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Let a simple, finite, and non-oriented graph G = (V, E) without isolated
vertices be given and a labelling f : E — {1,-- ,k} of its edges which is
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Abstract

In this work, we investigate the gap-adjacent-chromatic num-
ber, a graph colouring parameter introduced by M. A. Tahraoui, E.
Duchéne, and H. Kheddouci in [5]. From an edge labelling f : E —
{1,:-- ,k} of a graph G = (V, E), the vertices of G get an induced
colouring. Vertices of degree greater than one are coloured with the
difference between their maximum and their minimum incident edge
label, i.e., with their so-called gap, and vertices of degree one get their
incident edge label as colour. The gap-adjacent-chromatic number of
G is the minimum k, for which a labelling f of G exists that induces
a proper vertex colouring.

The main purpose of this work is to state easy colouring approaches
for bipartite graphs and to estimate the gap-adjacent-chromatic num-
ber for arbitrary graphs in terms of the chromatic number.

Introduction

not necessarily a proper edge colouring. We define the function
l1: V{0, ,k} with

f(e), if deggz(v) =1landvee
lv) = rgaag{{ fle)} — 21319{ f(e)}, otherwise.
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Figure 1: Example of a graph G with gap,4(G) = 3.

If l(v) # l(w) for vertices v,w € V, we call f gap vertex distinguishing
or a gap-k-colouring, a notion defined by M. A. Tahraoui, E. Duchéne,
and H. Kheddouci in [5]. The minimum number k, such that G has a
gap-k-colouring, is called the gap chromatic number gap(G) of G. The
variant of this colouring problem, which we address here, is to find the
minimum number k, such that the induced function ! is a proper vertex
colouring of G, i.e., neighbour distinguishing. The corresponding graph
parameter is denoted by gap,q(G) (cf. Figure 1). This neighbour distin-
guishing version of the gap colouring problem was also introduced in [5].
Note, that graphs with isolated edges do not have distinguishing induced
colourings because both endpoints of these edges will always get the same
induced colour. Moreover, we restrict our investigations mainly to con-
nected graphs because the gap-adjacent-chromatic number of a graph is
just the maximum of its components’ values. Another basic observation is
that x(G) — 1 < gap,4(G) < gap(G) where x(G) is the chromatic number
of G.

A closely related notion in the literature is the general neighbour distin-
guishing index, investigated in (3], (2], and [1]. This index is the minimum
number k for which an edge labelling f : E — {1,--- ,k} exists such that
adjacent vertices get different sets of incident edge labels. Since adjacent
label sets are different when their gap is different, it is easy to see, that for
graphs with minimum degree two, the gap-adjacent-chromatic number is
as least as large as the general neighbour distinguishing index. The same
problem, with the additional constraint that the edge labelling should be
a proper edge colouring, was at first investigated in [6]. Other neighbour
distinguishing induced colouring functions have been considered in the lit-
erature for example the sum of incident edge labels in the preprint [4].

In Section 2, we show an easy approach to obtain a gap-neighbour-distin-
guishing colouring of trees and state a greedy procedure to colour bipartite
graphs. The third section deals with the gap colourings of 3-chromatic
graphs and in the last section, we give an estimation of gap,4(G) for arbi-
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Figure 2: Example of the colouring of a tree.

trary graphs in terms of the chromatic number.

2 Bipartite Graphs

In this section we investigate bipartite graphs and their gap-neighbour-
distinguishing colourings. We start with a very easy colouring procedure
for trees.

Colouring approach for trees
Input: A tree T = (V, E).

e Choose an arbitrary root r.
e Label the edges of distance 0,3 mod 4 to the root with two.

e Label the remaining edges with three.

As a result of this procedure (cf. Figure 2), vertices, except leaves, of odd
distance to the root are coloured with one and vertices of even distance to
the root with two. Leaves get two or three as induced vertex colour. There-
fore, we obtain a gap-neighbour-distinguishing labelling and, in particular,
no conflicts between inner vertices and leaves can occur.

Figure 3 shows that for bipartite graphs, even for trees, the gap-adjacent-
chromatic number is not bounded by two. The tree T in Figure 3 is symmet-
ric to its edge e* = uw. If it was possible to get a neighbour distinguishing
labelling with highest used label two, only the values zero and one would
be potential induced colours for the inner vertices of 7. Let us without
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Figure 3: A tree T with gap,4(T) = 3.

loss of generality assume that vertex v is coloured with zero. There are two
possibilities to obtain this colour, both shown in Figure 3. In both situa-
tions, the labelling cannot be extended to a gap-neighbour-distinguishing
colouring of the complete tree, because a conflict between the colour of a
leaf and an inner vertex will occur.

As the next step, we prove an estimation of the gap-neighbour-distinguishing
colouring number for bipartite graphs.

Theorem 1. Let a bipartite graph G = (V, E) without isolated edges be
given. Then

gap,4(G) < 3.
Proof. At first, we state a greedy approach for labelling the edges of hipar-
tite graphs.

Greedy colouring approach for bipartite graphs
Input: A connected bipartite graph G = (C; U C,, E) with colour classes
Cy and C; and |E| > 1.

o Choose greedily v1,vq,:-+ € Cy and colour (at least) two of their
incident edges:

— such that v; gets one and three as incident edge labels.

— such that vertices of C, get either no incident edge labels or only
ones or only threes as incident edge labels.

e Stop, if there are no more vertices whose incident edges can be labelled
in the way mentioned above.

e Label the remaining edges with two, except edges incident to vertices
of degree one in Cs. Label them with three (or one).
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Figure 4: Structure of the greedy approach.

The resulting structure of the bipartite graph is shown in Figure 4. All
white vertices have incident edges labelled by the greedy step and might be
incident to edges labelled after the greedy procedure (zigzag edges). The
remaining vertices (grey and dark grey) are incident to edges coloured after
the greedy step.

For i = 1,--- ,k we obtain I(v;) = 2, because all greedily chosen vertices
have one and three as incident edge label. Furthermore, no vertex of C,
gets the induced colour two. Hence, we do not obtain any conflicts here.
The remaining (grey) vertices of C; with degree at least two are solely
connected to vertices of Co which have, from the greedy step, either ones
or threes as incident edge labels. Otherwise, more vertices would have
been chosen by the greedy procedure. These (grey) vertices of C; get
zero and their neighbours (white) get one as induced colour, except the
vertices of degree one (dark grey). They are coloured with two in C; and
can be adjacent to white or grey vertices of C3, which get colour one or
zero. In summary, we get a gap-neighbour-distinguishing colouring and the
Theorem is proved. O

The decision problem, whether an arbitrary graph has gap-adjacent-
chromatic number two or three, is NP-complete. This is also true for the
related parameter, the general neighbour distinguishing index (cf. [2]).
Here, we can use the same argument, namely that the problem can be
reduced to the 2-colourability of hypergraphs. Let a bipartite graph G =
(C1 U C,, E) with minimum degree at least two be given. Identify C; with
the vertices and C, with the edges of a hypergraph H = (C4,C3). A vertex
v € C) is incident to an edge e € C, iff v and e are neighbours in G. Then
gap,q(G) < 2 iff H resp. its dual hypergraph H* (exchange the roles of
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Figure 5: Structure of the colouring for graphs with chromatic number
three.

edges and vertices) has a vertex colouring with two colours such that no
edge is monochromatic. In order to explain this equivalence suppose at first
that H is colourable with two colours, red and blue, such that no edge is
monochromatic. Let R, B C C; be the colour classes. We label all edges of
the original graph G which are incident to vertices of R with one and all
other edges with two. As a result, we obtain that vertices of R resp. B get
zero and all other vertices get one as induced colour. Hence, gap,4(G) < 2.
For the other direction, suppose that gap,4(G) < 2. Choose an optimum
gap-neighbour-distinguishing edge labelling. Since G has minimum degree
at least two, one of its colour classes, say C}, has induced colour one and
the other class zero. Colour the vertices of Cy, which are incident to edge
label one, red and the other vertices of C; blue. This is a proper 2-colouring
of the hypergraph H.

3 3-chromatic graphs

In this section, we show the following result:

Theorem 2. Let a 3-chromatic graph G = (V, E) without isolated edges be
given. Then

gaPad (G) <4

Proof. Assume that G is a 3-chromatic graph without isolated edges. For
a subset U of the vertices, we denote by N(U) the set of vertices in V \ U
adjacent to some u € U. Choose a proper 3-colouring V' = C; U Cy U Cy of
G such that the sequence |Cy|,|Ca|,|Cs| is lexicographically maximal and
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denote by E(C;, C;) the set of edges between C; and C;. This special kind
of decomposition has already been used by Horiidk and Soték in [3] to esti-
mate the general neighbour distinguishing index. It has the property that
each vertex in Cj3 is adjacent to C and C; and each vertex in Cj is adjacent
to C}.

We start by labelling the edges in E(C, Cy), E(C2,Cs), E(C1,C3) by 1,3
and 4, respectively. In what follows, we are going to relabel some of the
edges in order to obtain an induced colouring which is a proper vertex
colouring of G, i.e., neighbour distinguishing.

Denote by C3 the set of vertices in C, which are not adjacent to a vertex
in C3 and let C} := N(C3). Only labels of edges in E(C3,C?) may be
changed below (see Figure 5).

Note that, before we start to relabel, the induced vertex colouring has the
following properties: Vertices in C3 are coloured by one, those in Cy \ C3
by two. Vertices in C3 are coloured one if they have degree 1 and zero
else. Vertices in C; may have colour zero, one, three or four, where colour
one can only occur if the vertex has degree 1 in G. From this it follows
that the only conflicts with the desired colouring property arise from edges
in E(C3,Ct) where both endpoints received either colour 1 or 0. We now
apply the following procedure:

Relabelling procedure for E(C3,Cy)

o Select a vertex ¢ € C3 with colour zero which has a neighbour coloured
with three and a neighbour coloured with zero. Choose a neighbour
d of colour three and change the label of cd to two. As a result, the
colour of ¢ is changed to one. If cd has been the only edge incident
to d with label 1, the colour of d will change to two. Otherwise
the colour of d remains unchanged, in particular if d is adjacent to
vertices of Cz \ C3. All other colours remain unchanged, too. If there
is a neighbour a of ¢ with colour one, then a has degree one in G and
we change the label of ca to two as well. This step is iterated as often
as possible. Then we go to the next step.

e If possible, choose a vertex ¢ € C3 having a neighbour coloured with
zero and no neighbour with colour three. Change all incident edge
labels from one to four. As a result, the colour of ¢ remains unchanged
and its neighbours get one of the colours three or four. In particular,
colour zero cannot arise for a neighbour d since otherwise all the
neighbours of d except ¢ must lie in C3 which implies that d had
colour three before relabelling. Since new vertices of colour three
may be generated, we return to the previous step.

o If none of the steps can be applied to some ¢ € C3, the algorithm
stops.
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Suppose that after relabelling there is an edge cd such that ¢ and d have
the same colour. We may assume ¢ € C3 and d € C{. Then c was never
selected in our relabelling procedure and we have two possible cases: If ¢
has colour one, it has degree one in G and d cannot have degree one since
G has no isolated edges. If ¢ has colour zero, then it has no neighbours of
colour zero, contradiction. Thus, the Theorem is proved.

O

4 A general bound

In this section, we extend our approach for 3-colourable graphs to k-chromatic
graphs. We are going to prove:

Theorem 3. Let G = (V, E) be a graph without isolated edges, then

x(G) — 1 < gap,4(G) < x(G) +5.

Proof. The case x(G) < 3 was treated above, so let a k-chromatic graph
G = (V, E) with k > 4 and without isolated edges be given. Again, we use
a lexicographically maximal decomposition of its vertex set V' into k colour
classes C;,C5, -+, C). In this section we define

Cy={ceCa| N{c})N(CsU---UC) =0}

and N(C3) =: Ct. The proof is similar to the previous one. Again we first
describe an edge labelling to start with:

Edges between C; and C, are labelled by one and all edges connecting C)
to the colour classes Cs,---,C) by four. Furthermore, edges between the
colour classes Cj,---,Ck are also labelled with four. Edges between C,
and Cj are labelled with three. Edges between C; and C; are labelled with
i+ 5 for i =4,.-- , k. This labelling is shown in Figure 6 and the resulting
colours are listed in Table 1 and Table 2.

It is now easy to check that the Relabelling procedure for E(C3,C}) from
the proof of our result for 3-chromatic graphs also resolves all possible
conflicts in the present situation. Therefore, the Theorem follows. 0
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Figure 6: Structure of the colouring for graphs with chromatic number
k>4,

l(v) [ ¢ |a\ct|cs | Ca\ C3
N({v})n(CsuCyu---)=010,1,2,3,4 0,1 |01 X
N{v})Nn(CauCyu---)#£0 0,2,3 0,3,4 | X |2,8,---=max—1

Table 1: Induced colours of the colour classes C; and Cl.

{(v) | C3 | Ca | C5 | | Ch1| Ci
1156 [ & [k+1
Table 2: Induced colours of the colour classes C3,Cy, -, C.
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