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Abstract

We call T = (Gi1,G2,G3) a graph-triple of order t if the G;
are pairwise non-isomorphic graphs on ¢ non-isolated vertices whose
edges can be combined to form K.. If m > t, we say T divides
K if E(K,,) can be partitioned into copies of the graphs in T
with each G; used at least once, and we call such a partition a T-
maultidecomposition. For each graph-triple T of order 6 for which it
was not previously known, we determine all K,,, m > 6, that admit
a T-multidecomposition. Moreover, we determine maximum multi-
packings and minimum multicoverings when K,, does not admit a
multidecomposition.

1 Introduction

The graph decomposition problem, in which the edges of a graph are de-
composed into copies of a fixed subgraph, has been widely studied (see
[BHRS80}, [BS77], and [Kot65]). In [ADO03], A. Abueida and M. Daven ap-
proach this problem from the perspective of graph-pairs. Specifically, they
decompose the edges of K; for ¢t = 4,5 into nonisomorphic graphs G; and
G2, and then determine complete graphs K, with m >t whose edges can
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be partitioned into copies of G; and G; using at least one copy of each
graph. In [ADRO5], Abueida, Daven and K. Roblee prove similar results
for AK,,.

Our work here is a continuation of the work done on multidesigns
of graph-triples in [ADD*06]. A graph-triple of order t is some T =
{G1,G2,G3} where G;, G2, and G3 are pairwise non-isomorphic subgraphs
of K; without isolated vertices whose edges partition E(K;). A T-multidesign
of K, with m >t can have three forms. A T-multidecomposition is a par-
tition of E(K) into copies of the graphs of T' where each G; is used at
least once. In this case, we also say that T divides K,, or that T factors
K.n. In the case that a T-multidecomposition does not exist, a maxi-
mum T-multipacking is a partitioning of a subset of E(K,,) into copies of
graphs in T, where each G; is used at least once, such that the number
of edges outside the partition (called the leave) is minimum. A minimum
T-multicovering is a collection of copies of graphs in T, where each G; is
used at least once, such that all edges of K,, are used once or twice and
where the number of edges used twice (called the padding) is minimum. In
[ADD*06], the authors constructed all 131 graph-triples of order 6, which
are listed in Appendix B. They chose 37 of these graph-triples and deter-
mined multidesigns for all K,, with m > 6. In this paper, we determine
multidesigns of K,,,, m > 6, for the remaining graph-triples of order 6.

We list the graphs that are part of graph-triples of order 6 in Ap-
pendix A. We use the notation of [ADD*06], denoting the i** graph on 6
vertices with j edges and no isolated vertices with the notation H}. The
graphs are obtained from [HP73], where we remove graphs that cannot be
part of a graph-triple of order 6. Note that the vertices in Appendix A are
labeled a through f. If vx € V(Ky,) for k € {a,b,c,d,e, f}, we will denote
by [Va, Vb, Ve, Va, Ve, vf] the subgraph of K, isomorphic to H; in which each
v, plays the role of k. This will not be ambiguous as long as we specify Hf .

We write V(G) to denote the vertex set of G and deg(v) to denote the
degree of v € V(G). Further, A(G) = max{deg(v) : v € G}. We write
G1 U G3 to denote any graph whose edge set is partitioned by E(G;) and
E(G3), and we define kG; to be any graph whose edges can be partitioned
into k copies of G;. Note that G; U G2 and kG are not unique up to
isomorphism. For graphs G; and G5 with disjoint vertex sets, we define
G, + G5 to be the graph with vertex set V(G,) U V(G;) and edge set
E(G1)UE(G3). We let V(Ky,) = Zm, and for r < m, we consider Z, C Z,
in the natural way. Note that Z, induces a subgraph of K, isomorphic to
K,.
A technique that is frequently used in this paper to find multidesigns
is to find a way to write K., & |, Si, where each S; is a subgraph of
K,,. For each 1 < i < n, we find a T;-multidecomposition of S; for some
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T; € T. We can then combine these multidecompositions to form a 7T-
multidecomposition of K, as long as each graph in T is used in at least
one of the T;-multidecompositions. This gives us the following.

Lemma 1.1. Let m > 6, and let K,, & |J._,S;, where each S; is a
subgraph of K,,. Suppose also that T is a graph-triple of order 6 and that
T; CT for 1 <1 < nsuch that U?=1 T; =T. If T; divides S; for all %, then
T divides K,,,.

In particular, this can be used on the graph G, ,, = K, — K., where
V(Grm) = Zm, and we let the vertices from which the edges of K, are
removed be Z,. If m > 6, we have K, & Kg U G m. We can factor K
into any graph-triple of order 6, and so T divides Kg. Thus, if T! divides
Gg,m for any T’ C T, then T divides Ky,.

For other terminology used but not defined herein, see [BM79], [LR97].

2 Main Multidecomposition Result

The results in [ADD*06] determine multidesigns for all K,,,, m > 6, such
that at least one of the graphs in the graph-triple has either three or five
edges. This means that each of the remaining graph-triples of order 6 are
of the form (G1, Gz, H}), where {G1,G2} = {H],H}} or {H{,H}}. We
assume G; and G, satisfy the above throughout this paper. As suggested
by Lemma 1.1, and since each triple we study includes H for some k, it will
be helpful to find Hj-decompositions of certain subgraphs of Ky,, m > 6.

Lemma 2.1. We have the following H}-decompositions for ¢ € {1,2,3}.
1. H{ divides Ky 4, Ko, K34, K45, and K4 + K.
2. Hj divides K34, K44, K45, and Kgg.
3. H$ divides Ka4, K34, K45, and Kg 6.

Proof. For each of the following, we denote the partite sets of K, by
{a,b,c,...} and Z,,. We let V(K + K;) = Zs.
For (1), we have

Ky, = [0, ,1,2,b,3]U[0,b,1,2,a,3]
Ko =10,0,1,2,b,3]U[4,a,5,0,b,1) U [2,q,3,4,b, 5)
K342=(0,0,1,2,b,3]U[0,¢,1,2,a,3]U[0,b,1,2,¢,3]
K45 = [a,0,b,c,1,d|U[a,2,b,¢,3,d| U [a,4,b,¢,0,d]U[a,1,b,¢,2,d]
Ule,3,b,¢,4,d]
K4+ Ky42(0,1,2,4,5,6)U[0,3,1,4,7,5]U[0,2,3,4,6,7]
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For (2), we have

K; 4 %‘[0, a,1,b,2, C] U [a, 2,b,3,0, C] U [a, 3,¢,1,0, b]

K4 =[0,a,1,b,d,2] U [b,2,¢,3,d,1]U[3,d,0,b,¢,1] U [b, 3,0,2,¢,0]

K5 =[0,a,1,b,4,c]U[b,2,¢,3,d,1]U(3,d,4,e,0,b] U [c,0,d,2,b, 4]
ub3,a,2,¢1]

Kg6 =[0,a,1,b,2,e]U [b,2,¢,3, f,1]U[3,d,4,¢,2,a] U ¢, 5, f,0,a, 3]
uU[0,b,3,¢,5,d]U[e0,¢c1, f,3|U[1,4d,2, f,5,c U[f,4,q,5,d,0]
U l[s5,b4,¢c1,¢€

For (3), we have

K4 =(0,0,1,b,2,3]U[0,b,1,q,2, 3]

K3 4 =[0,a,1,b,3,2]U[0,b,1,¢,3,2) U [0,¢,1,a,3,2]

K45 =[a,0,b,4,d,c] U [a,1,b,0,d,c]U[a,2,b,1,d,c]U [a,3,b,2,d,c]
Ula,4,5,3,d,d]

Kg 6 =[0,a,1,2,b,3]U[0,b,1,2,a,3]|U[0,¢,1,2,d,3] U [0,d,1,2,¢,3]
u[0,e1,2, f,31U,f,1,2,e4U[a,4,b,3, f,c]U|a,5,b,4,d,¢]
Ule5,d,4,¢, f]

a
We use this result to find other graphs that each H} divides.
Lemma 2.2. Each of HY, i € {1,2,3}, divides K44, K¢, Ks s, and Kg.

Proof. Since K4,4 = 2K2,4, KG,G = 3K2,6, and Kg,g = 8K2’4 &= 4K4,4,
Lemma 2.1 implies that H} divides K44, Ke6, and Kgg. For Kg, we
look at i = 1,2,3 separately. For ¢ = 1, we have Kg = (K4 + Ky) U
K,4. Since Hf divides K4 + K4 and K44 by Lemma 2.1(1), it follows
that H{ divides K3. For i = 2, we begin with [1,0,4,5,6,7], [0,2,4,6,1, 3],
[0,3,4,7,5,6], and [3,2,1,4,5,7]. The remaining edges form K34, which
H} divides by Lemma 2.1(2). Thus, H} divides Kjg. Finally, for i = 3, we
begin with (0,4,1,5,6,2], [5,4,6,0,2,7], 0,1,2,6,7,3], and [0,3,2,5,7,4].
The remaining edges form K3 4. As in the i = 2 case, we get Hj divides
Ks. O

The following results determine all K,, with m > 6, m # 7,8 such
that T divides K,,,. We determine multidesigns for K7 and K3 in the next
section (Lemmas 3.2, 3.3, 3.4, and 3.5). The proofs here rely on many
results proved in Section 3. These include multidecompositions for K,,,
where m = 9, 10, 11, 13, and 15 (Lemmas 3.6, 3.8, 3.10, 3.11, and 3.12).

We consider the cases of m even and m odd separately.
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Lemma 2.3. Let T = (G1, G2, H?) be a graph-triple of order 6. Then T
divides K, for all m > 6, m even, and m # 8.

Proof. We first consider the case m = 0 (mod 6). Let m = 6k with k£ > 1.
The case k = 1 is trivial. If £ > 2, we have K, & kKgsU (’;)Ke,e- Trivially,
T divides Kg. Lemma 2.1 implies that H} divides Kg 6 for all i € {1,2,3}.
Lemma 1.1 then implies that T divides Kp,.

We next take on the case m = 2 (mod 6). Since m # 8, m = 6k + 2 for
some k > 2. If k = 2, we have

K112 KgUKg UKe,s =~ KeU Kg U4K3,4

Trivially, T divides Kg, and each H} divides both K by Lemma 2.2 and
K3 4 by Lemma 2.1. Thus, T divides K14. For the case k > 3, we have

K = K14 U Kg(i—2) U Kg(k—2),6 U Kg(k-2),8
~ Ky U (k —-2)Ke U (k - 2)K5,e U (216 - 4)K3,4

Note that T trivially divides K¢ and divides K4 by the k = 2 case. More-
over, each H{ divides both K¢ ¢ by Lemma 2.2 and K34 by Lemma 2.1.
Thus, T divides K,,.

The last case is when m = 4 (mod 6). We then have m = 6k + 4 for
some k > 1. The case k = 1 follows from Lemma 3.8. For k > 2, we have

K = KijoUKg(—1)UK10,6(k—1) = K10U(k—1)KeU(k—1)Kg sU(k—1)K46

Trivially, T divides Kg. In addition, T divides K)o by Lemma 3.8. By
Lemmas 2.2 and 2.1, H} divides both K¢ and K46 & 2K3 4. Therefore,
T divides K. O

Lemma 2.4. Let T' = (G1,G2, H}) be a graph-triple of order 6. Then T
divides K,,, for all m > 9 with m odd.

Proof. Since m is odd, we can write m = 8k + r, where r € {1,3,5,7}. We
then have Km = Kgyr U Kge—1) U (k — 1) K34y 8. We have that T divides
Kg,, by Lemmas 3.6, 3.10, 3.11, and 3.12. When k > 2, Lemma 2.2 implies
that H} divides Kgx—_1) 2 (k — 1)Ks. It then suffices to prove that H}
divides Kg.*.,-,g.

Note that Kog =2 6K3,, Ku,g =4K34U 2Ky 5, K138 = 2K3,4 U 4K4’5,
and K58 = 6K45. Thus, the edges of each Kg.,g can be decomposed
into copies of K34 and K45. By Lemma 2.1, Each H} with i € {1,2,3}
divides both K34 and K, 5. Thus, each H} divides Kg,,g. It follows that
T divides K. 0

Lemmas 2.3 and 2.4 can be summarized as follows.

Theorem 2.5. Let T' = (G, Gq, H}) be a graph-triple of order 6, where
1€ {1,2,3}, and let m € Z with m > 6, m # 7,8. Then T divides K.
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3 The Remaining Multidesigns

In this section, we determine multidesigns of K7, Kg, Ko, K19, K11, K13,
and K5 for all graph-triples of the form {Gy, G2, H!}. We begin with K
and graph-triples that do not result in multidecompositions.

Lemma 3.1. Let T = {H}, H?, H{}. If i € {1,8} or if
T € {{HS,H},H3}, {HS,, H2, H}}, then T does not divide K.

Proof. We begin with the case ¢ € {1,8}. Assume that T divides K7. The
T-multidecomposition of K7 must have two copies of H? and one copy
each of H? and H{. Furthermore, each vertex of Hf and H§ has degree
2. Thus, the degree sequence of Ky — 2H? is either (2,2,2,2,2,2,6) or
(2,2,2,2,2,4,4). We consider each of these cases in turn.

In the case that the degree sequence of K7 — 2H? is (2,2,2,2,2,2,6),
observe that the only Hf that appear in a graph-triple of order 6 with
either H or H{ are H}, H?, and HZ. Thus, A(H?) = 2. Furthermore,
only H{ and H} appear in graph-triples with H? and H§. Thus, the degree
sequence of H{ is (1,1,1,1,2,2) It follows that removing H} and H} takes
away at most 4 incident edges from the degree 6 vertex in K7 ~ 2H®. This
leaves a vertex of degree at least 2 in Ky —2Hf — H; — H}, a contradiction.

Next is the case that the degree sequence of K;—2H? is (2,2,2,2,2,4,4).
Since K7 — 2H? — H} = H? and H? has only 6 vertices, K7 — 2H} — H}
must have an isolated vertex. Recall that the degree sequence of H} is
(1,1,1,1,2,2). One of the degree 2 vertices in K7 — 2H? must then be a
degree 2 vertex in Hy. It follows that at most one of the two degree 4
vertices in K7 — 2H? can be a degree 2 vertex in H}. One of the degree 4
vertices in K7 — 2H? will then have degree 3 or 4 in K7 —2H? — H}, which
contradicts the fact that A(H) = 2.

The case T € {{HS, H3,H3},{HS,, HE, H{}}, follows from an exhaus-
tive computer search. O

This result implies that the T-multidesigns of K7, where H? € T for
t =1 or i = 8 are multipackings and multicoverings. Similarly, if T =
{H],H}, H{}, when the edges of one copy each of H], H}, and H{ is re-
moved from K7, 6 edges remain, which means that no T-multidecompositions
exist. We get the following.

Lemma 3.2. Let T = (G,, G2, H}) be graph-triple of order 6. Then
1. If {G1,G2} = {H?, H}} with i € {1,8}, then

(a) K7 has a maximum T-multipacking with leave P,.
(b) K7 has a minimum T-multicovering with padding P, + P,
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2. If {G1,G2} = {H],H}}, then

(a) K7 has a maximum T-multipacking with leave Pj.

(b) K7 has a minimum T-multicovering with padding P,.

3. IfTG {{Hgngng}s{H1607H55’Hi‘}},

(a) K7 has a maximum T-multipacking with leave P, + P;.

(b) K7 has a minimum T-multicovering with padding Ps.

Proof. We present the multidesigns for (1).

HS H? H}

6 5 4 .
HY,H} Hj :

HY, HS, Hy

HY Hg HY:

Hg, H}, H;

H§, Hg HY :

: Packing : HY 2 0,1,2,3,4,5); H; =[0,2,4,1,3,6],

(1,6,2,0,3,5]; Hf =[0,4,1,2,5,6] with leave 46

Cover : HY =(0,1,2,3,4,5]; H; =[0,1,3,2,5,4]; H} =
[0,6,3,1,4,2],[1,6,5,2,0,3],[1,5,3,2,6,4] with padding 45,01
Packing : H? 2 (0,1,2,3,4,5); H; =[0,2,4,1,3,6],
[1,4,0,2,5,6,]; Hj = [0,3,5,1,2,6] with leave 46

Cover: H® = (0,1,2,3,4,5); H} 2 [0,1,3,2,5,4); Hj =
[0,2,6,3,1,4],(3,0,6,4,1,5],[1,6,5,3,2,4] with padding 45,01

: Packing: HY ~0,1,2,3,4,5]; H =(0,2,1,3,6,4],

[1,4,2,5,3,6); H = [1,5,6,2,0, 3] with leave 06

Cover: H® =[0,1,2,3,4,5); HS ~[0,1,2,3,5,4]; Hj =
[0,2,6,4,1,3),[0,3,86,1,2,5],(0,6,5,1,2,4] with padding 23,01
Packing: HY = [0,1,2,3,4,5]; Hg =[0,2,1,3,4,6],
(1,5,0,3,2,6]; Hf = [0,4,1, 3,5, 6] with leave 36.

Cover: HS 2(0,1,2,3,4,5); Hg =(0,2,1,5,4,6]; H}
[0,1,3,2,5,4],[0,3,5,1,6,2],[0,4,1,3,6,5] with padding 01,45

: Packing: H§ [0,1,2,3,4,5]; H} =[0,2,1,3,6,4],

[0,3,1,2,5,6]; Hy = [1,4,5,3,2,6] with leave 16

Cover: H§ ~10,1,2,3,4,5); H} [0,1,2,3,5,4]; Hj =
[0,2,6,1,3,4],[0,6,3,1,2,5); Hj = [1,4,6,5,0, 3] with padding 34,01
Packing: H§ = 0,1,2,3,4,5]; He =(0,2,1,3,6,4],

[0,3,1,2,5,6]; Hf = [1,6,3,2,5,4] with leave 14

Cover: HE =(0,1,2,3,4,5]; Hg =[0,1,2,5,3,4]; Hi =
[0,6,3,2,1,4],[2,0,3,4,6,5],(1,6,2,3,5,4] with padding 34,01
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We continue with (2a). Note that K7 = KgUGsg 7 = (Ks— Hi)U(Gg,7U
HY). Since {H?, H?} divides K¢ — H}, it suffices to find an H}-packing of
Ge,7U H} with leave P; for each i € {1,2,3}. We get

Hi:[0,6,1,3,4,5],(0,1,2,4,6,5] with leave 263
Hj}:[0,6,2,3,4,5],[5,6,4,3,0,1] with leave 163
H}:[0,6,1,4,5,2],(3,6,4,0,1,5] with leave 203

To prove that these multipackings are optimal, note that, after removing
one copy of each graph in T from K7, we are left with 6 edges that can be
utilized by some combination of H;, Hf, and Hy. The best we can do is
add an additional copy of H# to get a leave of two edges.

We next prove (2b). We get the following minimum T-multicoverings.

HY H} H} :H{=10,3,5,1,6,2]; H; = [1,5,6,0,2,4];

H] =~10,1,2,3,4,5],(0,2,1,3,6,4] with padding 12
HI H} H} :H}=~[1,5,2,3,0,6]; H; =[2,6,5,3,1,4];

H]=0,1,2,3,4,5),[0,2,1,3,6,4] with padding 12
HI H} H} :H}=~[1,5,2,3,6,4); H3 =[1,6,5,3,2,4];

H} =[0,1,2,3,4,5],[0,3,4,1,2,6] with padding 13
H] H} Hj :H{=1,3,5,4,0,6]; H =[2,5,6,4,0,3];

H]=[0,1,2,3,4,5),[0,1,3,4,6,2] with padding 01
H] H} H}:H}=(0,6,1,2,5,3]; H = [3,6,4,0,2,5];

H]=~[0,1,2,3,4,5),[0,3,2,6,1,4] with padding 14
H] H3 H}:Hj=[0,6,53,1,2]; Hf 2(0,3,4,2,5,6);

H]=~[0,1,2,3,4,5],[0,2,1,3,6,4] with padding 24
HI H} H} :H{=|0,6,1,2,5,3]; H; = [3,2,0,4,5,6];

HI=10,1,2,3,4,5],[0,1,4,2,6,3] with padding 01
H! Hj H} :Hj ~(1,3,5,2,0,4]; H; =(0,6,2,1,4,5);

HI ~10,1,2,3,4,5],[0,2,1,4,6,3] with padding 12
HI H{ Hj :H{ =~10,1,6,2,3,5); H3 = [0,6,5,2,1,3];

H =1(0,1,2,3,4,5],[1,0,2,3,6,4] with padding 13
HZ H} H3i :Hj =(2,5,3,4,0,1); H3 20,6,1,2,3,5];

H!=[0,1,2,3,4,5],(1,0,2,3,6,4] with padding 34
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H{ H{ H} :H!~[2,0,3,4,6,5); H} ~1,5,2,0,6,3];
HI=~0,1,2,3,4,5),[0,1,6,2,3,4] with padding 01
H H{ Hj :H}=>~[2,6,5,3,0,4]; H} ~3,5,0,6,1,4];
HJ =~1[0,1,2,3,4,5),[0,2,1,4,6,3] with padding 12
H], H{, Hj :H{ =(0,3,5,2,1,6]; H; =[2,5,6,3,0,4);
H],=1[0,1,2,3,4,5),{0,2,1,3,4, 6] with padding 34
For (3), we get
H§, HZ Hj : Cover: H§ =[0,1,2,3,4,5); H; = [0,3,4,1,2,5); H =
(1,0,2,3,4,5],[0,6,2,1,3,4],(1,6,3,0,4, 5] with padding 10, 34
Packing: H$ = [0,1,2,3,4,5); H; = [0,3,4,1,2,5],
(1,6,0,2,4,3]; Hf = [2,6,4,1, 3,5] with leave 05
HE HE HY: Cover: HY, = (0,1,2,3,4,5); Hf =[0,1,2,4,5,3]; H} =
[0,2,1,3,6,4],[0,6,1,2,5,3),[0,4,3,2,6,5] with padding 45,01
Packing: HS, =[0,1,2,3,4,5]; HS = [0,2,1,3,6,4],
(1,2,0,3,4,6]; Hf [0,6,4,2,5,3] with leave 56

The remaining triples result in T-multidecompositions.

Lemma 3.3. Let T = {G;,G2,H}} be a gra.ph-trlple of order 6 such that
HY,HS, H] ¢ T for all j and T ¢ {{H§, H;, H3}, {HS,, HS, H}}}. Then T
divides K.

Proof. We begin with i € {5,6,7}. We have
K7—Q—KGUGGJE(Ks_HiG)U(GG,'IUHiG)

Since {H?, H3} divides K¢ — HY, it suffices to prove that Hf divides G¢,7U
HE. For i =5, we have G 7 U Hf = [1,0,3,5,6,2] U [2,3,5,1,6,4]. For
i = 6, we have Gg7 U H§ = [0,1,3,2,5,6] U [3,6,2,1,5,4]. For i =7, we
have Ge 7 U HE 2 [4,0,1,3,2,6] U [1,3,4,2,5,6].

For the remaining cases, we list the multidecompositions for
T # {H961H27H3?}’ {H?O>H551Hf}'

185



HS HP HY: H§ =[0,1,2,3,4,5),[0,2,3,6,1,4); Hy =[5,2,1,3,0,6};
Hi=[1,5,3,2,4,6]

HS, HY, HE : HS ~10,1,2,3,4,5],(0,2,1,4,6,3]; H} =[1,5,3,0,6,2];
ggusszoq

HS HS HS: HS ~10,1,2,3,4,5],(0,3,1,6,2,4]; Hf =0,6,4,5,1,2];
H} =~[2,5,3,1,4,6]

HS$, HS, H} : HS =(0,1,2,3,4,5],{0,2,1,4,6,3]; H; = [5,3,0,1,6,2};
H} ~[2,1,5,6,0,4]

HS HS HY : HS =10,1,2,3,4,5),(0,2,3,6,1,4]; H3 = [6,5,2,4,0,3);
H} =10,6,4,2,1,5)

HS,HS, H} : HS =10,1,2,3,4,5),(0,2,1,4,6,3]; H; = [0,6,1,2,3,5];
Hj} ~[1,5,2,6,0,4]

HS HS HS : HS ~(0,1,2,3,4,5],[0,2,1,3,6,4]; H; =(0,6,1,2,3,5];
H3=(1,5,2,4,0,3

HS, HS HY: HS =10,1,2,3,4,5),(0,2,3,1,6,4]; H = [0,3,1,5,2,6];
Hi=~[1,2,4,3,5,6]

HS, HY, HE: HS ~0,1,2,3,4,5],(0,2,3,1,6,4]; Hf (0,3,1,2,5,6];
Hj =(1,5,3,2,4,6]

HS, HS H} : HS =10,1,2,3,4,5],(0,2,3,1,6,4); H§ ~[0,3,1,2,5,6];
H} =~[1,5,2,4,3,6]

HS, HE, HY : HS =0,1,2,3,4,5],(0,2,1,3,6,4]; H; [1,6,2,4,3,5];
H{=~1,2,5,3,0,6|

HS, HS, Hi: HS ~(0,1,2,3,4,5],(0,2,1,3,6,4); H} =(2,6,1,0,3,5];
Hi=0,6,5,2,1,4]

HS, HY H}: HS =[0,1,2,3,4,5),[0,2,1,3,6,4]; H} =[1,2,5,3,0,6];
Hj =[2,6,5,3,1,4]

HS H3 HY:HS10,1,2,3,4,5,(0,2,1,3,6,4]; H} = [2,1,6,0,3,5};
H}=1[0,6,2,1,4,5]

HS HS,Hi: HS ~(0,1,2,3,4,5],(0,2,1,3,6,4]; H; = 3,0,1,2,6,5];
Hj = [4,1,2,5,0,6]

HS HS H}: HS ~[0,1,2,3,4,5],(0,2,1,3,6,4]; H; =[1,6,0,3,5,2];
H%202.1.4.3.5.6]
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Hf,Hg,H;:

HS HE Hj

H$ HZ H} -
HS$ HE Hj
HS HE HY:
HS H Hj -
HS, HY HY: HS
H§ HS HY :
Hw,Hls,Hf:
Hfo,Hg,Hf:
HY, HS HS
HYy, H3, Hj
HS,, H3 H:
H$ H? H}:
HY\, H3, Hj :

Hll’Hngf .

Hf=10,1,2,3,4,5],[0,2,1,3,6,4); HS
Hy =
: H§ =(0,1,2,3,4,5],[0,2,1,3,6,4]; Hf [1,2,0,3,5,6];

[4,1,6,5,0,3]

Hj =~(0,6,5,2,1,4]
H$ =~(0,1,2,3,4,5],[0,2,3,1,4,6); HS =[1,2,0,3,5,6];
H}=10,4,2,5,3,6]

H6 g [01 1) 2, 3749 5]’ [0, 2! 31 1’ 4) 6];H5

Hj =[0,3,5,2,4,6]
H$ =~[0,1,2,3,4,5,(0,2,1,3,6,4]; H = [2,5,1,4,0,6];
H{200,3,5,2,1,6]

H$ 2[0,1,2,3,4,5,[0,2,1,3,6,4; HZ

H3=0,6,5,3,1,4]

H{=11,6,5,3,0,4]
H$ =10,1,2,3,4,5],(0,2,4,1,3,6]; H =[1,3,0,4,6,5];

Hj=

[1,6,0,5,3,4]

=(1,2,5,3,0,6];

=1,2,0,4,5,6];

= [lv 61 0’ 3’57 2]’

~10,1,2,3,4,5],(0,2,4,1,3,6]; H; =[0,6,1,4, 3,5];

H$, =[0,1,2,3,4,5],[0,2,1,3,4,6}; H> =~ [3,0,4,1,6,5];
H}=11,2,5,4,3,6]

10_[012345] [0,2,1,3,4,6]; HE
H!00,4,3,2,5,6]

=1,2,0,5,3,6);

H$,=1[0,1,2,3,4,5],[0,2,1,3,6,4); HS =~[1,2,0,5,3,6];
H}=10,6,5,2,3,4]

HE >[0,1,2,3,4,5],[0,2,1,3,4, 6]; HS

Hj =

HS =0,1,2,3,4,5,(2,0,1,3,6,4); HS

(1,6,3,0,4,5]

H} =~ (4,3,5,1,2,6]
Hf =10,1,2,3,4,5],{0,3,6,1,2,4]; H} = {5,2,0,1,4,6];
H} =11,3,5,4,0,6]

HS =(0,1,2,3,4,5],[0,3,6,1,2,4]; HS =[0,2,3,4,5,6];

Hy =

3,1,4,6,2,5]

2[2,1,0,4,3,5];

= [2a 510,3a 1’6];

HS 2(0,1,2,3,4,5),[0,3,6,1,2,4); H§ 2[6,5,2,0,1,4J;
H{=[0,6,4,1,3,5]
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H}\ H3, Hy: HS =1[0,1,2,3,4,5),[0,3,6,1,2,4); HS 2 [0,6,4,1,2,5];
Hj =~[1,3,5,4,0,2]

HY\, H3, H§ : HY, 200,1,2,3,4,5),(0,3,6,1,2,4]; Hf = [3,5,2,0,1,4);
H} ~(0,6,4,1,3,5)

H}\, H:, Hj : HY, =(0,1,2,3,4,5),(0,3,6,1,2,4]; H: = [5,6,0,2,1,4];
H} =1,3,5,2,0,6]

a

Next, we turn out attention to Kg. We get the following multidecom-
positions.

Lemma 3.4. Let T = {H}, H}, H;} be a graph-triple of order 6. Then T
divides Kj.

Proof. We begin with the case T = (Hf, H, H{). For each a,b € Zg, let
Sa,b be the graph with vertex set {6,7,a,b} and edge set {67, 6a,6b, 7a, 7b}.
We then have

Kg=SapUKsUKag=(Sap UH?)U (Ke— H)UK3y4

where H? uses the vertices in Kg. Note that {H?, H{} divides K¢ — H3,
and if ¢ # 2, then H} divides K34 by Lemma 2.1. Thus, in the case k # 2,
Lemma 1.1 implies that we need only show that Hf divides S, U H 35 We
get
S»3U HY = [3,4,5,6,7,2]U[6,3,7,0,1,2]
S1,4U Hj =7,4,0,2,1,6]U[1,7,6,5,4,3]
S»3U H3 =(7,2,1,0,3,6] U [4,3,7,6,5,2]
S»3UH$ 2[6,7,3,4,5,2] U [0,1,6,3,7,2]
S1,2U HS %[6,2,4,5,7,1]U[0,1,6,7,2,3]
S1,4UHE 2[6,4,2,3,1,7|U[0,2,4,5,6,1]
The remaining graph-triples are those in which either j = 4 or k = 2.
We can decompose the edges of Kz in the following ways.
Ks = Ggg UK = (GesgUHE) U (Ks — HY)
Ks = GesUKe = (Ges U H;) U (Ks — H3)
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By Lemma 1.1, we then need only show that there exists T/ C T such
that either 7" divides Gg,g U Hf, with H € T', T’ divides Gg,g U H} with
H? € T, or T' divides Ggg.

We get the following multidecompositions of Gg g.

HY H; HY: H:=[0,6,7,2,3,1); Hf =[0,7,4,2,6,5),(1,7,5,3,6,4]

Hf H; Hj: H;=[0,7,6,4,5,3); Hy =[0,6,1,5,7,2],(1,7,2,3,6,4]

We get the following multidecompositions of Ge g U H3.

HS H} H}: H; =[6,1,0,4,3,7],(7,5,4,0,6,2];
H} =(2,3,6,5,1,7],[0,7,4,6,1,2]
Hf HE HY: HE =[6,4,2,3,7,5],[6,3,1,2,7,0];
H} ~16,2,7,1,3,4,[7,6,1,4,5,0]
HS HE HY: H2=[1,2,3,4,5,6],]0,5,6,4,2,7;
Hj = [4,7,6,0,2,3],(1,7,3,6,2,4]

We get the following multidecompositions of Gg g U H}}.

H} H3 H}: HS =17,3,0,1,6,2]; Hj =[6,4,7,0,2,3],
[7,5,6,3,1,2],(6,7,1,0,4,5

HS H3 Hi: H=[2,1,6,0,4,7); H} ~[6,2,7,0,4,5],
[7,3,8,5,0,1],[5,7,6,4,2,3

HY HS H}: H =~(0,6,7,4,5,1]; Hj =[6,2,7,0,4,5],
[7,3,6,5,1,2],(6,4,1,7,0,3

H} HZ, Hj: HE ~[2,6,4,7,5,3]; H} ~[0,6,1,7,4,5],
[5,6,7,3,1,2],(2,7,0,1,4,6]

This completes the proof. (]

We continue determining multidesigns of Ky for graph-triples of the
form T = {H],H}, H}}. Since Kg has 28 edges, 15 of which will be filled
by the graph-triple, we find that the remaining 13 edges can not be filled
with graphs of order 4 or 7. Therefore, we present optimal multipackings
and multicoverings for Kg.

Lemma 3.5. Let T = {H], H}, H{} be a graph-triple of order 6. Then Kg
has a maximum T-multipacking with leave P, and a minimum multicovering
with padding P;.
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Proof. Here are maximum multipackings.

H] H}, H} :H{=(0,2,4,1,3,5),(0,4,1,2,6,3],[0,6,1,2,7,3],(0,7,1,4,6,5];
Hj =[1,5,7,4,0,3); H{ =(0,1,2,3,4,5] with leave 67
HI Hi H} :H{ =[0,2,5,3,1,4)],(1,6,2,3,0,4],[0,6,3,1,7,2],(0,7,4,3,5, 6];
Hj ~[1,5,7,3,4,6); H; =(0,1,2,3,4,5] with leave 67
HI H{ H} :H{=[0,3,5,1,2,4],(0,4,1,2,6,3),[0,6,1,2,7,3],{0,7,4,1,5,6];
~(1,7,5,2,4,6]; H] = 0,1,2,3,4,5] with leave 67
[0,2,1,4,3,5],[0,3,1,2,6,4],(0,6,1,2,7,3],[0,7,1,2,5,6];
[0,4,7,5,3,6); H{ =[0,1,2,3,4,5] with leave 67
[0,2,1,4,3,5),(0,3,1,2,6,4],[0,6,1,2,7,3],{0,4,7,2,5, 6];
[0,7,1,3,6,5]; H] =[0,1,2,3,4,5] with leave 67
[0,4,3,1,2,5],[0,3,6,4,1,2],(0,2,6,1,3,7,[0,6,7,1,3,5;
[0,7,2,5,6,4]; H =[0,1,2,3,4,5] with leave 57
[0,2,5,3,1,4],(0,3,2,1,6,4],[0,6,2,1,7,3],[0,7,2,3,5,6];
[0,4,7, 5,3,6]; Hf =[0,1,2,3,4,5] with leave 67
[0,2,3,5,1,4],[0,4,6,2,1,3},[0,3,6,1,2,7],[0,6,7,1,2,5];
[0,7,3,5,6,4}; HI =[0,1,2,3,4,5] with leave 57
[0,1,4,2,3,5)],[1,6,2,3,0,4],(0,6,3,1,7,2],[0,7,3,2,5,6];
[4,6,7,5,0,2); HE =(0,1,2,3,4,5] with leave 47
[0,2,3,5,1,4],(0,1,6,3,2,5],[1,7,0,3,2,6],(0,4,6,5,2, 7];
3,7,4,0,6,5]; HS =1[0,1,2,3,4,5)] with leave 67
[0,2,5,1,3,4],[1,6,2,3,0,4],[0,6,3,1,7,2},(1,5,3,4,6, 7);
[0,7,3,5,6,4]; Hf =0,1,2,3,4,5] with leave 57
[0,4,1,2,3,5],[0,3,1,2,6,4],(0,6,1,2,7,3],(0,5,6,1,7,4];
[2,0,7,5,3,6]; Hy =(0,1,2,3,4,5] with leave 67
4210,2,5,3,1,4),(1,2,6,3,0,4},[0,6,1,2,7,3},[0,7,4,3,6, 5];
H}=[1,7,5,3,4,6}; H] = [0,1,2,3,4,5] with leave 67
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Here are the minimum multicoverings

HY HY H} :H}=~10,6,2,1,7,4]; H = (3,7,2,4,5,6]; H] =
[0,1,2,3,4,5),[0,2,1,3,6,4],(0,3,5,1,6,7) with padding 12
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H] H{ Hj:

H,H}, H;
H{, H{, H}

H{, H{, H3

H] H3, Hj:

H{,H{ H]
Hg, H, H3

H{, H{,H;

HI H3 Hj:

Hg, HY, H3
HJ, HY, H}

7 4 774
HIOlesz

H}=10,3,5,2,7,4]; H) = 3,7,5,6,1,4]; H] =
[0,1,2,3,4,5],[0,2,1,3,6,4],[5,1,7,0,6, 2] with padding 12

:Hi 21,6,3,4,7,5]; H; = (3,7,6,5,1,2]; H =

[0,1,2,3,4,5],[0,1,3,5,2,4],[6,0,2,7,1,4] with padding 01

:Hj =(0,7,1,2,5,3); H3 = (2,7,5,6,0,3]; H] =

[0,1,2,3,4,5],[0,1,3,4,6,2], [0,4,3,1,7,6] with padding 01

:H{ 2(0,4,6,2,5,7); H§ (2,7,4,3,5,6); H{ =

[0,1,2,3,4,5,[0,1,3,4,6,2],[1,3,6,5,0,7] with padding 01
Hj =(3,0,4,7,2,5 H3 = (1,7,2,4,6,3]; H{ =
[0, 1’ 21 3, 41 5}? [07 1; 3) 41 6’ 2], [0, 6, 3, 1, 5, 7] With padding 01

:H =~(0,7,1,2,6,5); H3 = (1,6,7,2,3,5); Hf =

[0,1,2,3,4,5],[0,2,5,4,1,3],[0,6,3,5,7,4} with padding 15

:H3 =[1,6,0,3,4,7); H} = [1,7,3,2,5,6]; Hf =

0,1,2,3,4,5],[0,1,3,2,6,4],[0,2,3,6,5,7] with padding 01

:Hp =(0,7,2,1,6,5]; Hs = [0,6,7,4,3,5); H] =

[0,1,2,3,4,5,(1,0,2,3,6,4],[0,2,3,5,7,1] with padding 12
H} =[5,3,2,7,0,6); Hi = [3,7,4,0,1,6]; Hf =
[0,1,2,3,4,5),[1,0,2,3,6,4],[0,1,2,6,5,7] with padding 12

:H{ =(0,4,6,5,2,7]; Hs 2[0,7,1,5,6,4]; H =

0,1,2,3,4,5],[0,1,3,4,6,2], (0,3,5,1,7,6] with padding 01

:H{ =(0,7,2,3,6,5]; H =(2,6,7,5,0,3]; H]

0,1,2,3,4,5],[1,3,2,4,0,5],[0,6,1,3,7,4] with padding 25

:Hf = (2,1,6,3,7,5); Hf =(1,7,2,5,0,3]; H], =

[0,1,2,3,4,5],[0,2,1,3,4,6),(0,4,3,5,6, 7] with padding 34
O

For Ky, all T-multidesigns are multidecompositions.

Lemma 3.6.

divides Kg.

Let T = {G1, G2, H}} be a graph-triple of order 6. Then T

Proof. We begin with the case T = {H?, H}, Hit}. We have Ko = KeUGs,9,
and so we need only show that {Hf, H}} divides Gg g for each pair (j,k).
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We have the
Hj, H}, H{

H},H}, H3
H?, H}, Hy
H}, H3, H{
HS H3 Hj :
H}, H3, Hy
H}, H3, H{
HY, H$, H3
HS H3 Hj:
H¢ HZ HY:
H}, H3, H;
HS, HS, HS :
HE HS, HY :
HE H HY -
HS HE Hj:

HP, Hg, H :

:Hy

following multidecompositions of Gg g.

:Hy = [4,7,5,2,6,8];

Hi

IR

1,6,7,2,8,3],[0,8,7,4,6,5],(1,7,2,3,6,0],[5,8,1,0,7,3]
7,3,8,1,6,2];
[4$ 67 8’57 07 7]) [21 87 7’ 4’ 37 6]) [17 71 6) 57 41 8]’ [1’8) 0’ 61 5’ 7]

iR

H;

IR

:H? ~[7,3,8,1,6,2);

H} =~ [4,8,5,6,7,0],[1,8,2,3,6,7],(4,6,5,0,7,8],(1,7,4,0,6, 5]

:HS = [6,1,5,0,8,7];

H} ~[8,6,2,3,7,4},[1,7,2,3,8,4],5,6,0,1,8,2],(3,6,4,5,7,0]
Hj =1[6,1,0,5,8,7];
H}=~1[2,6,8,4,3,7],[4,7,2,8,3,6,[1,7,5,6,3,8],(4,6,0,7,1,8]

:HS ~[6,1,5,0,8,7);

~[2,7,3,6,8,4],[1,7,5,2,6,0],(2,8,3,0,6,4],(3,6,4,1,8,5]

Hj
:H? =~ [5,6,4,8,7,0];

Hf = [136a 7,57 81 O]a [4973 8)27 6» 3]'; [378’6a 117a 2]a [1?8’2157 71 3]

:HS ~[3,7,6,1,0,8};

Hj =(2,6,8,4,5,7),(1,7,2,8,3,6],(1,8,5,6,4,7],(4,6,0,7,3,8]
Hj =[3,7,6,1,0,8);
H3i =(2,6,4,5,7,8],[0,6,3,4,8,5},(1,7,2,5,8,4],[1,8,2,0,7,3]
H; =(1,6,7,3,8,2];
H}=~(e,8,4,5,7,0],[6,3,8,1,7,2],[6,4,7,5,8,0],[1,8,2,5,6,0]

:H3 = 0,6,7,1,2,3);

Hj} =10,7,8,1,2,6),(0,8,6,1,3,7),(2,8,4,6,5,7],(3,8,5,6,4,7)
H? =[4,6,7,3,8,2);
Hj =(0,6,1,2,7,5],(1,8,0,3,6,5),[2,8,3,1,7,4],[0,7,4,6,8,5]
HE =10,6,1,7,2,8);
H{=10,7,3,1,6,2],[1,8,2,4,7,5),[3,6,4,5,8,7),(3,8,4,5,6,7)
Hf =~[0,6,1,7,2,8);
H}=10,7,6,1,2,8],(1,8,7,3,2,6],(3,6,4,8,5,7],(3,8,4,5,6,7)
H: ~[0,6,1,7,2,8];
H}=[0,7,3,1,6,4],(1,8,2,5,6,7],[2,6,3,5,7,4],(3,8,4,6,7,5]
Hg =1[0,6,1,7,2,8];
H{=[0,7,2,1,6,3],[1,8,4,5,7,6],(3,7,4,5,8,6],(3,8,7,4,6,5

192



HS HS HE
H}, Hg, Hj
Hf,H}, H}
HP H?,H;

H}, Hf, H

We now

Hg =[0,6,1,7,2,8];
Hj3 =[0,7,3,6,1,8),(1,6,7,4,5,8),[2,7,8,4,5,6], [3,8,6,4,5, 7]

:H§ ~1(0,6,1,7,2,8];

Hj =10,7,2,1,6,8], [1,8,3,4,6,5],[3,6,5,4,7,8,(3,7,5,4,8, 6]

:H? =(0,6,1,7,2,8);

H}=10,7,2,1,6,3],]1,8,7,2,6,4],(3,7,4,6,5,8],(3,8,4,5, 7, 6]

:H? =1(0,6,1,7,2,8];

Hé = [0’ 7’ 27 6, 1: 8]7 [1’ 6’ 71 31 4: 8]v [3) 6) 5, 8)47 7]7 [31 8'1 71 51 47 6]

:H? =[0,6,1,7,2,8];

H{=10,7,2,1,6,3,[1,8,4,2,6,5],[3,6,4,7,8,5], 4,7,5,3,8,6]

consider the case T = {H], H},H{}}. We get the following

multidecompositions of Kj.

H{, H{,Hj :H{ =(1,5,3,6,7,8); H5 = 3,8,6,5,2,7); H]

[0,1,2,3,4,5],[0,2,4,1,3,6),[0,7,1,6,2,8],[0,3,7,5,8,4]

HI Hi Hj :Hf=1,6,8,3,7,5); H; = [3,8,5,6,2,7); H] =

0,1,2,3,4,5),(0,2,5,3,1,4],[6,0,7,1,8,2],(0,3,6,7,4, 8]

HI H} Hj :H{=(1,8,3,2,6,7); H =[2,7,8,4,5,6); H] =

[0,1,2,3,4,5],[4,1,2,5,3,0],(0,6,7,1,2,8], [6,3,4,7,5,8)

H],H{ Hj :H{ = [4,6,7,5,3,8]; Hy = [5,7,3,6,0,8]; H] =

[0,1,2,3,4,5],[0,2,3,4,1,6],[1,7,0,3,4,8], 6,5,7,0,2, 8]

H] H{ Hj :H{=[2,7,5,3,6,8); Hf = [4,6,5,0,8,7]; H] =~

[0,1,2,3,4,5],[1,7,0,3,4,8],(1,7,0,3,4,8], [2,5,7,0,3, 8]

H],H3, Hi :H3 ~[2,7,6,5,0,8]; H = [3,6,4,5,7,8); H] =

[0,1,2,3,4,5],(0,2,3,4,1,6],[1,7,0,3,4,8), [2,5,7,0,3,8]

HI,H},H3 :H{ =[5,3,6,7,4,8]; Hf =[0,4,6,7,5,8]; HI =

7 4
Hg, H;,

[0,1,2,3,4,5},[0,2,3,4,1,6],[0,7,1,2,8,3],(2,5,6,0,8,7]
3 :H3 =0,8,6,7,3,5); H = [4,8,5,3,6,7); H] =
[0,1,2,3,4,5],[0,2,3,4,1,6],0,7,1,2,8,3],(2,5,6,0,4,7]

H{, H{,Hj :H{ =(2,3,5,4,7,8]; H} [4,8,6,7,2,5]; H§ =

[0,1,2,3,4,5),[1,0,2,3,6,4],0,7,2,3,8,1],[1,0,7,8,5,6]
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H{, H3, H3 :H} =(2,3,5,6,7,8]; Hf = [2,5,7,0,6,8]; H] =
[0,1,2,3,4,5],[1,0,2,3,6,4],[0,7,2,3,8,1],[1,7,0,4,8, 6]
HY H} H} :H} =(1,8,3,4,7,6]; Hf = [2,8,4,3,7,6]; H] =
[0,1,2,3,4,5],[0,4,3,1,6,2],(0,6,5,2,1,7],(0,8,7,2,5,3]
H] Hi Hj :H{=0,4,6,3,5,8]; Hf = [2,7,4,8,0,6]; Hy =
[0,1,2,3,4,5],[0,2,3,4,1,6],[1,7,0,2,8,3],[0,5,6,1,8,7]
Hl,, Hi, Hj :H} = [2,86,5,3,0,8]; Hf = [2,5,7,3,4,8]; HT, =
[0,1,2,3,4,5],[0,2,1,3,6,7],(0,4,1,2,8,6],[1,4,3,5,8,7]

This completes the proof. O

Now we move to the Ko case.

Lemma 3.7. Let T = {G1,G2, H}} be a graph-triple of order 6 with
i € {1,2,3}. Then there exists T C T such that T” divides Gé,10.

Proof. We begin with the case where G, and G have 6 edges and 5 edges,
respectively. In this case, we let T/ = {H?}. We get H}-decompositions of
G, 10 as follows.

H? =(0,6,9,8,1,7],(3,7,8,6,2,9),(4,6,7,9,5,8),[1,9,8,7,5, 6],
2,7,9,6,3,8],[0,8,6,7,4,9)]

H =[7,2,0,8,6,1),[8,2,4,6,9,3],(8,0,4,7,6,5],[9,1,0,8,7, 5],
8,1,3,9,7,4],[6,3,0,8,9,2]

H3 =9,1,6,7,2,8],(6,2,7,8,3,9],[7,3,8,9,4,6),[8,4,9,6,5,7],
6,5,9,7,0,8],[9,0,6,8,1,7

H; =[0,6,7,1,3,2],[2,8,9,3,5,4],[4,6,8,5,0,1],[0,7,9,1,2, 5],
2,7,8,3,1,4],[4,9,6,5,3,0

H ~[0,6,8,3,9,7],[0,8,6,3,7,9],[1,6,7,4,9,8],[1,7,6,4,8,9],
[2,6,7,5,8,9],(2,7,6,5,9,8

Hg =(6,1,8,9,7,2],(6,3,7,9,8,4],[6,5,7,8,9,0], [7,3,6,8,9, 4],
[7,5,6,9,8,0],(8,1,6,7,9,2]

H? ~[6,7,1,9,8,0],(7,8,0,9,6,1],(8,9,5,6,7,2},(6,8,4,7,9,3),
[6,9,3,7,8,4],(7,9,2,6,8,5|

Now we move on to triples of the form T = {H], H}, H¢}. Fori=j =1,
k=2, welet T' = {H], H{} and get the following T'-multidecomposition
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HY ~[8,9,0,6,1,7),[9,6,7,2,8,3]
Hi=26,4,7,8,5,9],[6,5,7,8,4,9), [6,8,0,2,9,7],[8,1,9,2,6,3]

Fori=k=2,7=1,welet T = {H], Hf H3} to get

H] =16,1,7,8,9,0],[2,8,3,9,6,7)
H{ =[6,4,7,8,5,9],6,5,7,8,4,9]
Hj = (8,6,2,9,7,0],09,1,8,0,7,3]

Fori=3,j=1,and k =2, we let 7" = {HJ, H{, H3} to get

H] =[1,6,7,2,9,8],(3,8,9,4,7,6]
Hi=[6,8,0,7,9,1],[6,9,5,7,8,2]
H3={7,0,6,4,8,5],[6,5,7,3,9,0]

Fori=4,j=1,and k =2,3, we let T/ = {H], H{} to get

HI~(8,7,3,9,6,1],[6,8,7,4,2,9]
Hi‘ = [9: 7! 01 4: 8, 5]1 [31 7) 57 07 6a 2]9 [4’ 6, 5, 0: 9, 1]’ [Oa 8: 3?4’ 9! 5]

Fori=4,j=2,and k=3, we let T' = {H], H}} to get

HZ = [8, 7a 3! 9: 6’ 1]1 [678=7a41 2a 9]
Hj =[7,9,0,8,6,2],[6,5,7,0,8,4],[3,8,5,9,6,0],(6,4,9,1,7, 3]

Fori=5,j=2, and k = 1,3, we let T = {H!, H3} to get

HI=[9,0,6,4,7,8],(8,1,7,2,9,6]
H}=1[6,2,8,3,9,1],(8,4,6,3,7,2],6,5,7,3,9,4],[8,5,9,3,7,0]

Fori=6,7=2,and k =1,3, we let 7/ = {H{, H}} to get

H} =[5,1,8,7,9,6],[9,8,7,2,6,0]
H4 E [67 41 91 5) 770]7 [83 3’ 7’27 9’ 1]’ [81 41 7) 5) 91 3]) [31 6, 87 5) 91 2]

Fori=8,j=1,and k=3, welet T" = {HJ, H}} to get

H7 = [6’0’ 5 1’877]7 [619a7) 1, 2a8]
Hi‘, & [Oy 7, 3, 6, 118]1 [2, 6,3,8,4, 9], [6, 4, 7’ 8,5, 9], [6,5, 7’8, 3’ 9]
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Fori=9,j=1,and k =2, we let T/ = {HJ, H{} to get

HI=[9,0,8,4,7,6],(2,8,9,3,7,1]
Hf = [1:61 23 3a 974]’ [3, 6» 4,5) 7a O]s [6a 5a 87 71 21 9]: [6a 9>5r 318,4]

For i =10, j =1, and k = 2, we let TV = {H{;, H{} to get

H{, =[7,0,1,8,9,6],[6,2,3,9,7,8]
Hf = [6’ 4’ 7’ 8’ 5’ 9]’ [6’5’ 7’ 8’ 4’ 9]7 [6’ 3’ 8’ 71 2) 9]1 [61 1) 71 81 Oy g]

This completes the proof. (]

Since T divides Kg, T’ divides Gg 10 for some T’ C T, and K)o =
K¢ UGg 10, Lemma 1.1 gives us the following.

Lemma 3.8. Let T = {G1,G2, H}} be a graph-triple of order 6 with
i € {1,2,3}. Then T divides Ko.

For multidecompositions of K, we use the following.
Lemma 3.9. H} divides Gg 1) for i € {1,2,3}.

Proof. We have the following H}-decompositions of Gg ;1.

H} =~[1,6,2,7,8,9],(3,7,4,9,10,6], 5,8,0,6,7,10), (1,9, 2, 10, 8, 6},
[3,10,4,6,9,7],(5,6,0,1,7,2],(3,8,4,5,9,0], [1, 10,2, 3,6,4],
5,7,0,1,8,2],(3,9,4,5,10,0]

H} =~[1,6,7,2,10,4],(2,6,8,1,10,3],(3,6,9,1,7,0], 4,6, 10,1, 8,0},
3,7,8,2,9,5,[4,7,9,2,8,5],[5,7,10,2,6,0}, 3,8,9, 4,6, 5],
4,8,10,5,9,0],(3,9,10,0,7,1]

Hj =~(1,6,2,7,8,3],(4,6,5,7,9,0],[1,7,2,8,10,3|,[4,7,5,6,9,0],
[1,8,2,9,10,3],(4,8,5,6,10,0],[1,9,2,6,7,3],(4,9,5,7,10,0],
(1,10,2,8,9, 3], [4,10,5,6,8,0]

O

Since Kj3; = Kg U Ge,11, T divides K¢, and H; divides Gg,1; for all
i € {1,2,3}, we have

Lemma 3.10. Let T = {G),G2, H{} be a graph-triple of order 6. Then T
divides K;;.

‘We now move on to K,3.
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Lemma 3.11. Let T = {G;,G>, H}} with i € {1,2,3}. Then T divides
K,;.
Proof. Let T = {H} G,,G2}. We begin by noting that for each i €
{1,2,3},
K13 = 2Ke U Kg6 U K112

~ Ko U (Kg — Hf) U Kg 6 U (K112 U HY)

= 2(Ke — Hf) U (Ke,s - Hf) U (K1'12 U 3H,4)
where the vertices of the copies of Kg (as well as the partite sets of Kgg)
are Zg and {6,7,8,9,10,11}. We have that T divides K, {G1, G2} divides
Ke¢ — Hf and H{ divides K¢ ¢ by Lemma 2.2. It suffices to show that H}
divides either K12 U Hf or K112 U3H}, where each copy of H} is taken
from either a copy of K¢ or from Kg g if needed.

We begin with i € {1,2}, where we decompose K ;2 U3H{. From the
proof of Lemma 1.1(1) and (2), we can assume the copy of H} taken from
Ke6 is [6,0,7,8,1,9] and the copy of Hj taken from Ke is [6,3,7,4, 5,11].
We then decompose K;,12 U3H? as follows.

H{ 0,12,1,3,4,5],[2,12,3,6,7,8], [4,12,5,9, 10, 11],
[6,12,7,0,1,2],[8,12,9,6,0,7], [10,12,11,8,1,9]

Hf 29,12,10,11,3,7],[5,12,8,9,0, 1], [6,12,7,8, 4, 5],
2,3,12,4,6,7],(2,12,11,5,3,6], [0,12,1,2, 4, 7]

Finally, for i = 3, we decompose K},12 U H} as follows.
Hj =1[0,12,1,4,5,2],[9,12,10,1,3,11],(3,12,4,0,1,5],[6,12,7,1,2, 8]
O

Finally, we address K;s.

Lemma 3.12. Let T = {G),G2, H{} with i € {1,2,3}. Then T divides
K15’

Proof. First use the fact Gg,10 = K4,6 UKy and Ky 11 = K46U Ky 5 to get
Kis =K UKsUKg11 2 K13 UGe10U Ky 5

By Theorem 3.10, T divides K;;. By Lemma 3.7, there exists some T" C T
such that 7" divides Gg,10. By Lemma 2.1, H? divides K45. Lemma 1.1
then implies that T divides K. O

When we combine these results with those of Theorem 2.5, we get
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Theorem 3.13. Let T = {G1, G2, H}} be a graph-triple of order 6, where
ke {1,2,3}, and let m > 6.

4

1.

If {G1,G2} = {Hf,Hf} with i € {1,8}, then K; has a maximum
T-multipacking with leave P> and a minimum 7T-multicovering with
padding P + Ps.

. If {G1,G2} = {H],H}}, then K7 has a maximum T-multipacking

with leave P; and a minimum T'-multicovering with padding Ps.

.U T e {{H§,HS, H}}, {HS,, HE, H{}}, then K7 has a maximum T-

multipacking with leave P>+ P, and a minimum T-multicovering with
padding P».

If {G1,G2} = {H],H}}, Then K3 has a maximum T-multipacking
with leave P, and a minimum multicovering with padding P,.

For all graph-triples not covered by (1), (2), (3), and (4), T divides
Km.

Conclusion

This paper settles the T-multidesign problem of K, into graph-triples T
of order 6. However, there are several ways to extend our work.

e Find Multidesigns for Graph-Pairs and Graph-Triples of Higher Or-

der. Tt certainly seems reasonable to attack graph-pairs and triples of
order 7 or higher. However, it will become computationally more diffi-
cult to generate the graph-pairs and triples and perhaps more difficult
to find arguments that generate multidesigns for large collections of
the pairs and triples.

Multidesigns for Graphs Other than Complete Graphs.

Multidesigns for K, that have specified leaves or paddings. Multi-
designs whose leave or padding is P, have only one possible leave
or padding up to isomorphism. However, every multidesign whose
leave or padding has more than one edge has the potential of having
different leaves or paddings.
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5 Appendices

A Graphs of Order 6 that are Part of Graph-
Triples
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B The Graph-Triples of Order 6

The graph triples of order six T =

(G1,G2,G3) = (HI* H?

iz

i

Jjr represents the number of edges in the graph G.

For j; =8, jo =4, jz =3,

T= (GhG?a G3) € {(H )’
H 3 1 1)

FOI'jl =7 Jo=4, ja=4,

T= (Gla G29G3) € {(H]-.,: H141 H24)1
(H], HY, H}),
(HZ, H{, H}),
(HZ, H}, H}),

(H;'.,Oa Hilv Hé)}

For jy =7, jo =5, jz =3,

T= (GI’G2)G3) € {(Hi?, Hiss H?)’
(H3, Hf, HY),
(Hsa le)’
(Hs: ’ 1)1

(H{o. H}, H})}-

FOl‘Jl—G J2 =5, ja =4,
(GlaGZ,G3) € { H Hls) H]‘.l),
5

1 HG, Hl)’
5

202

(HY, H3, HY),
(Hi, Hj, H})},

(H], H{, H3),
(H{, H{, H3),
(HZ, H3, Hy),
(Hg, Hy, Hy),

(Hj, Hf, H}),
(Hj, Hg, H}),
(HS, H3, H}),
(H§, H3, HY),

(H}, HY, H}),
(H3, H}, HY),

(H3,
(HSS’ Hi‘1 Hij)'

H®), where

H3, HY),

(H3, Hi, H}),
(Hi, H3, Hj),
(Hg, HY, Hj),
(H3, H{, Hy),

(Hi, Hg, H}),
(Hy, H3, H}),
(HE, H?, HY),
(HS, H3, HY),

(HY, HE, Hé),
H3, HY, H}),

H ),
HZ),
HY),
HY),
HY),
HY),
H3),
H3),
Hy),
H3),

(Hg‘ Hg’ H24)’
(Hg, HY, H3),

HY),
Hy),
H3),
H3),
H3),
H“)

(H?, H3, H3),



(Hg, H}, H), (Hg, H§,

HY), (HS, H}, HY),

(Hg» Has’ Hg)a (Hg’ Hg? H:g)’ (HIGO’ H15» H:‘l;)’
(H?O’ H25: Hil)’ (Hfo’ H25! H24)’ (HISOi H25! Hg)’
(H?O, Hss’ Hf)a (H?O’ H?! Hg)? (Hfl’ Hf’ Hg)’
(H?lv HZS’ H24)’ (H?I’ Hg’ Hil)’ (Hlsl’ Hga Hé‘)’
(Hfla Hg’ Hg)’ (Hlsl’ H?a Hg)}

Forj1=6’ Jj2 =6, j3=37

T= (leGQ)Gfi) € {(HIG) H86$ Hf),
(Hg, HE, HY),
(H'?v H?Os Hf)}

For j; =5, j2 =5, ja=5

T=(GlsG2,G3) € {(H?’ H257 H35)1
(Hp, H3, H),
(H3, H3, H}),
(H3, H3, Hg),

203

(H261 Hg’ H?)1 (HZG# Hf, Hii)v
(Hg’ H'?’ Hf)’ (Hg' H?lv Hla)’

(HY, HS, HE), (Hf, H3, H?),
(HY, H3, H?), (H3, H3, HY),
(H3, H3, H3), (H3, H}, H?),
(H3, H§, HY), (H3, Hi, H7)}.



