G = K3, wherem >2, or A(G) =n - 1.

Proof. Let i,.o(G) = 2. If G is disconnected, then clearly G = 2K;. Thus
assume that G is connected. Let f be an %,9(G)-function such that |V1£| is
maximum. If |V1f2| = 0, then clearly |V,f | = |V2f | = 1. Since vertices of Vof
may be adjacent, we deduce that G = K3 ,, for some integer m > 2. Now
assume that |V}5| = 1. Since Vlf2 is a dominating set for G, we find that
AG)=n-1

The converse is obvious. =

Proposition 8 For any graph G of order n, i,9(G) = n if and only if
G =mKy UlK, for some integers m,l withn = 2m + l.

Proof. It is obvious that if G = mK2 UK, for some integers m,! with
n = 2m +{, then i5(G) = n.

Conversely, assume that G is a graph of order n with ¢,2(G) = n. For
n = 1,2 the statement is obviously true. Thus assume that n > 2. By
Corollary 5, G has maximum degree at most one, and so the result follows.
(]

Proposition 9 For any graph G of order n, io(G) =n — 1 if and only if
G =HUpK,UqK,, where H = P3, C3 or Py and p,q > 0.

Proof. It is easy to see that if G = H UpKy UgK;, where H = P3, C3
or Py and p,q > 0, then ¢,2(G) =n—1.

Conversely, assume that G is a graph of order n with ,2(G) = n — 1.
Clearly since ,2(G) > 2, n > 3. Also, if each component of G has order
one or two, then by Proposition 8, i,2(G) = n, a contradiction. Hence G
contains at least one component with three vertices or more. Now let v be a
vertex of maximum degree in G. By Corollary 5, dg(v) < 2. So dg(v) =2
since v belongs to a component of order at least three. Therefore every
component of G is either a path (possibly trivial) or a cycle. Also if G
has two components each order at least three, then i,2(G) < n -1, a
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contradiction. Thus G has one component, say H, of order at least three.
If [V(H)| = 5 or H = Cy, then it is easy to show that i,.2(H) < |[V(H)| -2,
implying that i,0(G) < n—2, a contradiction. Now we observe that H = P;,
CsorPy. m

We close this section with the following problem.

Problem 10 Find a sharp bound for i.o in terms of the order for trees.

3 Relations with independent domination

Now we turn our attention to establish some results relating the indepen-
dent 2-rainbow domination number to the independent domination number.
The following is easily verified.

Observation 11 For eny graph G, i(G) < i,2(G) < 2i(G). These bounds
are sharp.

The lower bound is attained for the cycle C4 and the upper bound is
attained for the path Ps.

Proposition 12 For o graph G, if i,9(G) = i(G), then for any ir2(G)-
function f, Vlf2 = 0.

Proof. Let i,2(G) = i(G), and let f be an i,2(G)-function. Then
#(G) < V1 + IV T+ 1V < IV T+ IV | + 21V = in0(G).

Thus [V =0. =

Corollary 13 For a graph G of order n, if i,2(G) = i(G) then i(G) +
1%-0—) < n.
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Proof. Let G be a graph of order n with i,2(G) = ¢(G). Let f be an
i,2(G)-function. By Proposition 12, Vlfz = (). Now g defined on V(G) by
g(u) = 2if | f(u)| =0, and g(u) = 0if | f(u)] = 1, is an RDF for G, implying
that vz(G) < 2(n—|V{| - |V{|) = 2(n—i(G)), and thus the result follows.
]

Note that the converse of Proposition 12 does not hold. To see this
consider the cycle Cg. One can easily see that for any i,9(Cg)-function f,

Vi, = 0 but i,5(Cs) > i(Cs).

Proposition 14 Any graph G is an induced subgraph of a graph H with
iro(H) =i(H).

Proof. Let G be a graph of order n. Let H be obtained from G and n
copies of Ky i, where k > 3, by identifying a vertex of degree two of each
copy of Ky with a vertex of G. Then i,o(H)=i(H)=2n. =

Proposition 15 For a tree T, i.o(T) = i(T) if and only if T = K.

Proof. Assume that T is a tree of order n with i,2(T") = i(T'). Suppose
that n > 1 and let f be an i.o(T)-function. By Proposition 12, Vlfz = 0.
Since n > 1, there is a path zyz with f(z) = {1}, f(y) =0 and f(2) = {2}.
Then {u: f(u) # # and u ¢ N(y)} U {y} is an independent dominating set
for T' of cardinality less than i(T'), a contradiction. Hence n=1. m

Proposition 16 For a unicyclic graph G, i.(G) = i(G) if and only if
G=0Cy.

Proof. Clearly, i,2(C4) = 2 = i{(C4). Let G be a unicyclic graph with
ir2(G) = i(G). Let f be an i,o(G)-function. By Proposition 12, Vlfg = 0.
Let = be a vertex with f(z) = §). There are two vertices z,y € N(z) such
that f(z) = {1} and f(y) = {2}. If N(z) N N(y) = {2}, then {u: f(u) #0
and u ¢ N(z)} U {z} is an independent dominating set for G of cardinality
less than i(G), a contradiction. Thus N(z) N N(y) # {z}. Since G is
unicyclic, we have |[N(z) N N(y) — {z}| = 1. Let N(z)N N(y) — {2} = {w}.
Consequently, any vertex u of degree at least two with f(u) = 0 is contained
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in a 4-cycle. Thus we obtain that dg(z) = dg(y) = 2, and so G is a graph
formed by a cycle C; with possibly leaves attached at z or w. Hence {2z, w}
is an independent dominating set for G, that is i(G) = 2. Now if dg(z) > 3
or dg(w) > 3, then every leaf u € N(z) U N(w) has |f(u)| = 1, implying
that i,0(G) > 2, a contradiction. We conclude that dg(z) = dg(w) = 2,
and consequently G=C,. m

If a graph G does not contain an induced subgraph that is isomorphic to
some graph F, then we say that G is F-free.

Theorem 17 IfG is a Cy-free graph without isolated vertices, then i.o(G) >
{G) + 1.

Proof. Assume to the contrary that i.2(G) < i(G) + 1. By Observa-
tion 11, i,0(G) = i(G). Let f be any i,2(G)-function. By Proposition 12,
Vi = 0, and so every vertex of Vof has at least two neighbors in Vlf U V2f .
Recall that Vlf U VZI is an independent set. Let w be any vertex of Vof and
let us denote by N*(w) the set of neighbors of w in Vlf U sz . Note that
|N*(w)| > 2. If every vertex » in V{ different from w has a neighbor in

V{ UV —=N*(w), then (vlf uvyf - N*(w)) U{w} is a maximal independent

set for G, implying that i(G) < |(Vlf U sz - N‘(w)) U {w}| <ire(G) -1,

a contradiction. Hence there is at least one vertex in Vof different from w

such that its neighborhood in VIJr U sz is contained in N*(w). Let A be
the set of all such vertices u of Vof such that N*(u) C N*(w). If w is not
adjacent to a vertex w; of A, then w, w; and N*(w) induce a cycle Cy, a
contradiction. Hence w is adjacent to all vertices of A, in particular w dom-

inates A. But then (Vlf U sz -N *(w)) U {w} is a maximal independent
set for G, implying that i(G) < |(v1f UV - N*(w) U {w}| <ir(G) -1,
a contradiction too. Therefore i,2(G) > i(G)+1. m

Recall that a graph is chordal if it contains no chordless cycle of length at
least four as an induced subgraph. Thus we have the following corollary to
Theorem 17, and we note that trees belong to the class of chordal graphs.

Corollary 18 IfG is a chordal graph without isolated vertices, theni,o(G) >
i(Gy+ 1.
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The next observation will be useful.

Observation 19 For a graph G of order n, if i.o(G) = i(G) + 1 then for
any ir2(G)-function f, V| < 1.

Proof. Assume that i,2(G) = i(G) + 1. Let f be an i,o-function such
that |Vj5| is maximum. Since V{ UVy U VY, is an independent dominating
set, we deduce that |Vlf2| <l =

In the next we give a characterization of trees T' with i,.o(T) = #(T) + 1.
The subdivision graph S(G) of a graph G is the graph obtained from G
by replacing each edge uv of G by a vertex w and edges uw and vw. Let
T be the class of trees T such that T is a star, a double-star, S(S, ),
S(K, ) for some n > 2, or T is obtained from S(K;,,) for some n > 2 by
adding at least one leaf to the central vertex of S(K ) and possibly some
leaves to the support vertices of S(Ki,) such that the number of leaves at
distance two from the center of S(K1,,) is at most the degree of the center
of S(K1 ) minus one.

Theorem 20 Foratree T, i,o(T)=4T)+1ifand only if T€ T.

Proof. First it is routine to check that for any tree T € T, i2(T) =
i(T) + 1. Let T be a tree with i¢,o(T) = i{(T) + 1. Let z-z1-z3...z4—1-y be
a diametrical path of T, where d = diam(T). Let f be an i,.o(T)-function
such that Vlé is maximum. By Observation 19, |V11;| < 1. Assume that
diam(T") > 5. We shall show that T' = S(S;,q).

First, suppose that |1/1le = 0. Clearly f(z1) = f(z4-1) = 0. Hdr(zg-1) >

3, then
S w2

VEN(Ty—y)

Now if |f(zq—2)| = 0, then we change f(zq4—1) to {1,2} and f(v) to @ for
each leaf neighbor of z4_;, contradicting our choice of f. Thus |f(z4—2)| =
1. Then {u: f(u) # 0,v & N{(z4—1)}U{za—1} is an independent dominating
set for T of cardinality less than i(T'), a contradiction. Hence dr(zq—1) = 2
and likewise dr(z1) = 2. Thus |f(z2)| = |f(z4—2)] = 1, and so diam(T’) >
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6. Now if diam(T') > 7, then {u : f(u) # 0,u # z, %2, Tq4—2, y}U{Z1, a1} is
an independent dominating set of cardinality less than i(T"), a contradiction.
Thus diam(T) = 6, and so f(z3) = (. Note that since diam(T") = 6, every
leaf of T is at distance at most three from z3. Now suppose that dr(z3) > 3.
If some neighbor of z3 different to z, and z4 is assigned non-empty set, then
{u: f(u) # 0,u # z,z2,74,y} U {z1,25} is an independent dominating set
of cardinality less than #(T), a contradiction. Thus we may assume that
f(t) = ¥ for every t € N(xz3) — {x2,z4}. Since dr(z3) = 3, every vertex
in N(z3) — {z2,z4} is a support vertex adjacent to at least two leaves,
and having z3 as the unique non-leaf neighbor. Let z be any vertex of
N(z3) — {z9,24}, and let L, be the set of leaves adjacent to z. In this case
{u: f(u) # Bu# x,22,24,y and u ¢ L.} U {z1, 3,2} is an independent
dominating set of cardinality less than i(T), a contradiction. Therefore
dr(z3) = 2. Now if dp(z2) > 3, then every neighbor of z; different from
z3 is a support vertex playing the same role as x;, that its degree is also
two. Likewise, if dr(z4) > 3, then every neighbor of z, different from zj is
a support vertex of degree two. Therefore T is the subdivision graph of a
double star that belongs to 7.

Next assume that IVI‘;[ = 1. Clearly 0 € {|f(z1)|,|f(zg-1)|}. Without
loss of generality, assume that |f(z4—1)] = 0. Assume that f(z4—2) #
{1,2}. If dr(za-1) = 3, then 3 ez, [fFW) 2 2. If | f(za—2)| = O,
then we change f(z4-1) to {1,2} and f(v) to @ for each leaf neighbor of
z4-1, contradicting our choice of f. Hence |f(z4—2)| = 1. Then {u :
flu) # O, u € N(zg—1)} U {z4-1} is an independent dominating set for T
of cardinality less than i(T'), a contradiction. Thus dr(z4-;) = 2, and so
|f(za—2)] = 1. Now {u: f(u) # ¥, u # z4—2,y} U {Z4-1} is an independent
dominating set of cardinality less than i(T'), a contradiction. Thus we can
assume that f(zq—2) = {1,2}. If d = 5, then f(z2) = @), and thus we
may have that f(z;) = {1,2}, a contradiction. Thus d > 6. Now similar
to the above discussion we may assume that f(z1) = 0, dr(z1) = 2, and
|f(z)] = |f(z2)] = 1. Now {u: f(u) # 0,u # z,z2}U{z,} is an independent
dominating set of cardinality less than i(T"), a contradiction.

From now on we assume that T has diameter at most 4. We first assume
that diam(T) = 4. If | f(z3)} = 2, then f(z2) = 0, and we can find an i,.o(T)-
function g with |V%| > 2, contradicting Observation 19. Thus |f(z3)| # 2,
and likewise |f(x1)] # 2. This implies that f(z;) = f(z3) = 0. Thus
f(u) =0, for any vertex u € N(zq) with dr(u) > 1.

Now let us suppose that |V1f2 = 0. If |f(z2)] = 0, then dr(z;) > 3,
dr(z3) > 3 and so {u : f(u) # O,u € N(z3) U N(z1)} U {z1,z3} is an
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independent dominating set of cardinality less than #(T), a contradiction.
Thus |f(z2)| = 1, implying that z, is not a support vertex. If dr(z3) > 2
or dr(z;) > 2, then {u : f(u) # 0,u & N(z3) U N(z1)} U {z1,z3} is an
independent dominating set of cardinality less than i(T"), a contradiction.
Thus dr(z1) = dr(z3) = 2, and so any vertex in N(z2) is of degree two.
Consequently, T' = S(K1,4,(z,)) € 7-

Assume now that ]Vlle = 1. If f(z2) = 0, then dp(z3) > 2 and we can
change f(z3) to {1,2} and f(u) to () for any u € N(z3)—{z2}, contradicting
our choice of f. Thus f(z2) # . Suppose that |f(z2)| = 1. Then the Vlf2
contains a vertex at distance two from zp. Without loss of generality,
assume that V{, = {z}. Then {u : f(u) # 0,u ¢ N[z;]} U {z1} is an
independent dominating set for T', a contradiction. Thus f(z2) = {1,2}.
This implies that z is a support vertex, for otherwise we can decrease
w(f) by changing f(z;) to {1} and every leaf v at distance two from z;
with f(v) = {1} to f(v) = {2}. Now let | be the number of leaves at
distance two from z2. Then w(f) = i2(T) = 2+ 1. If Il > dr(xz3), then
N(z2) is an independent dominating set for T' of cardinality less than (T'),
a contradiction. Thus dr(z2) > { + 1, and therefore T € 7.

Finally, if diam(T") = 3, then T is a double-star and if diam(T") < 2, then
Tisastar. Hence T €7. m

Proposition 21 For a graph G, i.2(G) = 2i(G) if and only if there is an
ir2(G)-function f such that |Vlf| = |V2f| =0.

Proof. Assume that ¢,2(G) = 2{(G) and let S be an i(G)-set. Then f
defined on V(G) by f(u) = {1,2} if u € S, and f(u) =0 ifu ¢ S, is an
I2RDF for G. Since i,2(G) = 2i(G), f is the desired function.

Conversely, assume that there is an i,2(G)-function f such that IVlf | =

|V2f | = 0. Then Vlfz is an independent dominating set for G, implying that
i(G) < %—Q, and thus the result follows. m
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4 Relations with independent Roman domi-
nation

In this section we present some relations between the independent 2-rainbow
domination and independent Roman domination numbers of a graph G.

Theorem 22 For any graph G, i,2(G) < ir(G) < 3i2(G).

Proof. Let f = (Vp; V3; V2) be an IRDF on G. Clearly every vertex of Vg
has a neighbor in V,. We define a function g on G by g(z) = 0 if z € Vj,
g(z) = {1,2} if z € V, and g(z) = {1} or {2} if z € V;. Clearly g is an
I2RDF on G and so i,2(G) < |Vh| + 2|V} = ig(G).

Now to show the upper bound, let f be an i,2(G)-function. Let k; be the
number of vertices u for which i € f(u), for ¢ = 1,2. Then ¢,.2(G) = k1 +ka.
Without loss of generality, suppose that k; < k2. Hence k; < (k1 +k2)/2 =
i,2(G)/2. Now we define g : V(G) — {0,1,2} such that g(z) = 0 if
flz) =0, gz) = 1if f(z) = {2}, and g(z) = 2 if 1 € f(z). Since
f is a I2RDF for G, we obtain that g is an IRDF for G, implying that
ip(G) < w(g) = 2k, + k. Therefore,

ir(G) < 2ky + ko = k1 + k1 + k2 < i,2(G)/2 +ir2(G) = girZ(G)~

Note that the other case if ks < k; provides the same result. ®

The upper bound is attained for the cycle Cy4, where ig(C;) = 3 and
172(C4q) = 2. Also the lower bound is attained for the path P;.

Next we give a necessary and sufficient condition for graphs G with
ir2(G) = ir(G).

Proposition 23 For a graph G, i2(G) = ir(G) if and only if there is a
ir2(G)-function f such that any vertez x with |f(z)| = O is adjacent to a
vertez y with | f(y)| = 2.
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Proof. Assume that there is a i,2(G)-function f such that any vertex
z with [f(z)| = 0 is adjacent to a vertex y with |[f(y)] = 2. Let g be
defined on V(G) by g(u) = | f(u)|. Then g is an IRDF for G implying that
ir(G) < 4,2(G), and thus i.2(G) = ig(G).

Conversely, assume that i,2(G) = ig(G) and let f be an ig(G)-function.
Then g defined by g(u) = 0 if f(u) = 0, g(u) = {1} if f(u) = 1, and
g(u) = {1,2} if f(u) = 2, is an i,2(G)-function such that any vertex z with
lg(z)| = 0 is adjacent to a vertex y with |g(y)| =2. =

Proposition 24 Ifig(G) = %i,.g(G), then for any i,.9(G)-function f, |V1f2| =
0, and |V{| = |V{.

Proof. Let G be a graph with ig(G) = 3i,2(G), and let f be a i,2(G)-
function. Assume that |Vi5| > 0. Without loss of generality, assume that
IV/| < |Vf|. We define g : V(G) — {0,1,2} such that g(z) = 0 if
f(z) =0, g(z) = 1if f(z) = {2}, and g(z) = 2 if 1 € f(x). Since f
is an I2RDF for G, we obtain that g is an IRDF for G, implying that
ir(G) < w(g) = 2AViH| + AV + V5| = 2V + IV + V| + V| <
ir2(G) +i,2(G)/2 = 3i,2(G)/2, a contradiction. Thus [V5| = 0. Similarly,
V1= 1V|. =

Corollary 25 Ifir(G) = 3i,2(G), then §(G) > 2.

Proof. Let G be a graph with ig(G) = %i,z(G). Assume that G has a
vertex = of degree one. Let y be the neighbor of z, and let f be a i,2(G)-
function. By Proposition 24, |[Vi5| = 0, and |V{| = |V, say k. Thus
ir2(G) = 2k. Clearly, f(y) = 0. Now, without loss of generality, assume
that f(x) = {1}. Note that at least some vertex z € N(y) — {z} has
f(z) = {2}. We define g : V(G) — {0,1,2} such that g(y) = 2, g(u) =0
if w € N(y), and for u € N(y], g(u) = 0if f(u) =0, g(u) = 1 if f(u) = {2},
and g(u) = 2 if f(u) = {1}. Since f is an I2RDF for G, we obtain that g is
an IRDF for G, implying that ir(G) < w(g) < 2(|V{|-1)+(V{|-1)+2 =
3i.2(G)/2 — 1, a contradiction. m

Thus according to Corollary 25, for every tree T, ig(T) < 2i,2(T). Also,

using Proposition 24 and Corollary 25, we obtain the following result. We
omit the proof.
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Proposition 26 For a unicyclic graph G, ig(G) = %i,.z(G) if and only if
G= C4.

Proposition 27 For every even integer k there is a graph G with i,5(G) =
k and 'LR(G) = %Zrz(G)

Proof. If k = 2, then Cj is the desired graph. For k& > 4, let V(Por_1) =
{v1,v2, ..., ¥ar—1}, where v; is adjacent to v;4q for ¢ =1,2,...,,2k — 2. For
any odd integer i = 1,3, ..., 2k — 3, we add two ears viw;1vi+2 and v;wiavito
to obtain a graph G. It is straightforward to see that i,5(G) = k and
ir(G) = 3i:2(G). =

5 Nordhaus-Gaddum-type results

The complement G of G is the graph with vertex set V(G) and with exactly
the edges that do not belong to G. We now study some Nordhaus-Gaddum-
type results. One can easily see for any graph G that 7,9(G) < 6§ + 2.

Proposition 28 For any graph G of order n > 3, 5 < i,2(G) + i2(G) <
n—-A+6+3.

Equality holds in the lower bound if and only if one of the following holds:
(1) G or G is K3,

(2) G is obtained from the complement graph of K3 ,,, for some m > 2, by
adding a new vertez and joining it to every vertezr of .}'?;,m.

(3) G is obtained from K3 ., for some m > 2, by adding a new vertez and
joining it to every vertez of K3 .

(4)6(G) =1 and A(G) =n—1.

(5)5(G)=1and A(G)=n—1.

Proof. The upper bound follows from Corollary 5 and the fact that
ir2(G) < 6 +2.

We next prove the lower bound. Since n > 3, we have 4,5(G) > 2 and

ir2(G) > 2. If i,2(G) = 2, then by Proposition 7, G = K3 ., where m > 2,
or A(G) =n-1 If G = K3, for some m > 2, then G is not connected

146



and so i;2(G) > 4, implying that ,2(G) + i,2(G) > 6. Thus assume that
A(G) =n — 1. Let z be a vertex of maximum degree in G. Then z is an
isolated vertex in G, and thus i,9(G) > 3, since n > 3. We deduce that
ir2(G) +ir2(G) > 5.

Assume now that i,2(G) +i.2(G) = 5. Without loss of generality assume
that i,2(G) = 2 and %,2(G) = 3. By Proposition 7, G = K3 ., where
m 2> 2,0or A(G) =n—1. If G = K3, for some m > 2, then i,2(G) > 4,
a contradiction. Thus assume that A(G) =n — 1. Let z be a vertex of G
of maximum degree. Then z is an isolated vertex in G. Since i,2(G) = 3,
we have i,2(G — z) = 2. By Proposition 7, G —z = 2K}, G —z = K3 s
where m > 2, or A(G—2z) =n~2. If G-z = 2K, then G = K3. If
G -z = K3,,, where m > 2, then G is a graph as described in (2). We
next assume that A(G — z) =n — 2. Let y be a vertex of maximum degree
in G. Then dg(y) = 1, and thus §(G) = 1. The converse is easily verified.
=

We turn our attention to the product of i,2(G) and i.2(G).

Theorem 29 For any graph G with p(G) = p,

i12(G)ira(G) < 2 3”":; 2p+1)

Proof. Since i,2(G) < § + 2, and according to Corollary 6, we conclude
that

ir2(G)ir2(@) < (n = (p — 1)8)(6 +2)

< max(n — (p -~ 1)8)(0 +2) = (n+3p)(n+20+1)

4p

We finish by mentioning some open questions.

1. Characterize graphs achieving equality in bounds of Theorem 22.

2. Is there a polynomial algorithm for computing i, for trees?
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3. Determine i2(G) for every grid graph G = P,,0P,7
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