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Abstract

The generalized k-connectivity kx(G) of a graph G was intro-
duced by Chartrand et al. in 1984. As a natural counterpart of
this concept, Li et al. in 2011 introduced the concept of general-
ized k-edge-connectivity. In this paper, we completely determine
the precise values of the generalized 3-connectivity and generalized
3-edge-connectivity for the Cartesian products of some graph classes.
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1 Introduction

All graphs in this paper are undirected, finite and simple. We follow
the notations and terminology of [1] for those not defined in this paper.
Connectivity is one of the most important concepts in graph theory and its
applications, both in a combinatorial sense and an algorithmic sense. In
theoretical computer science, connectivity is a basic measure of reliability of
networks. By the well-known Menger’s theorem, the (vertex) connectivity of
a graph G = (V(G), E(G)), denoted x(G), can be defined as the minimum
k({u,v}) over all 2-subsets {u,v} of V(G), where «({u,v}) denotes the
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maximum number of internally disjoint u-v paths in G. In [2], Chartrand
et al. introduced the following generalized connectivity. Let G be a graph
of order n > 2 and let k be an integer with 2 < k¥ < n. For a set S of &
vertices of G, let x(S) denote the maximum number £ of edge-disjoint trees
T1,T2,...,Te in G such that V(T;)) N V(T;) = Sfor 1 <i < j < ¢ (Note
that these trees are vertex-disjoint in G\ S.) A collection {T},T5,...,T;}
of trees in G with this property is called a set of internally disjoint trees
connecting S. The generalized k-connectivity of G is then defined as

kk(G) = min{k(S) : § C V(G) and || = k}.

Thus k2(G) = &(G) and k(G) = 0 when G is disconnected. As a natural
counterpart of the generalized connectivity, recently Li et al. [11] intro-
duced the following concept of generalized edge-connectivity. Let A(S) de-
note the maximum number £ of pairwise edge-disjoint trees Ty,75,...,T¢ in
G such that S C V(T;) for 1 < i < £. The generalized k-edge-connectivity
of G is defined as

Me(G) = min{A\(S) : § C V(G) and |S| = k}.

Thus A\2(G) = A(G) is the usual edge-connectivity, and Ax(G) = 0 when G
is disconnected. Clearly, we have k¢ (G) < Ap(G).

The generalized connectivity and edge-connectivity are also called the
tree connectivities. In addition to being a natural combinatorial measure,
the tree connectivity can be motivated by its interesting interpretation in
practice. For example, suppose that G represents a network. If one wants
to connect a set S of nodes of G with |S| > 3, then a tree has to be used to
connect them. This kind of tree with minimum order for connecting a set
of nodes is usually called a Steiner tree, and popularly used in the physical
design of VLSI [15]. Usually, one wants to consider how reliable (or tough)
a network can be for the connection of a set of vertices. Then the number
of totally independent ways to connect them is a measure for this purpose.
The tree connectivities can serve for measuring the capability of a network
G to connect any k vertices in G. The reader is referred to a recent survey
[10] on the state-of-the-art of research on tree connectivities.

Products of graphs occur naturally in discrete mathematics as tools in
combinatorial constructions, they give rise to important classes of graphs
and deep structural problems. Cartesian product is one of the most impor-
tant graph products and plays a key role in design and analysis of networks.
Many researchers have investigated the (edge) connectivity of the Cartesian
product graphs in the past several decades [4, 6, 7, 8, 14, 16, 20]. Specially,
the exact formula for x(GOH) was obtained.
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Theorem 1.1 [13, 16/ Let G and H be graphs on at least two vertices.
Then x(GOH) = min{x(G)|H|, k(H)|G|,0(G) + 6(H)}.

This theorem was first stated by Liouville [13]. However, the proof never
appeared. In the meantime, several partial results were obtained until
Spacapan [16] provided the proof. Theorem 1.1 in particular implies the
following result of Sabidussi [14]:

Theorem 1.2 [14] Let G and H be connected graphs. Then x(GOH) >
K(G) + k(H).

Li, Li and Sun [9] investigated the generalized 3-connectivity of the
Cartesian product graphs and get the following result which could be seen
as an extension of Theorem 1.2.

Theorem 1.3 [9] Let G and H be connected graphs such that k3(G) >
k3(H). We have

(2) If k3(G) < K(G), then k3(GOH) > k3(G) + k3(H). Moreover, the
bound is sharp;

(i) If k3(G) = (G), then k3(GOH) > k3(G) + k3(H) — 1. Moreover, the
bound is sharp.

In [17], we continue the research on the tree connectivity of the Carte-
sian product graphs and get the following result for the generalized 3-edge-
connectivity of Cartesian product.

Theorem 1.4 [17] Let G and H be two connected graphs, we have
A3(GOH) = A3(G) + A\3(H). Moreover, the bound is sharp.

With a similar but more complicated argument, we get the following
result for the generalized 3-edge-connectivity of the strong product graphs.

Theorem 1.5 [18] For any two connected graphs G and H, we have A3(GR
H) > min{2A3(G) + A3(H), A3(G) + 2X3(H)}, where GR H is the strong
product of G and H. Moreover, the bound is sharp.

Note that in the sequel we use K., Cr,, T}, to denote a complete graph,
a cycle and a tree of orders m, respectively. In this paper, we investigate
the generalized 3-connectivity and generalized 3-edge-connectivity for the
Cartesian products of some special graph classes and get the following
result.
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Theorem 1.6 Let m,n > 3, then the following holds:

(i) k3(KnOKp) = M(K,O0K,)=m+n—3;

(i1) K3(KmOChr) = Aa(Km0Cp) = m;

(iit) kK3(KnOT,) = M3(Kp,OT) =m —1;

(iv) K,3(Cm[:|Cn) = Aa(CmDCn) = 3,’

(v) K3(CrnOT,) = A3(Cr,OT3) = 2;

(vi) A3(TnOT,) = 2; if both T,,, and T are paths, k3(T;,0T,) = 1 and
otherwise, k3(T,,07T},) = 2.

The proof of Theorem 1.6 consists of Lemmas 3.1, 3.2, 3.5, 3.6 and Proposi-
tions 3.4, 3.8. In this theorem, we completely determine the precise values
of the generalized 3-(edge)-connectivities for the Cartesian products of any
two graphs which belong to the following three graph classes: complete
graphs, trees and cycles.

2 Preliminaries

The Cartesian product of two graphs G and H, denoted by GOH, is
defined to have the vertex set V(G) x V(H) such that (u,u’) and (v,v’)
are adjacent if and only if either v = v and v'v' € E(H), or v’ = v’ and
uv € E(G). Note that this product is commutative, that is, GOH = HOG.

201 V1 G(v1) G(va) G(vs) G(vy)
H(uy ) r<t—e=2 1

: H(u) a3

U3 3

G H H(us)

(a) (b) (¢)

Figure 2.1 Graphs G, H and their Cartesian product.

We use the following useful notion of projection which was used in
(6, 7). The mappings pg : (u,v) — » and py : (u,v) — v from V(GOH)
into V(G), resp. V(H), are weak homomorphisms from GOH onto the
factors G, resp. H. They are called projections in the literature.

Let G and H be two graphs with V(G) = {u:|l < i < n} and V(H) =
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{v;|1 < j < m}. We use G(v;) to denote the subgraph of GOH induced
by the vertex set {(u;,v;)|1 < i < n} where 1 < j < m, and use H(u;) to
denote the subgraph of GOH induced by the vertex set {(u;,v;)|1 < j < m}
where 1 < i < n. Clearly, we have G(v;) = G and H(u;) = H. For
example, as shown in Figure 2.1, G(v;) 2 G for 1 < j <4 and H(u;) 2 H
for 1 <i < 3. Forl < j; # jo < m, the vertices (u;,v;,) and (u;,v;,)
belong to the same graph H(u;) where u; € V(G), we call (us,v;,) the
vertez corresponding to (u;,v;,) in G(v;,); for 1 < iy # i3 < n, we call
(us,,v;) the vertex corresponding to (ui,,v;) in H(u;,) [9]. Similarly, we
can define the path and the tree corresponding to some path and tree,
respectively. For example, in the graph (c) of Figure 2.1, let P, resp. P,
be the paths whose edges are labelled 1, resp. 2 in H(u,), resp. H(u2).
Then P, is called the path corresponding to P, in H(uy). Clearly, P) and
Ps correspond to the path vy, vs,v3,v4 in H.

Chartrand et al. [3] got the precise value of the generalized k-connectivity
for the complete graph K,,.

Theorem 2.1 [8] For every two integersn and k with2 < k < n, sx(K,) =

Li, Mao and Sun obtained the explicit value for A\x(K,) and a sharp
lower bound of A3(G) for a general graph G as follows.

Theorem 2.2 [11] For every two integers n and k with 2 < k < n,
Ae(Kn) =n— f"E]

Theorem 2.3 [11] Let G be a connected graph with order n and edge-
connectivity A(G) = 4s + r, where s and r are integers with s > 0 and
0 <r < 3. Then A3(G) > 3s + [§] and the bound is sharp. In particular,
23(G) 2 P2

We still need the following two results.

Lemma 2.4 [12] Let G be a connected graph of order n. If there ezist two
adjacent vertices of degree §(G), then Ax(G) < 6(G) — 1 for every integer
k with 3 < k < n, and moreover the bound is sharp.

Theorem 2.5 [9] Let G be a connected graph and T be a tree. The follow-

ing assertions holds:
(2) If k3(G) = k(G) > 1, then k3(GOT) > k3(G). Moreover, the bound is
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sharp;
(i) If 1 < k3(G) < &(G), then k3(GOH) > k3(G) + 1. Moreover, the
bound is sharp.

3 Proof of Theorem 1.6

In the following argument, we consider graphs with orders at least three.
Firstly, we investigate the Cartesian product of two complete graphs and
get the following result.

Lemma 3.1 «3(Kn0OK,) = M(KnOKp)=m+n—3.

Proof. Since K,,(OK, is a (m+n—2)-regular graph, we have x3(K,,0K,) <
A3(KOK,) < m+n — 3 by Lemma 2.4. Thus, we need to find at least
m + n — 3 internally disjoint trees connecting S for any set S = {z,y, z}
in the following argument. Let G = K, H = K, and = € V(G(va)),y €
V(G(vg)),z € V(G(vy)), where 1 < a,8,7 < n. In order to prove this
lemma, we need the following three claims.

Claim 1. For the case that «, 3,7 are distinct, we can construct at least
m + n — 3 internally disjoint trees connecting S.

Proof of Claim 1. Without loss of generality, we assume that z €
V(Gw))NV(H(u1)),y € V(G(v2)), z € V(G(v3)). Furthermore, let v/, 2’
be the vertices corresponding to y, z in G(v,), ', 2" be the vertices corre-
sponding to z, z in G(v2) and z”,y” be the vertices corresponding to z,y
in G(v3). Our proof consists of the following three cases.

G(v1)  G(vra) G(us)
H(w1)

Figure 3.1 The graph of Case 1.

Case 1. pa(z) = pe(y) = pc(2).
Now we have that z,y’,z’ are the same vertex in G(v;). Let z; be a
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neighbor of z in G(v;). Without loss of generality, we assume that z; €
H(uz). Let i and z{ be the corresponding vertices of z; in G(v2) and
G(vs), respectively. Clearly, yz| € E(G(vp)),2z{ € E(G(v3)). Let Ty
be the tree obtained from T] and edges xz;,yz], 2z}, where T} is a tree
connecting {z;, z}, z{} in H(uz) (see Figure 3.1). Since z has at least m—1
neighbors in G(v;), we can find m — 1 such trees. Thus, we get at least
(m —1)+ (n — 2) = m 4+ n — 3 trees connecting S totally since there are
n — 2 internally disjoint trees connecting S in H(u;). It is easy to show
that any two of these trees are internally disjoint.

Gri) Gv) G(w)

)

Hw) £ . T,
1 1 - 7
H(uy) | - 1 .
q 1 , 1 i

H(’lt;;) [ R F4

Figure 3.2 The graph of Case 2.

Case 2. pg(z),pc(y), pc(z) are three distinct vertices.
Without loss of generality, we assume that z = V(G(v;)) N V(H (u1)),
y = V(G(v2)) N V(H(ug)) and z = V(G(v3)) N V(H(u3)). As shown in
Figure 3.2, let the edges labelled by i belong to the tree T;(1 < i < m — 1),
then we have m — 1 such trees. Similarly, let the edges labelled by i’ belong
to the tree T(1 < i’ < n — 2), we have n — 2 such trees. It is easy to show
that any two of these m + n — 3 trees are internally disjoint.

Case 3. Two of pg(z),pe(y), pc(z) are the same vertices.
Without loss of generality, we assume that z = V(G(v)) N V(H(u,)),
y = V(G(v2)) N V(H(uz)) and z = V(G(v3)) N V(H(uz)). With a similar
argument to that of Case 2, we get m + n — 3 internally disjoint trees as
shown in Figure 3.3.

The argument of the following claim is similar to that of Case 2 of Claim
1, we can get m 4+ n — 3 internally disjoint trees as shown in Figure 3.4.

Claim 2. For the case that exactly two of a, 3,7 are distinct, we can
construct at least m + n — 3 internally disjoint trees connecting S.
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H(ul) 1 [ ]
1 i
H(u?_) . 1 1 T}
t i i
H(“S) sl i d

Figure 3.3 The graph of Case 3.

The final case that a, 8, are the same is similar to Case 1 of Claim 1,
thus the following result holds.

Claim 8. For the case that a, 3,y are the same, we can construct at
least m + n — 3 internally disjoint trees connecting S. | |

G(wn) G(w) G(va)

Figure 3.4 The graph of Claim 2.

With a similar argument to that of Lemma 3.1, we get the following
result about the Cartesian product of a complete graph and a cycle.

Lemma 3.2 x3(K,,00C,) = A3(KnOCr) =m
For m > 3, the wheel graph W,, is defined as a graph constructed by
joining a new vertex to every vertex of a cycle Cp,. The following result

concerns the Cartesian products of connected graphs with minimum degrees
1 and some special graph classes.

Lemma 3.3 [17] Let G be a connected graph with 6(G) = 1 and order
n>3.
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(i) If H is a connected graph with 6(H) = 1 and order m > 3, then
A3(GOH) =2;

(ii) If H is a cycle, then A\3(GOH) = 2;

(iti) If H is a wheel graph, then A3(GOH) = 3;

(iv) If H is a complete graph with order m > 3, then \3(GOH) =m — 1.

By Lemma 3.3, the following proposition holds:

Proposition 3.4 (i) A3(T,,07T,) =2;
(1) M(K,O0T,)=m—1;
(3ii) A3(CrOT3) = 2.

Lemma 3.5 (i) x3(C,,0T,) = 2;
(i) ks(Wp,,OT,,) = 3;
(i) k3 (K,OT,) =m — 1.

Proof. Since k3(Cpn) = 1 < 2 = k(Cp), k3(Wr) = 2 < 3 = w(Wy,)
and k3(K,,) = m -2 < n—-1 = k(Kpn), we have k3(C,,,0T,) > 2,
Kk3(W,,OT,) > 3 and k3(K,,0T,) > m — 1 by Theorem 2.5. Thus, by
Lemma 3.3 and the fact that kx(G) < Ak(G), (i)-(iii) hold. 1

Lemma 3.6

k3(T,,0T,) = { 1, if both Trn and T, are paths;

2, otherwise.

Proof. If both T}, and T,, are paths, we know that (7,007} = 2, and
let S be a set of three vertices of degree two since there are four such
vertices. It is not hard to show that the number of internally disjoint trees
connecting S is 1 and we have x3(7;,,007;,) = 1.

Otherwise, with a similar argument to that of Lemma 3.1, we can get
that there are at least two internally disjoint trees connecting S for any set
S of three vertices. Thus, «3(T,,,07T,) = 2. ]

Let Cp, 1 ay,a2,--- ,an,a) and Gy, : by, b2, - -+ , by, by be two cycles, and
let r be an integer with 0 < » < m — 1. The r-pseudo-cartesian product (5]
of C,, and C,,,, denoted by C,[,Cyy,, is the graph obtained from C,[C,, by
replacing the edge set {{(a1, b:)(an,b:) : 1 <1 < m} by {(a1,bisr)(@n,b;) :
1 € ¢ £ m} with subscripts of b’s modulo m. By definition, we have
c.0,.C, = C,0C, if r = 0 or m. In [19], we investigated the tree
connectivities of r-pseudo-cartesian product of two cycles. Especially, the
following result was obtained.
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Lemma 3.7 [19] £3(Co0,Cp) = A3(Cn0,Cy) = 3.

By Lemma 3.7, the following proposition clearly holds. However, since
[19] has not yet been published, we need to give a proof of this result.

Proposition 3.8 x3(C,0C) = A3(CrOCy,) = 3.
Proof. It is not hard to show that A(C,0C;,) = 4, then A3(C,0C,)>

3MCallCm)=2 _ 5 by Theorem 2.3. We also have A3(Cn0Crm) < §(CrOCm)~
1=3 by Lemma 2.4 . Thus A3(C,0C,,) = 3. Similarly, we can prove that

k3(CrOCy) = 3. 1
Proof of Theorem 1.6. By Lemmas 3.1, 3.2, 3.5, 3.6 and Propositions
3.4, 3.8, the theorem holds. |
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