Decompositions of K, into four kinds of
graphs with eight vertices and eight edges
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Abstract. Let K, be the complete graph with v vertices. Let
G be a finite simple graph. A G-decomposition of K,,, denoted
by (v,G,1)-GD, is a pair (X, B), where X is the vertex set
of K, and B is a collection of subgraphs of K,,, called blocks,
such that each block is isomorphic to G. In this paper, the
discussed graphs are G;,i = 1,2, 3,4, where G; are four kinds
of graphs with eight vertices and eight edges. We obtain the
existence spectrum of (v,G;,1)-GD.

Keywords: G-decomposition; G-holey design; G-incomplete ho-
ley design.

1 Introduction

Let G be a finite simple graph. Let X be a set of v vertices and G =
{X1,X2,---,X:} be a partition of X. Denote |X;| =n; for 1 <i <t. Let
K, ng,-,n, denote the complete multigraph on the set X which partition
G. For any given graph G, if the edges of Ky, n,,....n, can be decom-
posed into edge-disjoint subgraphs A, each of which is isomorphic to G
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and is called a block, then the system (X, G, A) is called a holey G-design,
denoted by G-HD(T), where T = n}n}---n} is the type of the holey G-
design. Usually, the type is denoted by exponential form, for example,
the type 11273% ... denotes i occurrences of 1, r occurrences of 2, etc. A
G-IHD(hy, he; w) is a pair ((Hy, He, W), A), where A is a collection of sub-
graphs in H, |J Ha|JW, called blocks, such that each block is isomorphic
to G and any two distinct vertices z,y are jointed in

exactly one block of A if z,y€ Hyorz,y€ Hyorz € Hy|JH,,ye W
no block of A otherwise

A G-decomposition of K,, denoted by (v,G,1)-GD, is a pair (X, B),
where X is the vertex set of K, and B is a collection of subgraphs of K,,

called blocks, such that each block is isomorphic to G. It is well known that
if there exists a (v, G, 1)-GD, then

v(v — 1) = 0 (mod 2¢(G)) and v —1=0 (mod d),

where e(G) denotes the number of edges in G and d is the greatest common
divisor of the degrees of the vertices of G. For the path Py and the star
K, x, the existence problems of their graph designs have been solved (see
[1] and [2]). For the graphs which have four vertices or less, the problem of
their graph designs has already been solved (see [3]). For some graphs with
less vertices and less edges, the problem of their graph designs has already
been researched (see [4]-[12]).

In this paper, the discussed graphs are G; (i = 1,2, 3,4), where G; are
four kinds of graphs with eight vertices and eight edges, they are listed as

follows. h
f b b S b f
c g C h_ ¢ C ¢~ 9 h
h g , g .
[ e d € e
G Gs Gs G4

For convenience, the graphs G;-G, above are denoted by (a, b, ¢,d, e, f, g, h).

we obtain the existence spectrum of (v,G;,1)-GD.
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2 General structures

Theorem 2.1 Let G be a simple graph. For positive integers h,w and t,
if there erist G-HD(h**!), G-IHD(h,h;w) and (h + w,G,1)-GD, then
((2t + 1)h + w,G,1)-GD exists.

Proof. Let X = (Zx x Z3t+1) JW, where |W| = w. Suppose there exist
G-HD(h?*+1) = (Z), x Zas41,A),
G-THD(h, h;w) = ((Zn x {2i}, Zpn x {2i +1}, W), B;) for 0 < i <t -1,
and
(h+wGl) = ((Zn x {2t}))UW,C),
then (X, A[J( U B; )UC) forms a ((2t + 1)h + w,G,1)-GD. In fact, we

have

2t+1yp2 t(2hwith(h—1 wih (2l+l)h+w
AL+ 218 + [0 = G 4 samerpony o C2) (2200,

The necessary conditions for the existence of (v, G;,1)-G D are v(v—1) =
0 (mod 16) and v > 16, i.e., v = 0,1 (mod 16) and v > 16. So by Theorem
2.1, we only need to give the constructions of HD,JHD and GD for the

orders given in the following table.
(Table 2.1) For G;,i=1,2,3,4

v(mod 16) | HD | IHD | GD
0 8%+ 1 (8,8,8) | 16
1 g2+l | (8:8;,9) [ 17

3 Holey designs

A quasigroup is an ordered pair (Q,-), which is a set Q with a binary
operation - such that the equations a-z = b and y - @ = b are uniquely
solvable for every pair of elements a,b in Q. It is well known that the
multiplication table of a quasigroup is equivalent with a Latin square. A
quasigroup is said to be idempotent (or symmetric) if the identity z-z = =
(or z-y =y-x) holds for all x € @ (or z,y € Q). It is well known that

there exists an idempotent quasigroup of order v if and only if v # 2 and
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there exists an idempotent symmetric quasigroup of order v if and only if
v is odd.

Suppose (I, -) is an idempotent symmetric quasigroup on the set I, =
{1,2,---,n}. Now, let’s construct a G-H D(e™), where e = |E(G)|. Let the
element set be Z. x I, and the automorphism group of the block set be
Z.. It is enough to construct a base block for any ¢,j € I, and i < j. In
a base block of a G-H D(e™), all edges can be partitioned into three types:
{(z,3), (x+d,5)}, {(z,%),(x+d,i-5)} and {(z,¢:j),(z+d,7)}, denoted by
d(i,7),d(3,i- j) and d(i - §, 7) briefly, where x € Z, %,j € I,,. We have the

following Lemma.

Lemma 3.1 ) Let n be odd and (I,,,-) be an idempotent symmetric quasi-
group on the set I, = {1,2,.--,n}. The block set A = {A;; : i,j €
I, and i < j} can be taken as a base of a G-HD(e™) if and only if the
following conditions hold,

(1) For any given block A;,j in A, the differences d(i,-5) and —d(i- 3, 7)
both appear or not in A, ;;

(2) {d: 3d(i,5)}U{d : 3d(i,i- 5)}UH{d : 3d(i - j,5)} = Z..

Lemma 3.2 There erists a G-HD(8%%!) for k=1,2,3,4 and t > 0.

Proof. The number of the edges of G is 8. Suppose (I2:41,-) is an
idempotent symmetric quasigroup on the set I5;; = {1,2,---,2¢t+1}. Let
X = Zg x Iy and
= (04,2;.5,34,645,44,3:.5,0:,75.5),
(04,24.5,35,64.5, 44,04, 755, 75),
(04,44, 655,34, 245,04, 35,5, 75),

By = (05,2:.5,3i,64.5,4:,0,3:.5,4;),
where 1 < < j < 2t + 1. We can verify that each B, mod (8, —) gives the
expected G-H D(8%+!) by Lemma 3.1 for k = 1,2,3,4. 0

B, 2
B, 2
B3

4 Incomplete holey designs

Lemma 4.1 There exist G\-IHD(8,8;w) for w =8,9.
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Proof. Let X = Zg|JZg|UW, where W = {a;,a5, -

“yay} and G-

THD(8,8; w)=((Zs, Zg, W), B), where |B| = 7+ 2w. The family B consists

of the following blocks.

w=8§:
((11 ’ O’ 41 az, 59

g 3315)!
(0,4,(_),2 1 3 1, 6, )
(a7,0 03,2 3 5 (_)

6
5),

(1, as,0,as,5, a3,a6,6)
(3 az, 1, a7a4 0,5,7 ae))

(3,as,4,a4,2,7,6,0,),

(?, a6, ov Qy4, 3! 61 az, 7)’
(71 ae, 71 as, i, aq, ﬁa as),

w=09:

(a1,2,1,0,5,3,4,7),
(a4,7,6,a1,3,0,51,§),
(0.7,7 (13,4 7 6 i 5),
(0 a7,4 5 ag,ag,ﬁ as),
(3,a7,6,0,ag,as,as,2),
(6,as,3,6,a0,3,4,5),

(1 a2,6 7 ag,a5,3 2)
4,a,,2,3, a.s,a-,v,a;,,l)
(7 a9, 0, 3,5, ag,a4,1)

(0.2, 1,01,1,0,7,‘1,2),
(as,0,2,a2,6,7,4,86),
(4 a7,6 a2,3 al,ag,ﬁ)
(2,as,5,a1,6,5,a3,a7),
(6 0 a3,1 as,a1,2 7),
(4,a4,7,as,6,a1,1, as),
(5 a4:2 aﬁ)o a3sa8$4)1
(6 0.6,6 a7,7 a3, 5)

(a2,0,01,1,6,3,6,5),
((15,6,0.1,7,0,5, 1)7)a
(asy 6,5,09, ‘112’ 716)9
(1,&4,5,‘1,02,01,4, a7)a
(4sa21771)a61 310'8’2)’
(7 2 a5,4 ag,a3,a6,3)
(2,04,6,2,07,a8,02,7),
(5 as, 70 0.6,6 as,al)

(a3, 2, a, 0, .";, 6 s ‘-l),
(as,4,5,0,3,1,5,4),
(6: as, 7’ ia Zla as, ia G)r
(ag, ga 5: 7’ a? 51 3’ 2)»

(la 4» 7& ag, 5a as, 67 3 )
(21 57 a4, 1’ az,ae, 1) 4)7
(7» 2s 0'513:0'770'1:07 1):

(03,0,2,02,3,6,5, 5)3
(05,1,03,4_1, 7, 5,6, Q),
(0.9,5, Ga ay, iv 113’ 5)7
(2 a3,1 3 as,a4,ag,5),
(5,a4,4,0,3,a2,1,a7),
(0 a3,5 7 a5,a1,4 7)
(3 0.7,6 1 08,4 09,7)

]

Lemma 4.2 There exist Go-ITHD(8,8;w) for w = 8,9.

Proof. Let X = Zg\JZs|UW, where W = {a1,az, -

,aw} and Ga-

THD(8,8;,w)=((Zs, Zs, W), B), where |B| = 7+ 2w. The family B consists

of the following blocks.

w=8:

(1 01,4750.4, ,()

(4,a3,0,3,as,6,0,2),

(7 1 0.3,5 aSaalaaSsaG)s

(3 aG,O 0.2, N 4 5)

(6 07,3 (12,5 as, ag, 7)!

w=79:

(ag,i 6 a.4, 7 0 i)
(as, 5, as,4, 2 3, ? a4 4),
(as,O 0,5,0 3 5 1),

(2,a2,4,a7,1, 01,0813)1

(5 3 a3,6 02,2 az, )a

(1 4 0'152 06,02,07,6),

(4 7 a3,5 0.4,2 0 1)
(7 as,O 03,6 3 0 1)
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(a3,3 2 as, I 2 ),
(06,6 0 az, ‘—1 2 1),
(0 2 0.4,4 1 6 Qe, ),
(3,a4,0,5,4,2,a6,6),
(6,7,3,a1,5,as,as,a3),
(Qa 5’ i,a1,7,a4,ﬁ, g))
(5,05,1,08,&,0,7,33),

4
7,



(a1,5 0 6 7 6 5 a4)

(a,4,4 a1,2,1,1,6,0),

(a7,6,a4,0,1,7,4,as),
(O (11,0 2 0.5,3 a3,6)
(3 a4,3 1 a3,a1,0.7,5)
(6 1 ag,O a5,3 4 ag)
(1,07,2 4 a'830'21 O)a
(1,3 0 1 a1,05,7 a7)
(7,0,a4,7,0a2,2,a3,5).

((12, 6’ 5’ 3: 27 6: 4! 0'7)1
(a51 3’ a, 5, 79 5) i’ 4)a
(as,5,as,1,3,7,5, 6),
(1,02, 61 §7a'laa314a 5)’
(41 as, 2a 6, as,0a2,as, 6)1
(7, 0, as, 2: az, 4, 5) 02),
(it as, 77 39 5’0'6) as, 6))
(Sa iy ag, 61 as, Zi’ Qg, 7)’

(0.3,7 1 2 4 3 6 ag)
(05,7 a4,2 3 3 2 al)
(09,4 as,l 5 6 7 a3)
(2,a3,0,4,04,a1,7,5),
(5,2,0.9,5,(17,4,(16,0),
(0 as,i 71 a7,a9,6 7)
(3, a0, 3,7, a5,a2,a3,4)
(6 2 ag,O a6,7 4 0,2)
(]

Lemma 4.3 There exist G3-IHD(8,8;w) for w = 8,9.

Proof. Let X =

Zg\UZg\UW, where W = {aj,ay,--

@y} and Gs-

THD(8,8;w)=((Zs, Zs, W), B), where |B| = 7+ 2w. The family B consists

of the following blocks.
w =8

(ah 2) 09 as, 57 ia 3’7))
(a41 3,5,0.7, 2101 67 (12),
(a7,§) Q,asn’?a 17 6’ 6)1
(i’ﬁy alaé, 5,(15,‘-1,0),
(2141 04,0,1, 0,7, §)a
(0 6 a7,7 08,3 4, 5),
(7,as,4,a3,4, 04,01, 07),
(2 0,6,3 05,6 07,04,03)

w=9:
(0.1,3,6, 6) 510$ 5,09),
(04,6,7,08,0,5, 6,4),
(a7$6111a1)3’ia6va4))
(0,a3,3,6,4,7,a9,1),
(3 a4,7 1 ag,O as, 6)
(6 as, s, 1, a2’a51a917)1
(1,2, a7,2,a9,03,3,4),
( alal 6 a5,0 a7)a4)
(

1
7 0'5,3 0'771)

,a3,4

(0,2, 1! 3,a1,§,6,6,a5),
(05,2,3,(17,6, 470:‘1'3)1
(03,3, 7,0,3,(-), 5, Z, (13),
(1 7 az,i ag,as,a1,3)
(l 6 a5,5 4 a4,a6,5),

(4,6, as,3, a2, a7, ag, 2),

(5, a4,6,7,4,a5,3,0),
(3’ 63 51 az, a! 61 i, §)

(a2a§ ai, 7 ) 1a,4)1
(0,5,0 0,2,— 3 7),
(08,7 a3,2 6 5 é :-3)

(1 2 0.4,4 ag,a5,0.7,4),
(4’ 7: 05,5,06,3, a8a0)7
(7,&6,6,0,&7,02,3,01),
(§ 6, aa,i 0, 5,a4,2)

1,5
5,1,4

(a3,6,2,5,1,2,1,as),
(06,3 4 a1,6 5 7 0.3),
(0 a2,6 7 5 az7,06, ),
(‘-1:6)0'3,21016;??‘111 )
(7,5,0&1,?,(12,3 6)
(5,a4,1,7,01,03,6,0a7),
(6,a8,7,0a4,4,1,0a3,0),

)

(03,4 a9’-
(06,2 0, as,
(a915 2,a;5,7
(2,0.2,4,1 05,7 3 5),
(5,0,06,5,&7,3, 6171),
(G a415 3 a81alaa6»a3)7

WO}I

Lemma 4.4 There exist G4-IHD(8,8;w) for w=28,9.

Proof. Proof. Let X = Zg|J Zg|JW, where W = {a;,ay, -
Go-THD(8, 8;w)=((Zs, Za,

W), B), where |B|

consists of the following blocks.
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(3 a7a 04,0.2,0.5,&_3)
(6 a6’ a'9’4 02,01,0)
0
", 04} and

= 7+ 2w. The family B



w=_§:
(01,5,3,0.3,0, 7, 7,0,4), (a2,5 6 al, 0 ﬁ as), ((13,7, 4, a8,6,§,0,a7),
(a4,2,a3,1,3,1,6,5), (as,7,a2,6,1,1,6,4), (as,2,4,01,4,5,0,7),
(a7,3,4,a2,2,1,4,0a3), (as,4,5,01,1,1,2,3), (0,3,a2,2,as,1,5,a4),
(1 a2,3 a5,7 a3,a6,3) (2 6 a7,3 al,a3,0 4) (3,a5,0,a6,6,7,1,5),
(4 5 a3,6 a4,a6,a2,7), (5 2 1,4, 05,03,02,6 ) (6 0 a4,2 a5,7 4 3)
(7,06,6,7,a8,2,5,a7), (1 a4,3,a8,5,a7,7, 2) (2 az, 5,0, al,l 3, as),
(g, 6,2,0.5,7, 03,a1,6), (4 2 ag,O a7,0 a3,5) (5 2 0 1 a6,7 0,5,4),
(6,1,4,a4,0,a7,03,7), (7,04,5,3,0,4,a7,7).

w=09
(@1,4,0,1,6,7,1,7), (a2,1,a1,3,7,3,4,a3), (a3,1,0,4,3,4,0,ar),
(04,6,01,3, 7, 3,5, 7), (a5,0 a3,2,0, ag), (as,ﬁ,ag,i, 4-1,1,(_), :-3),
(0,7, 3,0'31 61 2a 5» Saﬁ)a (asvl 0'71 7 6’ 4a 04), (07 aq, ly 5,02,09,&8, 5):
(1,&3,7,2,(15,0,9,4,&4), (2 0.4,2 0 02,01,09,3), (3a061 7,0,6,(12, 1, 2):
(4’ a’8a3!0, 5: 2a 0,2,6), (5a al,‘_1557a'6?a'5:3, 4)1 (Ga ag, 2, 3) 0'510'9175 1)1
(7,a7,7,6,a9,as,0as5,5), (0,a1,5,6,a7,as,7,a3), (1,a4,7,4,a7,3,0a2,7),
(2)51 i7é9gaalaa81 5): (3,06,4, 6,0:7,5,08,I), (‘—1 6 a37§ a51a7aa9a§)
(5,a4,6,5,a3,a2,a9,2), (6,0,a4,3,as,2,a6,0), (7,4,1,2,as,5,a1,0),
(ag, 1,06,2,5,0,4, 0.5). O

5 Graph designs

Lemma 5.1 There exist (v,G1,1) for v =16,17.

Proof. v=16: X = Z;5|J{o} (0,1,3,6,10,00,9,7) mod 15
v=17: X = Z) 0,1,3,6,10,5,8,11) mod 17 a

Theorem 5.2 There exist (v,G1,1) if and only if v(v—1) =0 (mod 16)
and v > 16.

Proof. By Theorem 2.1, Lemma 3.2, Lemma 4.1 and Lemma. 5.1. 0
Lemma 5.3 There exist (v,Gg, 1) for v=16,17.

Proof. v=16: X = Z;5|J{c0} (0,1,3,6,10,9,7,00) mod 15
v=17. X = Z;7 (0,1,3,6,10,5,11,9) mod 17 a

Theorem 5.4 There exist (v,Gs,1) if and only if v(v — 1) = 0 (mod 16)
and v > 16.
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Proof. By Theorem 2.1, Lemma 3.2, Lemma 4.2 and Lemma 5.3. a
Lemma 5.5 There exist (v,Gs,1) for v=16,17.

Proof. v = 16: X = Z;5|J{o0} (0,1,3,6,10,9,7,00) mod 15
v=17: X =Z17  (0,1,3,6,10,9,11,8) mod 17 o

Theorem 5.6 There exist (v,Gs, 1) if and only if v(v—1) =0 (mod 16)
and v > 16.

Proof. By Theorem 2.1, Lemma 3.2, Lemma 4.3 and Lemma 5.5. ]
Lemma 5.7 There exist (v,Gy,1) for v=16,17 .

Proof. v =16: X = Z;5|J{cc} (0,1,3,6,10,7,9, 00) mod 15
v=17. X =217 (0,1,3,6,10,8,5,11) mod 17 (]

Theorem 5.8 There exist (v,G4,1) if and only if v(v—1) =0 (mod 16)
and v > 16.

Proof. By Theorem 2.1, Lemma 3.2, Lemma 4.4 and Lemma 5.7. O
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