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Abstract

For a set S of k vertices of G, let x(S) denote the maximum
number £ of pairwise edge-disjoint trees T1,T3,...,T¢ in G such
that V(T)) N V(T;) = S for 1 £ ¢ # 7 < ¢ and A(S) denote the
maximum number ¢ of pairwise edge-disjoint trees T1,T%,...,T¢ in
G such that S C V(T;) for 1 £ ¢ £ £. Similar to the classical
maximum local connectivity, H. Li et al. introduced the parameter
Er(G) = max{k(S)|S C V(G),|S| = k}, which is called the maxi-
mum generalized local connectivity of G. The maximum generalized
local edge-connectivity of G which was introduced by X. Li et al. is
defined as Ak (G) = max{A(S)|S € V(G),|S| = k}. In this paper, we
investigate the maximum generalized local connectivity and edge-
connectivity of a cubic connected Cayley graph G on an Abelian
group. We determine the precise values for %3(G) and A3(G) and
also prove some results of Rx(G) and Ax(G) for general k.
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1 Introduction

All graphs in this paper are undirected, finite and simple. Any no-
tation or terminology not defined here, follows that used in (3, 4]. Con-
nectivity is one of the most important concepts in graph theory and its
applications, both in a combinatorial sense and an algorithmic sense. In
theoretical computer science, connectivity is a basic measure of reliability
of networks. By the well-known Menger’s theorem, the connectivity of a
graph G = (V(G), E(G)), denoted by £(G), can be defined as the mini-
mum x({u,v}) over all 2-subsets {u,v} of V(G), where x({u,v}) denotes
the maximum number of internally disjoint uw-v paths in G. In contrast
to this parameter, ®(G) = max{x({u,v})|lu,v € V(G),u # v}, intro-
duced by Bollobéas [5], is called the mazimum local connectivity. Simi-
larly, A(G) = max{\({z,v})|u,v € V(G),u # v} is the mazimum local
edge-connectivity, where A({u,v}) denotes the maximum number of edge-
disjoint u-v paths in G. The concept of maximum local connectivity and
edge-connectivity have obtained wide attention and many results have been
worked out (for example, see [5, 6, 10, 20]).

In (7], Hager introduced the following generalized connectivity. Let G
be a graph of order n > 2 and let k be an integer with 2 < k¥ < n. For
a set S of k vertices of G, let x(S) denote the maximum number ¢ of
pairwise edge-disjoint trees T1,T3,...,T; in G such that V(T;)) NV (T;) = S
for 1 < i # j < £. Note that these trees are vertex-disjoint in G\ S. A
collection {T1,T,...,T¢} of trees in G with this property is called a set
of internally disjoint trees connecting S. The generalized k-connectivity
of G is then defined as xx(G) = min{x(S) : § C V(G) and |S| = k}.
Thus k2(G) = (G) and k(G) = 0 when G is disconnected. As a natural
counterpart of the generalized connectivity, Li et al. in [15] introduced the
following concept of generalized edge-connectivity. Let A(S) denote the
maximum number ¢ of pairwise edge-disjoint trees T}, T5,...,T% in G such
that S C V(T}) for 1 £ ¢ < £. The generalized k-edge-connectivity of G is
defined as Ar(G) = min{A(S) : § C V(G) and |S| = k}. Thus Az(G) =
A(G) is the usual edge-connectivity, and Ax(G) = 0 when G is disconnected.
Clearly, we have ki(G) < Ax(G). The generalized connectivity and edge-
connectivity are also called the tree connectivities. There are more and more
researchers investigating this topic, such as [7, 11, 12, 14, 15, 17, 18, 19].
The reader is referred to a survey [13] on the state-of-the-art of research on
tree connectivities.

Similar to the classical maximum local connectivity, H. Li et al. [12]
introduced the parameter Kx(G) = max{x(S)|S C V(G),|S| = k}, which
is called the mazimum generalized local connectivity of G. The marimum
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generalized local edge-connectivity of G which was introduced by X. Li et
al. in [14] is defined as Ax(G) = max{A(S)|S C V(G),|S| = k}.

Cayley graphs have been important objects of study in algebraic graph
theory over many years (e.g. [2], [3]). In particular, mathematicians and
computer scientists recommend (e.g. (1], [8], [21]) Cayley graphs as mod-
els for interconnection networks because they exhibit many properties that
ensure high performance. In fact, a number of networks of both theo-
retical and practical importance, including hypercubes, butterflies, cube-
connected cycles, star graphs and their generalizations, are Cayley graphs.
The reader is referred to the survey papers [8] and [9] for results pertain-
ing to Cayley graphs as models for interconnection networks. Due to the
importance of Cayley graphs in network design and the significance of reli-
ability of networks, it is of interest to understand the maximum generalized
local connectivity and edge-connectivity of Cayley graphs. This motivated
our study in this paper.

In this paper we investigate the maximum generalized local connectivity
and edge-connectivity of a cubic connected Cayley graph G on an Abelian
group. We will determine the precise values of %3(G) and A3(G) (Theorem
2.7). Based on this result and the monotonicity of %x(G) and Ax(G) (Lem-
mas 2.8 and 2.9), we will prove a result of % (G) and Ax(G) for general &
which shows the changing trend of %x(G) and A\x(G) (Theorem 2.12).

Note that in the following we assume that every tree T' which connects
S is minimal, that is, the subgraph which is obtained by deleting any set of
vertices or edges of T will not connect S. This assumption will not affect
our results.

2 Main results

Lemma 2.1 For a connected d-regular graph G, Ri(G) = d if and only if
K. 4 is a minor of G.

Proof. We assume that £(S) = %x(G) where S C V(G) and |S| = k. Let
T = {T;]1 < j < d} be a set of d internally disjoint trees connecting S.
Since G is d-regular, we know every vertex of S is a leaf in each T}, then
Ky, is a minor of each T for 1 < j < d. Thus, Kj 4 is a minor of the

subgraph U;-i=1 Tj of G.

Let H = K} 4 be a minor of G, then H can be formed from G by deleting
edges and vertices and by contracting edges such that V(H) = AUB where
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A = {w;|]1 <i <k} C V(G) is one part of the bipartition of V(H) and B is
another one. Then, with an inverse procedure, we can obtain the original
graph G from H and get d internally disjoint trees connecting A. Thus,
k(A) = d and we have Ri(G) = k(A) = d since k(A) < d. ]

In [14], Li and Mao made the following observation which can be de-
duced by the definitions of x(G) and A (G).

Observation 2.2 [14] For a connected graph G, we have Ri(G) < Xk(G).
For a cubic connected graph G, equality holds in the above inequality.
Lemma 2.3 For a cubic connected graph G, we have Rx(G) = Ak (G).

Proof. Since the result clearly holds for the case that Ax(G) = 1, we assume
that Xx(G) > 2 in the following argument. Suppose that A(S) = Ae(G) = ¢
where S C V(G) and |S| = k. Let T = {T;|1 < j < £} be a set of
£ edge-disjoint trees connecting S. For any two trees T, and T}, where
1 < 41 # j2 < ¢, if they have a common vertex, say v, which does not
belong to S, then we must have degg(v) > 4, a contradiction. Thus, any
two trees in 7 are internally disjoint, so &x(G) > &(S) > £ = A(S) = A (G).
Together with Observation 2.2, we complete the proof. |

We use Ng(u) to denote the set of neighbors of v in G. For a set
5 V(G), let Ng(5) = (Uyes No(w))\ S-

Lemma 2.4 Let G be a cubic connected graph with order n. If k > [%] +
1, then Rx(G) = Ak(G) < 2. Moreover, if k > [32£2] + 1, then Ri(G) =
A(G) = 1.

Proof. We now prove the first part of the lemma. Since G is cubic, B (G) <
3. Suppose that Bx(G) = &, (S) = 3 for some subset S C V(G) with |S] =
k, then there exists a set of three internally disjoint trees connecting S, say
T = {Ti]1 < i < 3}. Since G is cubic, every vertex of S must be a leaf of
each T; for 1 € i < 3 and the degree of each vertex in T} is at most 3. Thus,
INT,(S)| = [4] and |E(T3)| = |[V(T3)| -1 2 S| +|Ng(S)| -1 2 k+[4]-1.
Since these three trees are also edge-disjoint, the number of edges in these
trees is at least 3(k + [£] — 1) > 4k — 3 > 4([3] +1) — 3 > 32, this
produces a contradiction as the size of G is "% Thus, Rx(G) = A(G) < 2
by Lemma 2.3.

We next prove the second part of the lemma, that is, k,(S) = 1 if
k > [3242] + 1, where S C V(G) and |S| = k. Suppose that there are
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at least two internally disjoint trees connecting S in G, then the number
of edges in these trees is at least 2(k — 1) > %,ﬂ, a contradiction. Thus,

Rk (G) = Ax(G) = 1 by Lemma 2.3. |
Yh-_p
T A
Poi 0 ieus
S : iUg
S
v~ Uh Y s
\\\ _ 4/ )

Figure 2.1 A prism with 2h vertices.

The d-dimensional cube Qg is the Cartesian product of d copies of the
path Pp of two vertices. The Cartesian product P(2h) = C,OP; of a
cycle Cp of length h > 3 and P, is called a prism. As shown in Figure
2.1, V(P(2h)) = {ui,v; : 1 <4, < h}, E(P(2h)) = {(wi,vs) : 1 <@ <
h}U{uiuiqy : 1 <1< h}YU{vjvj41 : 1 £ j < h} with subscripts modulo h.
The Mobius ladder M(2h) of order 2h is the graph obtained from P(2h)
by deleting the edges u,u; and v v, and adding the edges u;vy and wpvy.

Let G be a connected d-regular planar graph where d > 3. Since G is
planar, we know G does not contain a Ky 4 as a minor where & > 3, so
Rx(G) <d—1 by Lemma 2.1. By definition, a prism G is a cubic planar
graph, so ®3(G) < 2. Consider the vertex set S = {u,,up,u3} as shown in
Figure 2.1, it is not hard to find two internally disjoint trees connecting S,
then %3(G) > #(S) = 2. Thus, R3(G) = 2. Moreover, A3(G)=2 by Lemma
2.3. Now we have the following result.

Lemma 2.5 If G is a prism, then R3(G) = A3(G) = 2.

The following result concerns a similar result for a Mdbius ladder.
Lemma 2.6 If G is a Mobius ladder, then %3(G) = A3(G) = 3.
Proof. Let G be a Mobius ladder with vertex set V(G)) = {ui,v; : 1 <

i,7 < h}. Since G is a cubic graph, ®3(G) = A3(G) < 3 by Lemma 2.3. We
choose S = {v;,u2,vs}, as shown in Figure 2.2, there are three internally
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Figure 2.2 Three internally disjoint trees connecting S = {vy, uz,vr}.

disjoint trees connecting S, where each tree T; contains edges labeled ¢ for
1 <1 < 3. Thus, K3(G) > &(S) = 3 and then %3(G) = A\3(G) = 3. | |

Let X be a finite group, with operation denoted additively, and A a
subset of X \ {0} such that a € A implies —a € A, where 0 is the identity
element of X. The Cayley graph Cay(X, A) is defined to have vertex set
X such that there is an edge between z and y if and only if z — y € A.

Now we consider a cubic connected Cayley graph on an Abelian group,
let X be an abelian group, A C X with 1 ¢ X, X! = X and |X| = 3.
By relabeling the elements of X we have the following 4 types[16]: (i
A = {a,b,c} and (A) = Z3; (ii) A = {a,ac,c} and (A) = (a,c|a® = c?
1,ac = ca) = Z3; (iii) A = {a,a71,c} and {(4) = (a,cla® = ¢ = 1,ac
ca) = Zy x Zp; (iv) A = {a,a},c} and {A) = {a,cla*’ = ¢* = 1,a"
c,ac = ca) = Zyp.

=
nmnnes

Cay((A), A) are isomorphic to @3, K4, P(2h) the prism with 2k vertices
and M(2h) the Mdbius ladder with 2k vertices according to type (i), type
(%), type (ii7) and type (iv), respectively. Recall that Cay(X, A) is con-
nected if and only if A generates the group X. Thus, any cubic connected
Cayley graph on an Abelian group is isomorphic to K4, @3, a prism P(2h)
or a Mobius ladder M (2h)[16]. Now by Lemmas 2.5 and 2.6, and from the
above argument, we can determine the precise values for ®3(G) and A3(G).

Theorem 2.7 If G is a cubic connected Cayley graph on an Abelian group,

then
3, if Gisa Mobius ladder,

R3(G) = Xa(G) = { 2, otherwise.

For a cubic connected graph, the following result holds.
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Lemma 2.8 For a cubic connected graph G with order n, we have R(G) >
Rr+1(G), where3 <k <n-1.

Proof. Assume that £(S) = Rx4+1(G) = € where S C V(G)and |S| = k+1.
Let 7 = {T;|1 < j < £} be a set of £ internally disjoint trees connecting
S in G. Since G is cubic, we have 1 < £ < 3. The result clearly holds for
the case that £ = 1. Thus, we assume that 2 < £ < 3 in the following. Let
v € S, we will consider the following two cases.

If v is a leaf of each T; for 1 < j < ¢, then let 8’ = S\ {v} and
T' = {T;]1 £ j < €} where T} = T;\ {v}. Clearly, 7" is a set of ¢ internally
disjoint trees connecting S’, and Rx(G) 2> £(S’) > £ = Fr+1(G).

Otherwise, there exists 1 < jo < £ such that v is not a leaf of T}, then
¢ = 2 since G is cubic. Without loss of generality, we assume that jp = 1,
then v must be a leaf of T5. Thus, 7' is a set of two internally disjoint
trees connecting S’, where 8’ = S\ {v} and 77 = {T1,T> \ {v}}, then
Re(G) 2 k(S)>2= Fr+1(G). [ |

For a general graph G, the monotonicity of Ax(G) holds.

Lemma 2.9 For a connected graph G with order n, we have A(G) >
Me+1(G), where3 <k <n-1.

Proof. Assume that A(S) = Ag41(G) = £ where § C V(G)and |S| = k+1.
Let 7 = {T;]1 < j < £} be a set of £ edge-disjoint trees connecting S in G.
We know 7 = {Tj|1 < j < £} is also a set of £ edge-disjoint trees connecting
S\ {v} in G, where v € S. Then 2 (G) > A(S\ {v}) > A(S) = Ae41(G). B

Lemma 2.10 If G is a prism of order n and k = % + 2, then % (G) =
A(G) =2.

Proof. Let n=2h,k =% 4 2. We use the graph in Figure 2.1 and choose
8§ = {u;,v1,v2]1 < i < h}. Let T} be the path uy,vy,v9,us,... %, ..., up
and T, be the graph obtained from G by deleting edges of T;. Clearly, T}
and T, are two internally disjoint trees connecting S, then %x(G) > 2. By
Lemmas 2.5 and 2.8, we have %x(G) = 2, and then X\¢(G) = 2 by Lemma
2.3. |

For a Mobius ladder G of order n = 2h, choose S = {u;,v),v2|l <
i < h}, let T be the path uy,v1,v2,u2,...,u,...,us and T be the graph
obtained from G by deleting edges of T. With a similar argument to that
of the above lemma, the following result holds.
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Lemma 2.11 If G is a Mébius ladder of order n and k = 5 + 2, then
Rr(G) = .Xk(G) =2.

Recall that any cubic connected Cayley graph G on an Abelian group
is isomorphic to Ki, Qs, P(2k) or M(2h), we only need to consider the
latter two graph classes in our main result.

Theorem 2.12 Let G be a cubic connected Cayley graph on an Abelian
group of order n > 9.

(3) If G is a prism, then there exists an integer k; such that Ri(G) =
Ae(G) = 2 for any 3 < k < ky and nk(G’) =XM(G)=1foranyk; +1<
k < n; moreover, we have 3 +2 <k < [——'t-]

(i) If G is a Mobius ladder, then there exist two integers k2, k3 such that
Be(G) = M(G) = 3 for any 83 < k < ko, Ri(G) = 2(G) = 2 for any
ko+1 < k < k3 and Rx(G) = M (G) = 1 for any k3 +1 < k < n; moreover,
we have 3 < kp < [32],2 +2 < k3 < [32£2].

Proof. (i) By Theorem 2.7, Lemmas 2.4, 2.8 and 2.9, there exists an
integer k) such that ®x(G) = M (G) = 2 for any 3 < k < k; and % (G) =
Xk(G) = 1 for any k3 +1 < k < n. Moreover, 3 + 2 < k; < [32F2] by
Lemmas 2.4 and 2.10.

(#4) If G is a Mdbius ladder, we can get the following result: ®i(G) =
Nk (G) = 3 for k = 3 by Theorem 2.7; Rx(G) = X(G) = 2 for [32] +1 <
k < 2 4+ 2 by Lemmas 2.4, 2.8, 2.9 and 2.11; R(G) = M(G) = 1 for
k> [3—"'—] +1 by Lemma 2.4. Furthermore, by Lemmas 2.8 and 2.9, there
exist two integers kg, k3 such that %x(G) = Ax(G) = 3 for any 3 < k < ks,
Ex(G) = M(G) = 2 for any ko + 1 < k < k3 and Ri(G) = A(G) = 1 for
any k3 + 1 < k < n. Moreover, 3 < ky < [3"] +2<k; <|'M'—] |

3 Remarks

In this paper, we have investigated the maximum generalized local con-
nectivity and edge-connectivity of a cubic connected Cayley graph G on
an Abelian group. Based on the structure of Cayley graphs of degree 3
on an Abelian group and the monotonicity of %; and A, we determine
the precise values for ®3(G) and A3(G) (Theorem 2.7) and get a result of
Rk(G) and Ak(G) for general k which shows the changing trend of % (G)
and Xx(G) (Theorem 2.12). It is quite difficult to determine the precise
values of Bi(G) and Ax(G) for each 3 < k < n, that is, determine the
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precise values of kj, ko, k3, and one needs to find other approaches to solve
this problem.
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