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Abstract

We study cube-complementary graphs, that is, graphs whose com-

plement and cube are isomorphic. We prove several necessary condi-

! tions for a graph to be cube-complementary, describe ways of building

new cube-complementary graphs from existing ones, and construct
infinite families of cube-complementary graphs.
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1 Introduction

Given a graph G and a positive integer d, a new graph G¢, called the d**
power of G, is defined as vertex set V(G%) = V(G) and two distinct vertices
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z and y are adjacent in G¢ if the distance between z and y, d(z,y) is at
most d. Recall that a graph G is called square complementary if the graph
G?, called the squeco of G, is isomorphic to the complement of G, G. That
is, G2 > G.

Square-complementary graphs were extensively studied, see (1], [2], [3],
4, and {5]

Motivated by the study of square-complementary graphs, we define and
study the cube-complementary graphs,(cubeco for short). These graphs are
defined as graphs G for which G? is isomorphic to the complement of G,
i.e. G = G. Of course, also we will have G 2 G3.

After introducing the necessary basic terms and definitions, we provide
in Section 2 basic examples of cubeco graphs. In Section 3, we give an
upper-bound on n and show that there exist no cubeco circulant graphs
of certain jumps for n larger than this upper-bound, this upper-bound
improves computations significantly. In Section 4, we describe a method of
constructing new cubeco graphs from existing ones, allowing us to construct
infinite families of cubeco graphs. Basic properties in terms of connectivity,
radius, and diameter are studied In Section 5. We finally end up with some
possible open problems.

Unless stated otherwise, all graphs considered in the paper will be finite,
simple and undirected. Let G be a graph. A k — verter of G is a vertex
of degree k in G. An n — vertex graph is a graph of order n, that is, a
graph on exactly n vertices. We denote by n(G) the number of vertices
of G and by m(G) the number of its edges. Given a vertex v in a graph
G, we denote by deg(v, G) its degree, that is, the size of its neighborhood
Ng(v) == {u € V(G) : wv € E(G)}. The closed neighborhood of v is the
set Ng(v) := Ng(v) U {v}. By A(G) and 6(G) we denote the maximum
and the minimum degree of a vertex in G respectively. For two vertices u, v
in a graph G, we denote by dg(u,v) the distance between u and v, that is,
the number of edges on a shortest path connecting u and v; if there is no
path connecting the two vertices, then the distance is defined to be infinite.

The eccentricity eccg(u) of a vertex u in a graph G is maximum of
the numbers dg(u,v) where v € V(G). The radius of a graph G, denoted
radius(G), is the minimum of the eccentricities of the vertices of G. The
diameter of a graph G, denoted diam(G), is the maximum of the eccentric-
ities of the vertices of G, or, equivalently, the maximum distance between
any two vertices in G. The girth of a graph G, denoted girth(G), is the
length of a shortest cycle in G (or infinity, if G has no cycles).

Given two graphs G and H, an isomorphism between G and H is a
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bijective mapping ¢ : V(G) — V(H) such that for every two vertices u,v €
V(G), we have uv € E(G) if and only if ¢(u)d(v) € E(H). If there exists an
isomorphism between graphs G and H, we say that G and H are isomorphic,
and denote this relation by G = H. An automorphism of a graph G is an
isomorphism between G and itself. The complement of a graph G is the
graph G with V(G) = V(G), in which two distinct vertices are adjacent if
and only if they are not adjacent in G.

2 Examples
In this section, we provide some examples of cubeco graphs:

Lemma 1 If the cycle, Cy, is cubeco graph, thenn = 9.

Proof:
K,=C,uC,
m(K,) = m(Cp) + m(Cy)
=m(Cr) + m(C3)
=n+3n

So, n(n — 1) = 8n,
Hence,n =9

Theorem 1 Cy is cubeco graph.

Proof:
Since C3 is a graph of degree 6, 03 is aregular graph of degree 9-6—1 =
2. So, Cg is a regular graph of degree 2, i.e. graph C3 & Cs. ‘
m]

Recall that the graph G is called a circulant graph if it is a Cayley graph
over the cyclic graph of order n denoted by C,(D), where D C [(}]] :=
{1,...,13]}. In fact, the circulant C,(D) is the graph with vertex set
{0,1,...,n—1} and two distinct vertices ¢, j € [0,1,...,n — 1] are adjacent
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Figure 1: Cy

if |i — j| € D. The cycle C, is the circulant graph C,{1}. By Theorem
1, Cq is a cubeco graph. Other circulant graphs are also cubeco graphs.
In fact, it is known that the two circulant graphs C,(D) and C,(D') are
isomorphic if there is a unit u in the ring Z, with uD = D’.

The following are examples of circulant cubeco graphs:

1. C15{1,8} is a cubeco graph.
The cube of the graph Cjs{1, 8} is the graph C15{1,2,3,6,7,8}, and so its
complement is C13{4, 5}, since 5 is a unit in Z;g and 5.{1,8} = {5,4}, we
have C;5{1,8} and C)s{4,5} are isomorphic.

2. C7{1, 8,10} is a cubeco graph.
The cube of the graph C;7{1, 8, 10} is the graph C27{1, 2, 3,6, 7, 8,9, 10, 11,12},
and so its complement is C7{4, 5,13}, since 4 is a unit in Zy7 and 4.{1, 8,10} =
{4,5,13}, we have C27{1, 8,10} and C5,{4,5,13} are isomorphic.

3. C29{1,12} is a cubeco graph.
The cube of the graph Cag{1,12} is the graph C29{1, 2, 3,4,5,6,7,10,11,12,13, 14},
and so its complement is Cog{8, 9}, since 8 is a unit in Zy9 and 8.{1,12} =
{8,9}, we have Cq9{1,12} and C39{8,9} are isomorphic.

The same technique can be used to show that the graphs Cy;{1,5},
036{1, 8, 10, 17}, C43{1, 6, 7}, C45{4, 5, 13, 14, 22}, C61{1, 5, 24}, and ng{l, 5, 25}
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are non-isomorphic cubeco graphs.

3 An upper-bound

It is obvious from the previous examples that if the cube of the circulant
graph Cp(D) is C,(D'), then the elements of D’ are generated from addi-
tions and subtractions of some elements in D, this gives an upper-bound
onn.

Theorem 2 If C,(D) is cubeco then n < 2d(d? + d + 2) where d = |D|.

Proof:

Suppose that D = {a1,as,...,a4}, and C3(D) = C,(D’), then elements
of D’ are in one of the following forms: =, +y, or t +y + z where z € D
and y, z € {+a;|a; € D'}. In the first form, there are d possibilities. When
Z = @, in the second form, there are d possible values of ¥, and when = = as,
there are d possible values of y. Note that the possible redundant values
a + ap were removed and the values a; — a3 were added. Continuing with
this computation we get d? possible values of this form. The third form is
the same as the second form, it contains d® elements. Since many elements
may be repeated in the forms, one can conclude that |D’| < d3 + d? +d.
Therefore n < 2(d® + d? + 2d).

a

It should be mentioned that the computation of searching for cubeco
circulant graphs for a given n is now improved significantly. Additionally,
the upper-bound of n for cubeco circulant graph in the form C, {1, k} is 32,
the largest cubeco circulant graph we found of this form is Cy9{1,12}. The
upper-bound of n for cubeco circulant graph of the form C,{1,k;,kz} is
84, the largest one we found of this form is Cg3{1,5,25}. The upper-bound
of n for Cn{1, k}, k2,k3} is 176 and the largest one we found of this form is
Cur{1,13,17,55}.

4 Construction

In this section we discuss ways of building new cubeco graphs from known
ones. In particular, this will imply the existence of arbitrarily large cubeco
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graphs. Here we should indicate that this method was originally defined by
Milanié in [2] to construct square complementary graphs.

Given an n-vertex graph G with vertices labeled v, ..., v, and positive
integers ki, ..., kn, we denote by G|k, ko, ..., kn) the graph obtained from
G by replacing each vertex v; of G with a set U; of nonadjacent k; (new)
vertices and joining vertices u; € U; and u; € U; with an edge if and only
if v; and v; are adjacent in G. If k) = ... = k, = k, then we write G[k]
instead of Glki,..., k)], see [2].

Theorem 3 The graph Cglky, ko, k2, k3, k2, k2, k3, ko, ko) is cubeco graph
for any positive integers k1, ks, and ks.

Proof:

Let G := Colky, k2, k2, k3, k2, ka2, k3, k2, k2] and let Uy, ..., Ug be the cor-
responding nine sets of vertices partitioning V(G). Define the isomorphism
¥ : V(G) = V(G) between G and G® by ¥(v}) = v};), such that, ¢ is the

isomorphism between Cy and C3 where:

¢(2) =6
¢(6) =8
¢(8) =9
$(9) =5
¢(5) =3
$(3) =2
$(4) =7
¢(7) =4
$(1) =1

¥(v}) is an isomorphism by construction between G and G3, therefore
G is cubeco.

0

Theorem 4 For any n > 9, there exists a cubeco graph with n vertices.

Proof:
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Using Theorem 3, take ky =n—8, ko = k3 =1

Theorem 5 If G is nontrivial cubeco graph, then G contains no isolated
points.

Proof: Assume that G contains an isolated point v. Then v is adjacent
to all vertices in G3, thus, G3 has no isolated points. This contradicts the
fact that G = G5.

O

Theorem 6 If G = G3, G[k] defined as above, u? € U; and uj € Uj, then
for any i,j € V(G), dg(i,7) < 3 if and only if dG—[kF(uf,u‘}) <3.

Proof:
(=) Suppose that d(z, 7) < 3 then we consider the following two cases:

Casel: ifi = j, then since G contains no isolated vertex, by Theorem 5 there
is a vertex t € V/(G) such that i and t are adjacent. Thus, u} and uf are

adjacent to each element in U; = {u{}~_, , and therefore, dep(uf,uf) < 3.

Case2: If i # 5 , then the shortest path between i and j can be mapped
to an equal long path in G[k].

, (+<==) Suppose that dw(uf, u‘}) < 3. We want to show that de(3,7) <

if i = 7 then nothing to do.

if i # j then the shortest path from u? to uj. along u} can be mapped
to shortest path between ¢ and j.

O
Theorem 7 For every nontrivial cubeco graph G and positive integer k,
the graph G[k] is a cubeco graph.

Proof: Let G denote a nontrivial cubeco n-vertex graph.

267



Let V(G) = {i}i», and denote {U;}i~; to be the sets of k—elements
that will replace the corresponding vertex i in G. Assume U; = {ul}f_;
and let ¢ : V(G) = V(G) be the isomorphism from G to G3. We extend
¢ to a function v : V(G[k]) — V(G[k]) by ¥(ul) = ug(i). Since ¢ is a
bijection, then v is also a bijection.

To show that ¥ is an isomorphism from G[k] to G[k]3; let u? and ul be
two adjacenmices in G[k]. We want to show that ¥(u}) and ¥(u]) are
adjacent in G[k]3.

i and j are adjacent in G

< ¢(i) and ¢(j) are adjacent in 3

< dg(9(i), #(5)) > 3, by definition of G3

<= dgp) (ug(i),uz,( j)) > 3, by Theorem 6

<> uf,) and u},, are adjacent in Glk]?

<= P(uf) and (u]) are adjacent in G[k]?

m}

It should be mentioned that the k's in Glky,k2,...,k,] need not be
equal. For example Cg = Cy[2,1,1,1,1,1,1,1,1] is cubeco
5 Properties of cubeco graphs

In this section we reveal several necessary conditions that every cube-
complementary graph must satisfy. We start with some connectivity and
distance-related conditions.

Theorem 8 Every cubeco graph G is connected and its complement G is
connected.

Proof:
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Figure 2: Cg

Let G denote a cubeco graph. Suppose that G is disconnected, and
let C denote a connected component of G._Then every vertex of V(C) is
adjacent to every vertex of V(G)\V(C) in G3, and | so, in particular, G3 is
connected, which contradicts the fact that G and G® are isomorphic. On
the other hand, if G is disconnected, then G has at least two vertices, G2 is
a complete graph and hence G? is the edgeless graph, a contradiction with
the fact that G is connected.

0

Theorem 9 Let G be a cubeco graph. For every nonempty proper subset
of S of V(G) there exists a uw € S and v € V(G)\S such that de(u,v) > 4.

Proof:

Suppose that for every u € § and v € V(G)\S such that dg(u,v) < 3in
G, then, every vertex of S is adjacent to every vertex of V(G)\S in G3, this
means that there are no edges between V(S) and V(G)\S in G3, hence, G3
is disconnected which contradicts Theorem 8.

(]
Theorem 10 If G is a nontrivial cubeco graph, then 4 < radius(G) <
diam(G) < 6

Proof:
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Let G be a nontrivial cubeco graph. For every v € V(G), applying
Theorem 9 to the set S = {v} we see that eccg(v) > 4. Hence, G is of
radius at least 4. For every graph G it holds that redius(G) < diam(G).
Hence, it only remains to show that diam(G) < 5.

Suppose for a contradiction that G is a cubeco graph with diameter at
least 6. Let u and v be two vertices such that dg(u,v) = 7. We will verify
that the eccentricity of u in G? is at most 2. Let z be any vertex in V(G):
Casel: If dg(u, ) > 4 then dgz(u,z) = 1.

Case2: If dg(u,z) < 3then dg(u,v) =7 £ dg(u, z)+dg(v, z), ordg(v, ) >
4 or equivalently, v and x are adjacent in G3. Consequently, dgz(z, u) = 2.
This contradicts the fact that radius of G is at least 4.

]

6 Summary

In this paper we introduced the notion of cube-complementary graphs, we
were able to prove several necessary conditions for a graph to be cube com-
plementary, described ways of building new cube-complementary graphs
from existing ones, constructed infinite families of cube-complementary
graphs and showed some examples.

Results obtained in this paper motivate a further study of cubeco graphs.
Since a complete characterization of cubeco graphs seems perhaps too chal-
lenging, we pose the following:

Open problem:

e Is there a cubeco graph with diameter equals to 5 or 67

Conjectures:

e A cubeco graph could have a cut vertex.

e Given the set D, there exists an n < 2d(d? + d + 2) such that C,(D)
is cubeco where |D| =d.
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