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Abstract

We suggest the notion of the surface area centered at an edge for
a network structure, which generalizes the usual notion of surface
area of a structure centered at a vertex. As a specific result, we
derive explicit expressions of the edge centered surface areas for the
edge asymmetric (n,k)-star graph, following a generating function
approach, in terms of two different kinds of edges.

1 Introduction

Given a vertex v in a graph G, a question one may ask is how many vertices
are at distance i from v, i € [0, D(G)], where D(G) stands for the diameter
of G. This quantity has been referred to as the Whitney numbers of the
second kind [14] and the surface area with radius i centered at v [11], which
we adopt in this paper.

The surface area of a (di)graph can find several applications in network
performance evaluation, e.g., in computing various bounds for the problem
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of k-neighborhood broadcasting (8] and in spanning tree identification [15].
For solutions to this problem for various networks, including the (n, &)-star
graph, readers are referred to [2,11] and the references cited within.

In this paper, we study a related question: given an edge (v,w) in a
graph G, referred to as the reference edge henceforth, how many vertices
are at distance i from (v,w), i € [0,D(G)]? We refer to this quantity
as the surface area with radius i centered at (v, w), denoted as Bg (v, w, ).
We sometimes refer to ( Bg (v, w, 0), Bg(v,w,1),..., B§(v, w, D(G))) as the
edge-centered surface area sequence of G. We drop G from this notation,
and other relevant ones, when the context is clear.

Let G be a graph, and let e(v,w) be an edge in G. It is clear that
Bg(v,w,0) = 2. Let i € [1,D(G)], for a vertex u, if d(u,v) = %, but
d(u,w) < i, then the distance from u to (v, w) would be strictly less than
i. On the other hand, the very existence of (v, w) implies d(u,w) < ¢ + 1.
These facts and a symmetric consideration lead to the following definition.

Definition 1.1 Let G be a general graph, and let (v,w) be an edge of G.
For i€ [1,D(G)],

Bg(v,w,i) = Eg(v,w,t)+ Sc(v,w,?) + Le(v, w, ), (1)

where
Eg(v,w,i) = |{u€ G|(d(u,v)=19)A (d(u,w)=d(u,v))}{, (2)
Se(v,w,i) = |{u€G|(d(u,v) =9)A(d(u,w) =d(uv,v) +1)}{, (3)
Lo(v,w,i) = [{u € G|(d(u,v) =i+ 1) A (d(u,w) = d(u,v) — 1)}| {4)

It is clear that, by definition, S¢ (v, w, D(G)) = Le¢(v, w, D(G)) = 0.

This notion of edge-centered surface area of a graph is clearly an imme-
diate generalization of the usual notion of vertex centered surface area, with
the most general scenario being the surface area centered at a subgraph of
such a graph. Recently, it is suggested that the surface area centered at a
path of length 2 plays an important role in exploring techniques of estab-
lishing the conditional diagnosability of certain networks [16], namely, the
number of necessarily detectable faulty vertices in such a network. This
notion of edge-centered surface area, besides being an interesting combina-
toric quantity, also provides a good starting point along this line of research.
Explicit expressions for the edge-centered surface area for the general ar-
rangement graph has been studied in [6], and [5] where a generating function
approach is followed to derive the desired result.

Let (ag,@1,...,Gn,...) be an infinite sequence of numbers, to seek a
“simple representation” of a,, we construct a formal power series F'(z) =
3 is0ait’, often called a generating function of the above sequence. We can
then apply algebraic, differential, integral, and other operations to possibly
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simplify F(z), and finally extract the coefficient of z" in F(z), denoted
as [z"] F(z), which clearly equals a,. We can sometimes also derive other
properties of a,, such as its asymptotic approximation. For these reasons,
generating function has long been recognized as a powerful tool in carrying
out combinatorial studies, particularly in enumeration. For an excellent
introduction to generating function, as well as many approachable exam-
ples, readers are referred to [10,17]. On the other hand, [9] provides an
encyclopedic treatment of this subject.

In this paper, we study the edge-centered surface areas of the edge
asymmetric(n, k)-star graph following a generating function approach, in
terms of two kinds of reference edges.

The rest of this paper proceeds as follows: After briefly discussing the
(n, k)-star graph and some of its relevant properties in the next section, we
characterize the structures of the (n, k)-star graph vertices related to one
kind of reference edges in Section 3, and derive an explicit expression of
their associated edge-centered surface area in Section 4. The surface area
associated with the other kind of reference edges is dealt with in Section 5.
We finally present our main results in Section 6 and conclude this paper in
Section 7.

2 Edge-centered surface area of the (n, k)-star
graph

To address a scalability issue associated with the popular star graph [1],
the (n, k)-star graph, denoted as Sy x, was put forward in [7]. S, x, with
n!/(n — k)! vertices, brings in flexibility when choosing an appropriate in-
terconnection structure for an actual network, while preserving many at-
tractive properties of the star graph, including vertex symmetry. On the
other hand, S, x is not edge symmetric in general.

The vertex set of an S, i graph, n > 3,k € [1, n), is simply the collection
of all the k-permutations on (n) = {1,2,...,n}, and its edges are defined
via symbol replacement regarding the very first position: for any u,v €
V(Sn.k)s (u,v) € E(Sp k) if and only if v can be obtained from u by either
1) applying a transposition (1,7) to u, ¢ € [2, k] (i-edge); or 2) for some
z € (n) — {ui € [1,k]}, replacing w; with z in u (1-edge). It is thus clear
that Sy« is (n — 1)-regular. Notice that S, 1 is just the usual star graph

n.
The following diameter result is given in [7].

[ 2k-1, ifl1<k<|%,
D(Sa) ‘{k+["T—1J if 2] +1<k<n;
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We denote the identity vertex of S, » as ex = 12 - - k. We caution that in
later sections, we will use nations such as e;(e2) to denote external symbols
that occur in some specific external cycles, but they occur in a completely
different context from where e, might occur, and thus should not cause any
confusion.

Following the terms adopted in (7], we refer to u € (n) as an internal
symbol if u € [1, k]; and as an external symbol if u € (k, n]. We also refer to
i as an internal position if ¢ € [1, k]; and as an external position if i € (k, n]).
Figure 1 shows a (4, 2)-star graph, where an external symbol 3 occurs in an
internal position 1 in 32. Moreover, (12,21) is a 2-edge, while both (12, 32)
and (12,42) are 1-edges.

Figure 1: Sy

It is pointed out in [2,7] that, for a vertex u in Sy k, as a partial per-
mutation, an eztended permutation, v, on (n), can be derived, and then
be decomposed as a collection of possibly trivial cycles 1, C(u), referred to
as the cycle structure of u. Such a cycle structure is unique except for the
order of these cycles. Furthermore, for u € Sy, C(u) with b(u) symbols
consists of g;(u) non-trivial internal cycles and gg(u) non-trivial external
cycles. Each non-trivial internal cycle contains at least two internal sym-
bols and no external symbol and each non-trivial external cycle contains
exactly one external symbol and at least one internal symbol. We also refer
to a non-trivial cycle containing 1 a primary cycle.

For example, given f = 6351792, a vertex in Ag 7, we first derive f' =
6351792842 on (9) as follows: Since 8 does not occur in f, we let f; = 8.
On the other hand, since fg = 9, fi = 6, and fy = 1, but 4 does not occur
in f, we set f§ = 4. Then, it is easy to see that C(f’), always denoted by
C(f) in this paper, is (2, 3,5, 7)(8)(9; 4, 1, 6), where (2, 3, 5, 7) is a non-trivial

1A cycle is trivial if it contains exactly one symbol, called a fixed point. It is non-
trivial otherwise.
2We use “84” to indicate the two symbols that occur in external positions.



internal cycle, (8) is a trivial external cycle, and (9; 4, 1, 6) is a non-trivial
primary external cycle, with 9 being its external symbol, as indicated with
’. As a result, gr(f) = ge(f) = 1, and b(f) = 8. Notice the convention
we adopt here, when representing an external cycle, we place its external
symbol first. As a result, all the external cycles in a cycle structure are
ordered in terms of their respective external symbol, which plays a role in
the later enumeration of such cycle structures.

The following distance result between v and ey in Sy  is given in [2,7].

Theorem 2.1 Let d(u,v) stand for the distance between u and v in Sp k.
Then, for any u € Sy, k,

1. if u does not contain any non-trivial external cycle, then

_f b(u) +g1(u) —2, ifC(u) contains a primary cycle,
d(u,ex) = { b(u) + g1(u), otherwise; (5)

2. if u does contain at least one non-trivial external cycle, then

_J b(uw)+gr(u) —1 ifC(u) contains a primary cycle,
d(v,ex) = { b(u) + gr(u) +1, otherwise. (6)

For example, since C(f) for the above vertex f of Sg 7 contains a primary
external cycle, d(f,e7) = 8, and one of the shortest paths from f to ez is
given as follows3:

635179284 ‘2 365179284 13 563179284 13 763150284 17 263159784
(12) 6931597884 ‘15 923156784 13 423156789 1P 123456789,

where, (p1,p2) in “u (P1:2) v” is an edge that connects u and v in Sg 7. We

notice that, in the above path, (1,9) is a 1-edge, where the symbol 9 that
occurs in the first position of 9231567 is switched with 4, which does not
occur there; and all the other edges are i-edge, where i € [2,7].

To derive the edge-centered surface area for Sy x, we have to fix a ref-
erence edge (v,w). Since S,k is vertex symmetric, we choose v = ex =
123. .- k. But, since S, x is not edge symmetric, we cannot choose w arbi-
trarily. By the structural definition of Sy, «, it turns out that we have two
options: We can obtain w by either switching symbol 1 in v with an external
symbol e € (k,n], reference edge of the first kind henceforth; or switching

3For aresult on enumerating such shortest paths from a vertex u to ey in Sy, i, readers
are referred to [3], which is based on a result of {12].
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symbol 1 in v with another internal symbol [ € [2, k], thus requiring k& > 2,
reference edge of the second kind henceforth.

It is clear that there are n — k choice of e for the first kind of reference
edges, and k — 1 choices of ! for the second kind, with a total number of
n—1 reference edges in all, agreeing with the degree of S, ;. For example, as
shown in Figure 1, there are two first kind reference edges in S42: (12, 32)
and (12, 42); and one second kind reference edge, i.e., (12, 21).

The above two kinds of reference edges immediately lead to the following
respective automorphism: Let u € S, k, define ¢(u) by swapping symbol
1 and e(€ (k,n]) in u, when it is applicable; and define ¢(u) by swapping
symbol 1 and ! (€ (1, k]) in u, when it is applicable. For example, in S 3,
we have two choices for e, either 3 or 4. Letting e = 3, we have ¢(12) = 32,
but, $(42) = 42. On the other hand, we have exactly one choice for [, i.e.,
l =2, we have ¢(13) = 23, and ©(42) = 41.

It is clear that ¢(é(ex)) = ¢(p(ex)) = er. Moreover, since both ¢
and ¢ are automorphism, for any edge (u,v) € Sp i, (¢(u), #(v)) (respec-
tively, (¢(u), (v))) is also an edge in S, k. As a result, for any u € Sy, ,
d(u, ¢(ex)) = d(¢(u), ex), and d(u, p(ex)) = d(p(u), ex). Thus, we can use
the distance expression result as given in Theorem 2.1 to express the dis-
tance between u and ¢(ex) (respectively, between u and p(ex)).

In the rest of this paper, for notational simplicity, we fixe =k+ 1, and
1l = 2. It will be clear from our later derivation in the subsequent sections
that such choices are immaterial.

3 Vertex structures related to a first kind ref-
erence edge

To enumerate the vertices that are of certain distance to a reference edge
in S, %, we need to explore the relationship between the cycle structures of
all such vertices in Sy, ; and their distances to such a reference edge in light
of Theorem 2.1. We start the discussion with a reference edge of the first
kind, (ex, ¢(ex)), where with ¢(ex), we switch 1 and k + 1.

For a given vertex u in Sp x, k+1 and 1 can occur either together in one
cycle, or separately in two different cycles in C(u). In the later case, symbol
1 can appear in either an internal cycle, or an external cycle. If we further
consider the symbols that may or may not exist after £k + 1 and 1 in their
respective cycle; and, when 1 does not occur in a non-trivial external cycle,
whether there exists another non-trivial external cycle in C(u), there are
twenty-four cases for us to consider. After a detailed analysis of all these
cases, we have reached the following characterization result:

242



Theorem 3.1 Let u € S, k,n 2 3,k € [1,n) such that v = ex,w = ¢(v) =
(k+1)2:---k, d(u, (v,w)) =i € [1,D(Snx)]. Let A,B and C be possibly
empty sequences of internal symbols. Then,

1. If C(u) contains Ey = (k + 1;1, B), where B may be empty, and at
least another non-trivial external cycle, besides E,, then d(¢(u), ex) =
d(u, ex).

2. If C(u) contains Ey = (k + 1;1,B), B may be empty, but no other
non-trivial external cycles, then d(¢(u), ex) = d(u,ex) — 1.

3. If C(u) contains Ey = (k + 1; A, 1, B), where A is not empty but B
may be empty, then d(¢(u), ex) = d(u, ex) + 1.

4. If C(u) contains (k + 1) and Iy = (1, B), B may be empty, and at
least one non-trivial external cycle, then d(¢(u), ex) = d(u, ex).

5. If C(u) contains (k+ 1) and Iy = (1,B), B may be empty, but no
other non-trivial external cycles, then d(¢(u),ex) = d(u, ex) + 1.

6. IfC(u) contains E3 = (k+1; A) where A is not empty, and I; = (1, B),
where B may be empty, then d(¢(u), ex) = d(u, ex) — 1.

7. If C(u) contains E3 = (k + 1, A), and E} = (e,C, 1, B), where e is
an external symbol, B may be empty, and either both A and C are
empty, or neither is, then d(¢(u), ex) = d(u, ex).

8. If C(u) contains E3 = (k + 1; A), where A is not empty, and Es =
(e;1, B), wheree is an external symbol, B may be empty, then d(¢p(u), ex)
=d(u,ex) — 1.

9. If C(u) contains (k + 1) and E4 = (e; C, 1, B), where e is an external
symbol, B may be empty, but C is not, then d(¢(u), ex) = d(u, ex)+1.

Proof: We prove Cases 1 and 2 as follows. Assume B # ¢, i.e., C(u)
contains E; = (k +1;1,by,...,by), which is a non-trivial primary external
cycle, thus, by Eq. 6,

d(u, ex) = b(u) + g1(u) - 1.

On the other hand, since u; = b2,...,us, = k + 1, and upy = 1, we
have that ¢(u)1 = b2,...,é(u)s, = 1, and @(u);,, = k+ 1. As a result,
k +1 becomes a fixed point in C(¢(u)), and the original external cycle E;
of C(u) turns into a primary internal cycle (1,bs, ..., by) in C(¢(u)). Hence,
b(¢(u)) = b(u) — 1, and gr(¢(u)) = gr(u) + 1.
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o If it falls into Case 1, i.e., C(u) contains at least another non-trivial
external cycle, besides E;, then C(¢(u)) contains at least one non-
trivial external cycle, and the above primary internal cycle. By Eq. 6,

i = d(p(u), ex) b((u)) + gr(d(u)) — 1

(b(u) —1) + (gr(w) +1) -1
= b(u)+g(u) —1=d(u,ex).

i

o Otherwise, it falls into Case 2, C(¢(u)) contains no non-trivial external
cycle, but the above primary internal cycle. By Eq. 5,

i=d(p(u),er) = b(d(u))+g(d(uw)) — 2 ="b(¢(w)) +g1($(u)) — 2
= (b(u) = 1) +(gr(u) + 1) — 2 = b(u) +gr(u) - 2
= d(u,ex) - 1.

The proof of the B = ¢ case and those of the other cases are similar. O
We use Table 1 to demonstrate the results as reported in Theorem 3.1

for Ss2. We notice that the edge-centered surface area sequence of Sy2,
centered at (12, 32), is (2,3,5,2).

Table 1: Edge-center surface area of Sy2 centered at (12,32)

u | o C(u) d(u, e2) | ¢(u) | d(ed(u),e2) | d(u, (v,w)) | Case
32 | 3214 (3; 1) 1 12 0 0 2
12 | 1234 | (1)(2)(3)(4) 0 32 1 0 5
2312314 (3;1,2) 2 21 1 1 2
21 | 2134 (1, 2) 1 23 2 1 5
42 | 4231 (4; 1) 1 42 1 1 7
313124 (3;2,1) 2 13 3 2 3
13 ] 1324 (3; 2) 3 31 2 2 6
24 | 2431 (4; 1, 2) 2 24 2 2 7
a1 | 4132 | (4,2, 1) ) 43 3 2 8
| 43 | 4321 | (4;1)(3; 2) 3 41 2 2 9
(343412 (3, 1)(4; 2) 3 14 3 3 1
14 | 1432 (4, 2) 3 34 3 3 4

If we refer to the nine mutually exclusive partition as shown in The-
orem 3.1 as Cases 1 through 9, Theorem 3.1, Egs. 2, 3 and 4 tell us the
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following:

Es, . (ex, d(ex), 1)

= |{u € Sn| u occurs in either Case 1, 4 or 7 and d(u, ex) = i}, ]
Sn,k(ekc, p(ex), 3)
= [{u € S| u occurs in either Case 3, 5 or 9 and d(u, ex) =i}/, 8)

LS",k (ekv ¢(ek)a 7')
= |{u € Sa| u occurs in either Case 2, 6, or 8 and d(u, ex) =1+ 1}|.(9)

For all i € [1,D(Sn )], let By} (ex, p(ex),),l € [1,9], stand for the
number of cycle structures falling into Case ! of Theorem 3.1, by Egs. 1
through 4 and Eqgs. 7 through 9, the edge-centered surface area of Sp x,
centered at (ex, d(ex)), is given as follows:

Bg (e, d(ex),5) = ZB x(er, dlex), ). (10)

Before evaluating B:;’lk (ex, d(ex), i), € [1,9], we will provide a generating
function based enumerating model in the next section.

4 Surface area of S, centered at a reference
edge of first kind

Our task for now is to enumerate cycle structures C(u) containing b(u) sym-
bols, organized in g;(u)(> 0) non-trivial internal cycles and n — k possibly
trivial external cycles, that satisfy Cases 1 through 9 and the general setting
as given in Theorem 3.1.

For a direct counting approach to enumerate such structures, readers are
referred to [6]. We now follow a multivariate generating function approach
(2] to enumerate such structures. For a given u € S, x, since gg(u) does
not play a role in the distance between u and a reference edge, symbol
1 plays a special labeling role in forming such an edge as indicated in
Theorem 3.1, and labels are irrelevant in enumerating structures, we use
z to mark, exponentially, an internal symbol, excluding 1, that occurs in
all the cycles, trivial or not, of C(u); y all the symbols, both internal and
external, including 1, in non-trivial cycles; and z a non-trivial internal cycle.

Given f = 6351792 in Sg 7, then C(f) = (2,3,5,7)(8)(9;4,1,6). Since
four symbols occur in the non-trivial internal cycle (2, 3, 5, 7), the exponents
for the labeling variables z, y and z are 4, 4, and 1, respectively; the trivial
external cycle (8) contains exactly one external symbol, thus the exponents
for both z and y are 0; and the non-trivial external cycle (9; 4, 1, 6) contains
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three internal symbols, including 1, and one external symbol, thus the
exponents for z and y are 2 and 4, respectively. As a result, the generating
function for C(f) is z6y®2/6!, as z is an exponential marker. It is clear that
this expression tells us that there are eight symbols that occur in non-trivial
cycles and one of such cycles is internal.

To form a generating function of a cycle structure, we first consider an
internal cycle, Cy, that does not contain 1.

o If Cr is trivial, i.e., C; contains an internal symbol which is not 1,
the associated generating function is £14%2° =z

e Otherwise, C; contains j > 2 internal symbols, none being 1. The
exponent of z,y and z will be j,j7 and 1, respectively. Moreover,
there are (j — 1)! different cycles with these j elements. Thus, the
generating function for such a non-trivial cycle is the following:

z(i;%z"_yjfzzLy."zﬁ Z#_xy

i>2 J j>2 J St
= z|ln 1 T
- 1—zy Yi-

Hence, we have the following generating function for Cy:

f[(.’L‘, Y, Z) = I —Iyz +In m;

We now turn to an external cycle, Cg, that does not contain 1.

e If Cg contains exactly one external symbol, the exponent of z and y
will be 0 and 0, respectively, which leads to z%° = 1.

o Otherwise, let Cg contain, besides an external symbol, j > 1 internal
symbols, the exponent of z and y will be j and j + 1, respectively.
Moreover, this many symbols will form exactly j! distinct cycles.

As a result, the generating function for Cg is the following:

2

ilpdqd+l .
Je(z,y) = 1+E ]——xfj =1+y§ oy =1+ i .
iz T izl -2y

We are ready to derive generating functions for cycle structures falling
into Cases 1 through 9 as mentioned in Theorem 3.1. We start with those
falling into Case 1, where C(u) contains cycles F) = (k + 1;1, B), where B
may be empty, and at least another non-trivial external cycle.
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We consider E) first. Let |B| = j > 0, then the respective exponent for
z and y is § and j 4 2. Since there are exactly j! different cycles for E;,

fei(zy) = Z"x”” 2y oy = L

i>0 >0 (1- :z:y)

To construct the generating function for the requirement that there
exist at least one non-trivial external cycle, we notice that the generating
function for such a cycle is simply zy?/(1 — zy), as discussed above. Let
Jj €[1,n -k — 1], there are ( —k— 1) wa.ys to choose these j > 1 non-trivial
external cycles out of a total of7 n — k — 1 remaining external cycles, other
than F), while the remaining n — k — 1 — J external cycles are trivial, each
being represented by 1.

Hence, noticing that C(u), u a vertex in S, x, contains exactly n — k
possibly trivial external cycles, ordered by their respective external symbols,
and the order of the internal cycles does not matter, the generating function
of C(u), falling into Case 1, is given as follows:

f](I,y,Z)
= [fir(=,y, 2)] "t -k -1 [‘_xyz—]j
) OSlskz<:nSoo . e ,‘; ( Y ) (1-=y)

_ Yl "'Z:k"l (n —k - 1) zly?
= —'—5 . '——.1-
(1-29)° o i/ (-ayyt
Since the external cycle E; is both non-trivial and primary, by Case 1
of Theorem 3.1, Eq. 7, and Theorem 2.1, i = d(u, ex) = b(u) + gr(u) — 1,
i.e., b(u) + gs(u) = i + 1. Thus, to enumerate the cycle structures falling
into the above Case 1, we set z to y in fi(z,y, 2) so that the exponent
of y becomes the number of symbols, both internal and external, in all
non-trivial cycles plus the total number of non-trivial internal cycles, i.e.,

b(u) + gr(u). Finally, since z is an exponential marker of all the internal
symbols, other than 1, it is immediate that

k lyt+l

Brl;',}c(eka¢(ek),i) = [W] fi(z,y,9)

v S l(n k-l) xiy?i+?
(

1\ [ k-1 z+1
= (k- 1)! [:II ] (1- :l:y)y }: 1— xy).‘i+l
n—k—1 2
n—k—1 ; i (2 er—xy
= (k-1)! E ( ; ) xk—(J+1)y3~(2_’p+l) '
j=1 J [ ] (1—-zy)¥(1 - xy)J+l
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To simplify the representation of such results, for a,b,c,d > 0, we in-
troduce the following notation:

V;z.b,c,d(na k: 'l«)

= (k—1)! [zF2yi~?]

T ~xy> 2 qn—k-d
S e 2 .(11)
(1 —=zy)’(1 —zy) 1-zy

Then, for i € [3, D(Snx)}%,

1,1 . _ sl n—k-1
Byi(ex, dlex)i) = Y j

)Vj+l,2j+1,j+l,n—k(nyk,i)- (12)
i=1

We notice that the above process can be generalized as follows: to derive
B,l;lk(ek, #(ex), ), we simply derive the generating functions for those basic
cyéles as contained in Casel in Theorem 3.1, collected in Table 2, assemble
these pieces together with fi(z,y, z) and fe(z,y), with exponent appropriate
for the case, to form a generating function fi(x,y, z), and finally extract the
coefficient of the term appropriate for this case in fi(z,y,y).

Table 2: Generating functions for the basic cycles (I)

| Index Cycle Generating function |

I (A),A#D,1¢ A x—:l:yz+ln(l—_1y7
E (e; A), efixed, 0 C A,1¢ A 1+ 32

I (1,B),B#0 vz

E; (k+1;1,B),0CB s

E, (k+1;A4,1,B),A#0,0C B u—f{;—),

Es (k+1,A),A#0 =

Ei | (6C,1,B)ec(k+1,n;0CB,C#0 | (n—k—1)g2~
Es (e;1,B),ec (k+1,n},0C B _ (n—k—l)E_ZE‘

We have gone through such a general process and obtained the following
results:

Bizt:}c(ek1¢(ek)1i) = %,o,l,n_k(n,k,i). (13)
BYiler dlen)si) = Vazau(nk,i). (14)

4We notice that, for this case, there exist at least four symbols in C(u), thus, by
Theorem 2.1, d(u, (ex, #(ex)) = d(u,ex) 24 —1=3.
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n—k—1

n—k-1
Bli(ex, d(er), i) = Z( p )vj+1,z,-+1,,-,,,-k(n,k,i)
j=1

"l k-1
+ Z ( p )Vj+2,2j+2.j+l.n—k(na k,1) (15)
j=1

By i(ex dlex),i) = Vi00n-k(n,k, i)+ Va1,1,n-k(n,k, ). (16)
By (ex, d(ex),i) = Vap11(n ki) + Vagai(n,k,i). (17)
Briler $(er),i) = (n—k—1)(Via2(n ki) + Vagaz2(n k1), (18)
Bri(ex, d(ex),i) = Bii(er,d(ex) i) = (n —k — 1)Va22,2(n, k, ). (19)

We postpone the derivation of Vo c.4(n, k,1), B:;,lk(ek,qS(ek),i), and
that of B! | (ex, ¢(ex),7) until Section 6.

5 Surface area of S,; centered at a second
kind reference edge

We now similarly explore the relationship between the cycle structure of a
vertex in S, x and its distance to a reference edge of second kind, where we
switch the symbol 1 in e with 2.

Since 1 and 2 can be located in one cycle or two cycles, which can be
either internal or external, and additional symbols can be present or absent
after both 1 and 2, and the applicable external symbols, it turns out that
we have to consider fifty-six cases in all. After a detailed analysis by cases,
we have also obtained the following result. Its proof is the same as that for
Theorem 3.1.

Theorem 5.1 Let u € Sy x,n > 3,k € [1,n) such that v = e, w = p(v) =
21---k, d(u,(v,w)) =i € [1, D(Sn,x)]. Let A, B,C and D be possible empty
sequences of internal symbols. Then,

1. IfC(u) contains Iy = (1, A, 2), where A may be empty, then d(¢(u), ex)
= d(u,e;) — 1.

2. If C(u) contains I3 = (1, A, 2, B), where A may be empty, but B # 0,
then d(¢(u), ex) = d(u, ex) + 1.

3. If C(u) contains Es = (e;C,1,A,2, B), where A, B and C may be
empty, then d(¢(u),ex) = d(u, ex) + 1.

4. If C(u) contains E; = (e;C,2,1, A), where both A and C may be
empty, then d(d(u), ex) = d(u,ex) — 1.
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5. If C(u) contains Eg = (e;C,2, B,1, A), where both A and C may be
empty, but B # 0, then d(¢(u), ex) = d(u, ex) + 1.

6. IfC(u) contains Iy = (1, A), and (2), A may be empty, then d(d(u), ex)
= d(u,ex) + 1.

7. If C(u) contains Iy = (1, A), and (2, B), A may be empty, but B # 9,
then d(d(u), ex) = d(u, ex) — 1.

8. IfC(u) contains Iy = (1, A) and Eg = (e; D, 2, B), where A, B, D may
be empty, then d(¢(u), ex) = d(u, ex) — 1.

9. If C(u) contains Eq = (e;C, 1, A) and (2), where both A and C may
be empty, then d(¢(u),ex) = d(u, ex) + 1.

10. If C(u) contains Eg = (e;C, 1, A) end Iy = (2, B), here both A and C
may be empty, but B # 0, then d(¢(u), ex) = d(u, ex) — 1.

11. If C(u) contains Eg = (e1;C,1,A) and Ey = (e2, D, 2, B), where
A, B, C and D may be empty, then d(¢(u), ex) = d(u, ex).

In general, referring to the eleven mutually exclusive partitions of cycle
structures as shown in Theorem 5.1 as Cases 1 through 11, Theorem 5.1,
Egs. 2, 3 and 4 tell us the following:

Es, «(ex: p(ex), 1)

= |{u € Sn| u occurs in Case 11, d(u, ex) = i}|, (20)
Ssn,k (eka ‘p(ek)a 7')
= |{u € Sa| u occurs in Case 2, 3, 5, 6, 9, d(u, ex) = i}, (21)

Lsn.k (ex, p(ex), )
= |{u € Sn] u occurs in Case 1, 4, 7, 8, 10, d(u,ex) =i+ 1}|.(22)

Let Bffk(ek, p(ex),i),1 € [1,11], stand for the number of cycle structures
falling into Case ! of Theorem 5.1, by Eqs. 1 through 4 and Eqs. 20
through 22, we express the edge-centered surface area of S, k, centered
at a reference edge of second kind, (ek, ¢(ex)), as follows:

11
Bg  (ex,plex),i) = Y Bri(ex,eler),))- (23)

I=1

When deriving generating functions for this case, we follow essentially
the same procedure as we did for the previous case, except that, considering
the special role that both symbols 1 and 2 play for this case as characterized
in Theorem 5.1, we will now use = to mark, exponentially, an internal
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symbol, excluding both 1 and 2, in all the cycles; y still marks all the
symbols, both internal and external, including both 1 and 2, in non-trivial

cycles; and z still marks a non-trivial internal cycle.

We notice that both £ and y used in this current case subsume their
respective role in the previous case: when z marks an internal symbol,
excluding both 1 and 2, it certainly does not mark 1; and when y marks
all the symbols that occur in non-trivial cycles, including both 1 and 2, it
certainly includes 1. Thus, the two general results for f; and fg, as shown
in Table 2, also hold for the current case, if we take I (respectively, E) to
be an internal (respectively, external) cycle, containing neither 1 nor 2.

Table 3: Generating functions for the basic cycles (II)

[Tndex Cycle [| Generating function |

I, (1,4,2),0C A e

L (LA,2,B),0C A, B£0 e

2 (1,4), A#0 e

Eg (C,1,4,2,B),ec (k,n],0C 4,B,C i’l‘"’”’: + &bl

—zy) (g zy)

E; (:C,2,1,4), Ae € (k,n],0C A,C G

Es || (6C,2 B,14),e,€ (kn, B£0,0C A4,C ey

E, @C,1,4),ec (n),0C A,C {n=blyy

Once the generating functions of the basic cycle structures as shown in
Theorem 5.1 are derived, listed in Table 3, it is straightforward to follow
the above general process to obtain results for this case as follows: for
n>3,ke€ (1,n), and i € [1, D(Sp k)],

B4 (ex, p(ex), 3)

B2% (ex, plex), i)

B2 (ex, plex), )

1 n—k

k-1

=1

1 .
+mV2,0,1,n—k(n, k,1).

k-1

j=1

1 "_k(n—k

1 .
+mv3,2,2,n—k(n) k,i)

n—=k
k-1
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n—k .
( j )Vj+2.2j+1.j+1.n—k(n, k,1)

(24)

)Vj+3,2j+3,j+2,n—k(na k,1)

(25)

("2,2.2,1("‘7 ka z) + ‘/3,3,3.1("-, kv 1')) (26)



B2 (ex, plex), i)

B4 (ex, p(ex) )

B3 (ex, plex), )

Bl (ex, o(ex), 1)

By (ex, p(ex), 1))
By ek, o(ex), 1)
BX%2(ex, p(ex), 1)

Brlz,ll,cz(eka ‘P(ek)7 7')

n—
k— 1/2 1,2, l(n k 1,) (27)
n— k
e — T V333.1(n, K, 9). (28)
n—k
1 n— k
—1 ( )VJ+2 2j+1,j,n—k( k, 1)
n—k
1 n—k .

+k 1 = ( j )Vj+3v2.’f+2.j+1.n-k(n, k, )

1 . .
R (Vz,o,o,n—k(n, k, 1) + Va,1,1,n-k(n, k,))(29)

1
1 ( . >Vj+3,2j+3.j+1,n—k(na k,1)
i=1 v J

1 Rn-k
+E_—T ( i )Ifj+4,2,-+4,,-+2,,,_k(n,k,i)

+k_—1 (Va,2,1,n-k(n, k, %) + Va,3,2,n—k(n, k, 1)) (30)

—k
1 Vezza(n ki) + Vagaam ki) (31)
k ,
1 Va2 k). (32)
k
1 Vaaaa(n k). (33)
—-k-1 ,
( )ka_I_ 1 ) 1/2’3’4'2(71, k’ z)' (34)

The only thing that remains is to evaluate Vg4 ¢ 4(n, k, 1), as defined in
Eq. 11, which we will do in the next section.

6 Edge-centered surface areas for S,

We are now ready to derive V, 3 c,4(n, k, ©) and present our main results for
this paper, i.e., the edge-centered surface areas for the (n, k)-star graphs in
terms of both kinds of reference edges.
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6.1 Derivation of Vg .4(n, &, 1)

The following results are well known [10]:

-1
(—1:!._2?. = Z (ctz 1 )zq, where ¢ > 1; and
q20
- Bl
T ow T w—,
(1-2) b2zl 71 P

where, f stands for the Stirling numbers of the first kind [10, §6.1}, i.e.,

the number of ways of arranging p objects in 7 cycles.
If we substitute z with zy, and w with y in the last two equations, we

have

-1
1 = Z (c+q )a:qy"; ¢> 1, and,

71 i€
(1 —zy) So\ e1

1 _ P ] xpyp+r
(1 —=zy)? ,,ZZ,ZO [ rlop

It is clear, by definition, that

—zy? z(1 —y)%)’ z? t :
® — Z ( s!y)) =ZEZ(_1) (i)yz

520 520 ¥ 20
t
- ZZ(_I) (3) 5,2t
|
s>0t>0 s t

It is also not difficult to obtain the following result based on the well-
known binomial theorem: for d € [0,n — k],

o n—k-d n—k—d
zy _ n—k— atf -1\ .48 2048
gl e (T e

a=1 g>0

We notice that, when d = n — k, the above equals 1.

Therefore, for n > 3,k € [1,n),i > 1,a € [1,k),b € [0,i],c > 1, and
de[0,n—k),

e:x:—:z:y2 [1 xyz ] n—k—d

k—a_ i—b
= ey T T
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z—zy? —k~d
= [ 3 :chP"" i P zy® 1"
- zy)° 1—zy

p>r>0
- 1 k—a—p, i—b—p—r c+gqg—1
- ZF[T][Q: y ]Z c—1 =l
p2r20 930
212 n—k—d .
poc2 e
R B e
p2r204g20
iy n—k—d\(a+B8-1 R
1+ ) ( ) ( , ) po+By2ats | ga—ay
o o —
a=1 F>0
_ l' 1: ] (c+ Q‘l‘ 1) [xk—a-p—qyi—b—p—r—q]
p2r20g30 P €=
Z Z (-l)t (S) xsy2t
520 >0 st o\t
c+q-— 1 k—a-p—gq,i—b—p—r—
+ X X[ 2] e
p>2r>0g>0
n—k—d
[ Z z (n —-k- d) (Ol + ﬂ - 1) xa+ﬁy2a+l3:| e:v:—a:y2
a—1
a=1 >0
= N+V..

The first term is pretty easy to resolve.

v 3 P (H) e

p2r20420
t
» (—}) (‘:)xsym
>0 t>0 s
I A A B

From k —a—p—q >0 and g > 0, we have p € [0, k — a]. We already know
that r € [0,p]. To get the upper bound of g, we notice k —a -p —q >
(i—b—p—71—q)/2, leading to g € [0,2k —i — 2a + b — p + 7]. Finally, we
notice that (i — b—p —r — g) has to be positive and even for the associated
binomial coefficient not equal to zero.
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By going through the same process, we derive the second term as follows:

n—k—-d i—b—p—r—g—2a-—-3
(=1)=°7P e pl|fc+a—-1
o= 3 3 D>
poro0 oo Bzoqzop!(k—a—p—q—a—ﬁ)! r c—1
n—k~d\fa+p-1\(k—-a—-p—gq-a-p
( a )( a—1 )( t—b—p—r—q—2a— . (36)
p)
Since k-a-p—-g—a—-820,a>1,p>0,and g > 0, we have
p € [0,k — a — 1]. Bounds for both r and a are known. From i —b—p —
r—g—2a—2>0and g > 0, we obtain 8 € [0,i —b— p— r — 2a]. Finally,
fromk—a—p—qgq-—a—-F2(i—-b—p—r—qg—2a-7)/2, we obtain the
bound for q as follows: ¢ € [2k—i—2a +b—p+r — f]. Again, since we

only need to sum up non-zero terms, (i —b—~p—71 — g —2a — 3) has to be
positive and even.

n—k—d
We notice that, whenn -k =d, (1 + l—f_”:—y) = 1. As a result, for
n>3,ke(l,n),i>1,a€[l,k),be [0,7],c> 1, by Egs. 35 and 36,
Vaped(n ki) = (k—1)1(Vi+[n—k#dV2), (37)

where [P] refers to the Iverson’s convention [10, §2.1] where [P] = 1, if the
predicate P is true; 0 otherwise.

Regarding the computational complexity, we notice that r < p < k—a <
k,and g < 2k+b+ 71 < 3k + D(An k), since b < i < D(Apk) = O(n). We
notice that the Stirling numbers can be represented as an explicit formula
itself {11, Eqgs. 5 and 6] in terms of factorials. As a result, V; can be
calculated in O(k2n), if we take factorial as a standard operation as often
done in practice [10]. Similarly, V, can be calculated in O(k?n3). Therefore,
it is computationally feasible to calculate V, p c,4(n, k, 7).

Finally, we notice that, for n > 3,k € [1,n),i > 1,a € [1,k),b € [0,1],
and d € [0,n — k],

Vab,0,4(n, k,3) = (k — 1)! Z % [ f } (kib_:ép)

p2r20

n—k—d -1 i—b—p—-r—-2a—-8
+[n—k#d (k- 1) Z Z Zplik_)a—p—a—ﬁ)! [f]

p2r>0 a=1 B20

(n _r’; ) d) (a : /j N l) (k b-pr_20-8 ﬂ), (38)

2

where the bounds of p, r, and 3, are the same as before.
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6.2 Edge-centered surface area results

We can readily derive the edge-centered surface area of S, x,n > 3,k €
[1,n — 1], in terms of the first kind of reference edges via Eq. 10, Eqs. 12
through 19, as well as the just derived Egs. 37 and 38. Table 4 shows
Bg;‘k(12 ook, (k+1)2-- ki), ke [1,7),i € [0,D(Ss k)]

Table 4: Sample data for B;:’k(m ook, (k+1)2---k,i),k €[1,7]

1
k[0J1]2[ 3] 4 5 6 7 8 [ 9 10
1[2[6]0] 0] 0 0 0 0 0 OO
(227 [17[30] 0 0 0 0 0 [0 o0
3[[2] 8 [32] 9 | 156 | 48 0 0 0 JoOJoO
4][2] 9 [45]168] 451 | 687 | 306 | 12 0 [O0]O
5 2]10[56]252] 84 |1,064] 2,578 | 990 | 24 [ 0 | 0
6| 2] 11]65]330] 1,270 | 3,610 ] 6,808 | 6,699 | 1,335 [ 30 | 0
[7] 2] 12] 72 390] 1,640 | 5,220 | 11,538 | 14,628 | 6,188 | 630 | 0

We note that in Table 4, the column corresponding to ¢ = 1, i.e., the
number of vertices of distance 1 from a reference edge of first kind, contains
- a sequence of consecutive numbers. In general, it is clear that the number
of vertices are of distance 1 from an edge e(v, w) is given as follows:

Bg(v,w,1) =d(v) + d(w) — 2 — Tg(v,w), (39)

where dg(v) and Tg(v,w) refer to the degree of v, and the number of
vertices adjacent to both v and w, in G.

Letv=1ex =12 - k,w =¢(v) = (k+1)2---k. Let u = uqup---uy be
a vertex in S, x and (u,v) is an edge in S, k. Assume (u,v) is an i-edge,
then, u = i2---1---k,i € [2,k]. Obviously, u is not adjacent to w. Thus,
(u,v) has to be a 1-edge. Indeed, let e € (k,n], then u = €2- - - k is adjacent
to both v and w. In other words, when (v, w) is a reference edge of the first
kind, Ts, ,(v,w) = n — k — 1. Since S, x is an (n — 1)-regular graph, by
Eq. 39,

B (et d(ex), ) =2(n—1) =2~ (n—k—1) =n+k -3,

In particular, for all k € (1,7], Bg. , (es, ¢(es),1) = k + 5, consistent with
the above observation. ’
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We can also derive the edge-centered surface area of Sp i,k € [1,n —
1], in terms of the second kind of reference edges via Eq. 23, Egs. 31
through 34, as well as the just derived Egs. 37 and 38. Table 5 shows

Bg (12--k,21- ki), k € [2,7],i € [0, D(Ss.1)):
Table 5: Sample data for Bg:'k(12 < k,21---k,i),k€[2,7)
)

kEjJjoj1]12] 3 4 5 6 7 8 9 |0
2)2112(12] 30 0 0 0 0 0 0|0

[ 3 [2]12[32]110 [ 120 60 0 0 0 0 |0
412)12| 48| 198 | 472 624 300 24 0 0 |10
512(12]60(282 [ 928 | 2,034 | 2,460 924 18 010
6] 2|12]|68 |35 (1,360 | 3,852 | 7,114 | 6,532 | 864 6 |0
712(12] 72390 | 1,640 | 5,220 | 11,538 | 1,4628 | 6,188 | 630 | 0

We also notice that the column corresponding to i = 1 in Table 5 con-
tains a constant of 12. Indeed, let v =12 -k,w = p(ex) =1{2---1---k,l €
(2,k]. Let u = uyuy - -ux be a vertex in Sy, x. Assume that (u,v) is an i-
edge, then, u =42--.1.-.k,i € [2,k]. If | =i, u = w; otherwise, u is not
adjacent to w. Thus, (u,v) has to be a 1-edge, i.e., u = €2---k,e € (k,n],
which is not adjacent to w, either. Thus, T, , (v,w) = 0. In other words,

B3 | (ex,p(ex), 1) =2(n—1) -2 =2(n-2).

In particular, for all k € [2, 7], ng’k(, es, p(es), 1) = 12.

We notice that the only case when Bg! | (ex, ¢(ex), 1) and Bg |, (ex,p(ex),1)
agree is when k = n — 1, i.e., when the (n, k)-star graph degrades into an
n-star graph.

7 Conclusion

We proposed a general notion of edge-centered surface area for the general
graphs, and, following a generating function approach, we derived explicit
expressions of the edge-centered surface area of the general asymmetric
(n, k)-star graphs in terms of two kinds of reference edges.

‘We showed that, when solving a subgraph centered surface area problem
for a network structure based on symmetric groups where a distance formula
is known, a general process can be summarized as follows: 1) characterize
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the cycle structures related to nodes in such a network in terms of their
distances to the involved subgraph; 2) identify generating functions for
general cycles, as well as those specific cycles as appearing in the above
characterization result; 3) for each case of the above characterization result,
assemble the applicable generating functions corresponding to the relevant
cycle structures; and 4) extract the coefficient of an appropriate term of
the related generating function.

We believe that, when solving the subgraph centered surface area prob-
lem and some of the other problems, such an inspiring general process can
also be applied to other Cayley graphs, particularly those defined on sym-
metric groups, when a distance formula is available.

Readers may wonder whether it is possible to derive such explicit for-
mulas (with polynomially bounded number of terms) via elementary tech-
niques like those for the usual surface area problems developed in [6,11].
The answer is yes but it involves additional enumerating arguments. (Here,
these arguments are taken care of automatically via generating functions.)
Indeed, we have done so although the expressions look somewhat different.
Moreover, all such results were verified using shortest path algorithms on
a set of graphs.

We end this paper with some rather concrete observations: Since some
of the special cases of the (n, k)-star graph are isomorphic to some of the
other graphs, the edge-centered surface area results obtained in this pa-
per for the general (n, k)-star graph can be immediately applied to these
graphs. For example, the star graph with n dimensions, S, is isomorphic
to Snpn-1 [7, Lemmad|, thus, the general results as we obtained in this
paper, when plugging n — 1 into placeholder of k, immediately leads to an
explicit expression for the edge-centered surface area for the star graphs.
In particular, the last row in both Table 4 and 5 give the edge-centered
surface area for Sg.

It is recently shown [4] that the alternating group network of n dimen-
sions [13], denoted as AN,, is isomorphic to Sy ,-2. Hence, the general
results as we obtained in this paper, when plugging n — 2 into the place-
holder of k, also lead to explicit expressions of the edge-centered surface
area for the alternating group networks in terms of two kinds of reference
edges. In particular, the second last row in Table 4 and 5 give the edge-
centered surface area for ANs in terms of the two kinds of reference edges.
Indeed, as shown in Figure 1, there are three vertices, 21, 23, 42 of dis-
tance 1 from (12, 32), but four, 31, 32, 41, 42, of distance 1 from (12, 21),
consistent with our findings as made in §6.2.
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