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ABSTRACT. For the Firefighter Process with weights on the vertices,
we show that the problem of deciding whether a subset of vertices
of a total weight can be saved from burning remains NP-complete
when restricted to binary trees. In addition, we show that a greedy
algorithm that defends the vertex of highest degree adjacent to a
burning vertex is not an e—approzimation algorithm for any ¢ € (0, 1)
for the problem of determining the maximum weight that can be
saved. This closes an open problem posed by MacGillivray and Wang.

1. INTRODUCTION

We consider the following discrete-time process: at t = 0 some vertex
of a simple graph begins burning. At each subsequent timestep we defend
a vertex from burning and the fire spreads from all burning vertices to all
undefended neighbours. This process was originally introduced by Hartnell
[4] at the 25th Manitoba Conference on Combinatorial Mathematics and
Computing at the University of Manitoba in 1995. In 2009, MacGillivray
and Finbow published a survey on the results to date |[3].

A first question to ask about this process is given a graph and a vertex,
if the fire starts at that vertex, how many of the vertices can be prevented
from burning. The problem of deciding whether a given quantity of ver-
tices can be saved is NP-complete even when restricted to graphs with
maximum degree three [6]. Consequently, algorithms which approximate
the maximum number of vertices that can be saved are of particular in-
terest. In [5] Hartnell and Li prove the existence of a 3 — approzimation
algorithm for this quantity for trees.

In [7], MacGillivray and Wang examine a greedy algorithm for trees,
which defends the vertex of highest degree adjacent to a burning vertex.
They leave open the existence of an € € (0,1] such that this algorithm is
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an € — approzimation algorithm for the maximum number of vertices that
can saved. We will show that no such ¢ exists.

In addition to examining approximation algorithms, we will consider the
generalisation of the problem of deciding the maximum number of vertices
that can be saved formed by introducing weights on the vertices. This
generalisation was among the open problems listed in [3]. It is known that
the problem of deciding whether a given quantity of vertices can be saved,
named FIREFIGHTER, is NP-complete even when restricted to trees with
maximum degree three. The problem can be solved in polynomial time for
graphs of maximum degree three in which the fire breaks out at a vertex of
degree two [6]. On the other hand, the problem of determining whether a
given set of vertices can be saved, named SFIRE, is NP-complete even when
restricted to graphs of maximum degree three when the fire breaks out at a
vertex of degree two [2]. We will show that when a weight is given to each
of the vertices, the problem of determining whether a subset of vertices of
a total weight can be saved, named WFIRE, is NP-complete even when
restricted to binary trees.

2. PRELIMINARIES AND DEFINITIONS

If G is a graph and r € V, we call the ordered pair (G,r), a rooted
graph and r the root. This will often be shortened to a rooted graph (G,r).
Consider a rooted graph (G,r). The firefighter process proceeds as follows:
At time t = 0 a fire breaks out at r. At each subsequent timestep, one
unburned vertex of G may be defended from burning and the fire spreads
to each undefended vertex adjacent to a burning vertex. Once a vertex is
defended it remains defended for the remainder of the process. Similarly,
once a vertex is burning it remains burning for the remainder of the process.
The process ends when every burning vertex has all of its neighbours either
burning or defended. At the conclusion of the process any vertex that is
neither burned nor defended is called protected. Together, the defended
and the protected vertices are the saved vertices. We define MV S(G,r) as
the maximum number of vertices that can be saved. We call the sequence
of defended vertices D = (dy,ds,...,d;), where d; is defended at time i, a
strategy.

Following [3], we can consider any time in the process as the start of a
new process on a reduced graph. For example, consider the process on the
first graph shown in Figure 1. The second graph in this figure shows the
state of the process after defending x and y in the first two timesteps. At
this point, if we delete all the vertices that have been defended, as well as
those that can never burn, and identify all vertices that are burning in to
a single vertex, we have a smaller graph and a single burning vertex. We
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may consider this a new rooted graph. This is the third graph shown in the
figure. We will denote the new rooted graph formed in this manner after
time k as (G*,r*)

For a rooted graph (G, r) and a weight function w : V(G) — Z we define
MVS,(G,r) to be the maximum sum of the weights of a subset of vertices
that can be saved and b2 the sum of the weights of the burned vertices under
a particular strategy, D. Following [3], we define the Weighted Firefighter
Decision Problem as follows:

WFIRE

INSTANCE: A rooted graph (G,r), an integer k£ and a weight function
w:V(G)— Z.

QUESTION: Is MVS,(G,r) > k? That is, is there a strategy D =
(d1,da,...,d:) such that if the fire breaks out at r, then

o after time ¢ no undefended vertex is adjacent to a burning vertex,
and

¢ the sum of the weights of the non-burning vertices after time ¢ is
at least k7

In addition to Weighted Firefighter Decision Problem we also consider
the Weighted Firefighter Optimization Problem:

OPT-WFIRE

INSTANCE: A rooted graph (G, ), and a weight function w : V(G) — Z.
PROBLEM: Over all strategies D = (d;,d2,...,d:), such that if the fire
breaks out at r, where
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e after time ¢ no undefended vertex is adjacent to a burning vertex,

MAXIMISE: ¥, w(v) — b2,

This definition of WFIRE allows us to frame the problem of deciding
whether a given number of vertices can be saved as an instance of WFIRE.
For a rooted graph (G, r), consider a weight function which assigns weight
1 to each of the vertices. If the answer is yes for WFIRE the answer for
the corresponding instance of FIREFIGHTER must also be yes. This gives
directly that WFIRE is NP-complete, even when restricted to graphs with
maximum degree three (see [3]).

3. GREEDY STRATEGIES FOR THE WEIGHTED FIREFIGHTER PROBLEM

Since the problem of deciding whether a given number of vertices can
be saved can be represented as an instance of WFIRE, we will consider the
problem of trying to approximate MV S, (T,r)

In [7] MacGillivray and Wang examine the Degree Greedy Algorithm.
This algorithm defends, at each step, the vertex of highest degree adjacent
to a burning vertex. They show that this strategy finds an optimum solution
for caterpillars, but not for arbitrary trees. They leave open the existence
of a constant ¢ € (0, 1] such that the algorithm saves at least ¢ - MV S(T, 1)
vertices [7]. Here we show that such a constant does not exist.

Theorem 3.1. If Greedyqs(T,r) denotes the sum of weight of vertices saved
using the Degree Greedy Algorithm, then there is no c € (0,1] such that for
all rooted trees (T',7)

Greedyqy(T,r) 2 c- MV S,,(T,7).

Proof. Let J be a full and complete binary tree of height k rooted at v.
Let Pi be the path of length k with vertex sequence zo,z;,...,2;. For
0 <i <k, let S; be a copy of the star K 3 with centre vertex w;. Construct
a tree Ty with 25t1 4 5k — 1 vertices by joining z¢ to v, and z; to w; for
all ¢ < k. (See Figure 2)

Consider OPT-WFIRE on (T}, zo) where w(u) =1 for all u € V. With
strategy D = (v, z2, z1) a total weight of 9 burns. This strategy is optimal
for k > 4. Thus MV S,(Tk,r) = 25*! 4 5k — 10. The Degree Greedy
Algorithm yields the strategy D' = (wo,wy, ..., w;). Under D’ every vertex
of J will burn along with every vertex on P. Thus Greedyq(Ty, ) = 4k.

i Greedva(Tr) _ 4k

O MVS(Tor) — Ar% P 5 5k—10 =
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There is no ¢ € (0, 1] such that the Degree Greedy Algorithm saves at
least ¢ - MV S,,(T,r) vertices. O

Corollary 3.2. For any ¢ > 0, the Degree Greedy Algorithm is not an € -
approzimation algorithm for OPT-WFIRE.

This closes the problem posed by MacGillivray and Wang in [7].

In [5], Hartnell and Li discuss a greedy algorithm for trees that defends
the vertex adjacent to the fire with the most successors. This algorithm,
the Weighted Greedy Algorithm, is a % — approrimation algorithm for the
problem of determining the maximum number of vertices that can be saved
[5]. Modifying the algorithm to defend the vertex whose defence would save
a subset of vertices with the greatest total weight yield a % —approzimation
algorithm for OPT-WFIRE. This can be shown using the same argument
as in [5] with minor variations to account for the weights.
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Theorem 3.3. If Greedy,, (T, r) denotes the number of vertices saved using
the Weighted Greedy Algorithm, then

Greedy,(T,r)

S MVS(T.r)

1
2

That is, the Weighted Greedy Algorithm is a %-approzimation algorithm
for OPT-WFIRE on trees.

4. COMPLEXITY RESULTS FOR THE WEIGHTED FIREFIGHTER PROBLEM

We turn now to complexity results for the Weighted Firefighter Problem.
For FIREFIGHTER, a sharp dividing line exists based on maximum degree
of the graph and the degree of the root. However this is not the same when
we consider the problem of deciding whether a given set of vertices can be
saved from burning.

Following [3], we define the problem of deciding whether a given set of
vertices can be saved as follows:

SFIRE

INSTANCE: A rooted graph (G,r) and a subset S C V(G) — {r}.
QUESTION: If the fire breaks out at r, is there a strategy under which no
vertices in S burn? That is, does there exist a strategy D = (d;,do,...,d;)
such that if the fire breaks out at r, then

e after time t no undefended vertex is adjacent to a burning vertex,
and
e no vertex in S is burned after time 7

Theorem 4.1. 2] SFIRE is NP-complete even when restricted to graphs
with mazimum degree three where the fire starts at a vertex of degree two.
The problem is in P when restricted to binary trees.

As we saw in Section 2, we can use WFIRE to represent an instance
of FIREFIGHTER by setting all weights to 1. Similarly, we can also use
WFIRE to represent an instance of SFIRE. For an instance of SFIRE on
(G, r) with set S we can form an instance of WFIRE on (G, r) where

and by setting k = || [3].

Using this method represent an instance of SFIRE as an instance of
WFIRE, we are able to gain a further complexity results for WFIRE.
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Corollary 4.2. WFIRE is NP-complete even when restricted to graphs
with marimum degree three rooted at a vertex of degree two.

Proof. An instance of SFIRE on (G, r) with set S can be expressed as an
instance of WFIRE. SFIRE is NP-complete even when restricted to graphs
with maximum degree three rooted at a vertex of degree two [2]. Therefore
WFIRE is NP-complete by restriction. O

Since SFIRE can be decided in polynomial time for binary trees, we will
consider the restricion of WFIRE to binary trees. The restriction of SFIRE
to binary trees requires that we only consider sets S where S is the leaves
of the tree. Surprisingly, knowing when the leaves of an arbitary tree can
be saved helps us establish a complexity result for WFIRE on binary trees.
To that end, we consider the following decision problem:

3FLFIRE

INSTANCE: A rooted tree (T,7) with A(T) < 3.

QUESTION: If the fire breaks out at r, is there a strategy under which no
leaf of T burns? That is, does there exist a strategy D = (d;,ds,...,d;)
such that if the fire breaks out at r, then

e after time ¢ no undefended vertex is adjacent to a burning vertex,
and
e no leaf in T is burned after time ¢.

Theorem 4.3. [6] 3FLFIRE is NP-complete.
Theorem 4.4. The restriction of WFIRE to binary trees is NP-complete.

Proof. The problem is clearly in NP. The transformation is from 3FLFIRE.
Suppose an instance of 3FLFIRE, a rooted tree (I/,r') with deg(r) = 3,
is given. We construct an instance (T',7) of WFIRE, in which (T,7) is a
binary tree, as follows.

Let G be the binary tree shown in Figure 3. Suppose that the three
neighbours of ' in T' are v/,v' and w'. Delete 7/, and identify «’,v' and
w’ with the vertices u,v and w of G. This completes the construction of
(T, ), which is a binary tree. We complete the transformation by defining
the weight function w : V(T') — {—1,0,1} and integer k. Let L be the set
of leaves of T'. Set w(y) = w(z) = -1, w(a) =1foralla € L, and w(a) =0
otherwise. Finally set k = |L|+1. The transformation can be accomplished
in polynomial time.
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FIGURE 3

Note that in order to save a set of vertices of total weight at least k,
the total weight of the burning vertices cannot exceed —2. For this to be
possible, both ¥ and z must burn and z must be saved.

Suppose there is a strategy, D, for WFIRE on (T',r) under which the
total weight of the burning vertices is at most —2. Since both y and z must
burn, we must have d, = z, or d; € {u,v,w} and d; = z. In the first case,
the instance (T, r!) is equivalent to an instance of 3FLFIRE on (T7,r).
In the second case, the instance (7'2,72) is equivalent to an instance of
3FLFIRE on (T’,7') after one of u/,v' or w' have been defended. Since
the total weight of the burned vertices is —2, D must save all leaves of T".
Hence there is a strategy for 3FLFIRE on (7”,r’) under which all leaves
are saved.

Now suppose there is a strategy, D’ = (d},d5,...,d}), for 3FLFIRE on
(T",7') under which all leaves are saved. Consider now applying the the
strategy D = (z,d},db,...,d}) to (T,r). We see that b2 < —2, as required.

Therefore, the restriction of WFIRE to binary trees is NP-complete. O

We notice that the construction in the above proof relies on vertices
whose weight is negative. In such a scenario it is possible that when try-
ing to maximise the weight of the saved vertices it becomes advantageous
to have some vertices burn (particularly, negatively weighted ones). By
removing this possibility (i.e., by restricting to non-negative weights), the
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problem can be solved in polynomial time. This result was discovered in-
dependently by Bazgan, Chopin and Ries in their work on the Firefighter
Problem on Trees using more than one firefighter [1].

Theorem 4.5. WFIRE is in P when restricted to binary trees and non-
negative weights

Proof. For binary tree (T, r) with non-negative weights on the vertices there
exists a strategy D that realises MV S,, (T, r) for which each vertex of D will
be adjacent to a burning vertex [3]). As such, at most one new vertex will
burn at each timestep. Thus the process will end when a newly burning
vertex is either leaf or a vertex of degree two. Let F be the set of such
vertices. Let P, = rvyvyvs...vpu be the path from 7 to v on T and let

w(Py) = Y, ep, w(z). Therefore

MV S,(T,r) = minyep{P,}.
a

Given the relationship between SFIRE and WFIRE it is unsurprising
that even when restricting to trees with maximum degree three rooted at
a vertex of degree two, WFIRE remains NP-complete. There is a trend to
be observed here: restriction of these problems to instances for which the
degree of the fire is guaranteed to not exceed two seem to be in P. On the
other hand, restriction to instances for which the degree of the fire may
exceed two seem to be NP-complete.
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