On edge-3-equitability of \overline{K}_n -union of helms.

Abhaya M. Chitre and Nirmala B. Limaye¹

Abstract

A k-edge labeling of a graph G is a function f from the edge set E(G) to the set of integers $\{0,\ldots,k-1\}$. Such a labeling induces a labeling f on the vertex set V(G) by defining $f(v) = \sum f(e)$, where the summation is taken over all the edges incident on the vertex v and the value is reduced modulo k. Cahit calls this labeling edge-k-equitable if f assigns the labels $\{0,\ldots,k-1\}$ equitably to the vertices as well as edges.

If G_1, \ldots, G_T is a family of graphs each having a graph H as an induced subgraph, then by H-union G of this family we mean the graph obtained by identifying all the corresponding vertices as well as edges of the copies of H in G_1, \ldots, G_T .

In this paper, which is a sequel to the paper entitled 'On edge-3-equitability of \overline{K}_n -union of gears', we prove that \overline{K}_n -union of copies of helm H_n is edge-3-equitable for all $n \geq 6$.

INTRODUCTION

All the graphs we consider are simple and without loops. For a graph G, by V(G) and E(G), we mean the vertex set and the edge set of the graph G respectively. Let G_1, G_2, \ldots, G_T be a family of graphs. Let $H_i, 1 \leq i \leq T$, be an induced subgraph of $G_i, 1 \leq i \leq T$, such that each H_i is isomorphic to a fixed graph H. If $v \in V(H)$, the vertex corresponding to it in H_i is denoted by v^i . Similarly if $e \in E(H)$, the edge corresponding to it in H_i is denoted by e^i .

Definition 1: By the **H-union** G of the family G_1, G_2, \ldots, G_T , we mean the graph obtained by identifying $v^1, v^2, \ldots v^T$ for every $v \in V(H)$ and identifying e^1, e^2, \ldots, e^T for every $e \in E(H)$.

If $H = K_1$, the *H*-union is called the one point union. Similarly, if $H = K_2$, the *H*-union is called one edge union.

¹This work was supported by a project sanctioned by the Department of Science and Technology, of which this author was the Principal Investigator.

By a k-edge labeling of a graph G we mean a map $f: E(G) \to \{0,1,\ldots,k-1\}$. A k-edge labeling f induces a labeling, also denoted by f, on the vertex set V(G) of G by defining $f(x) := \sum f(e)$, where the summation is taken over all the edges incident on the vertex x and the value is reduced modulo k. For a k-edge labeling f, by $v_f(j)$ (respectively $e_f(j)$), we mean the number of vertices (respectively edges) which are assigned the label f by the labeling f. These are called the vertex numbers, (respectively the edge numbers) of f. By $v_f(0,1,\ldots,k-1)$ and $e_f(0,1,\ldots,k-1)$ we mean the k-tuples $(v_f(0),v_f(1),\ldots,v_f(k-1))$ and $(e_f(0),e_f(1),\ldots,e_f(k-1))$.

Definition 2: A k-edge labeling f is said to be **edge-k-equitable** if $|v_f(i) - v_f(j)| \le 1$, $|e_f(i) - e_f(j)| \le 1$ for all $0 \le i, j \le k - 1$.

In this paper we prove that \overline{K}_n -union of copies of helm H_n is edge-3-equitable for all $n \geq 6$.

HELMS

Definition 3: The **helm** graph H_n is defined as follow:

$$V(H_n) = \{v_0, v_1, \dots, v_n, w_1, \dots, w_n\}$$
 and $E(H_n) = \{v_0v_i \mid 1 \le i \le n\} \bigcup \{v_iv_{i+1} \mid 1 \le i \le n\} \bigcup \{v_iw_i \mid 1 \le i \le n\}$ where $(i+1)$ is taken modulo n .

The vertices $\{w_1,\ldots,w_n\}$ are the pendant vertices. The vertices $\{v_0,v_1,\ldots,v_n\}$ are the non-pendant vertices. The edge v_0v_i is denoted by $e_i,1\leq i\leq n$ and is called a spoke. The edge v_iv_{i+1} is denoted by $c_i,1\leq i\leq n$, where by v_{n+1} we mean v_1 . These edges are referred to as the cyclic edges. The edges $\{p_i=v_iw_i;1\leq i\leq n\}$ are called **pendant edges**. The vertex v_0 is called the **hub**. An helm H_n is said to be of type $i,1\leq i\leq 3$, if n=3y+i for some $y\in\mathbb{N}$.

For an edge-3-labeling f, by $e_f(0,1,2)$ we mean $(e_f(0),e_f(1),e_f(2))$, where $e_f(r)$ is the number of edges with the label $r \in \{0,1,2\}$. By $v_f^1(0,1,2)$ we mean the triple $(v_f^1(0),v_f^1(1),v_f^1(2))$ where $v_f^1(r)$ is the number of nonpendant vertices with the label r. Similarly, By $v_f^2(0,1,2)$ we mean the triple $(v_f^2(0),v_f^2(1),v_f^2(2))$ where $v_f^2(r)$ is the number of pendant vertices with the label r.

Definition 4: Let G_1, G_2, \ldots, G_k be k copies of H_n . The vertices of

 G_j are denoted by $\{v_{j,0}, v_{j,1}, \ldots, v_{j,n}, w_{j,1}, \ldots, w_{j,n}\}$. A \overline{K}_n -union $H_{n,k}$ of G_1, G_2, \ldots, G_k is k is obtained by identifying the pendant vertices of $G_i, 1 \leq i \leq k$ in a cyclic order. After indentification these vertices are called w_1, \ldots, w_n .

If G is \overline{K}_n -union of k copies of H_n , then |V(G)| = k(n+1) + n and |E(G)| = 3kn.

LABELINGS OF HELMS

We first give some labelings of H_n , $n \ge 6$. We believe that the results proved subsequently are true for n = 3, 4, 5,. However we have to create separate labelings for these values. Since the techniques are same we avoid constructing those labelings here. If f is a labeling of a helm H_n by f^r we mean a labeling obtained by keeping the labels of some w_i and v_i same and reversing the order of all the other vertices while assigning the labels used by f. The vertex w_i is called the **pivotal** vertex.

Helms of type 1

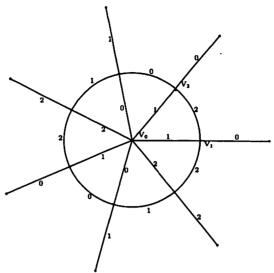
Let $n = 3x + 1, n \ge 7$. We first define various labelings.

Labeling f_1 : One defines the labeling f_1 as follows:

i	$f_1(e_i)$	$f_1(c_i)$	$f_1(p_i)$
1	1	2	0
$2 \le i \le n, i \equiv 1 \mod 3$	2	2	2
$2 \le i \le n, i \equiv 2 \mod 3$	1	0	0
$2 \le i \le n, i \equiv 0 \mod 3$	0	1	1

It can be checked that

 $e_{f_1}(0,1,2)=(3x+1,3x+1,3x+1), v_{f_1}^1(0,1,2)=(x,x+1,x+1), v_{f_1}^2(0,1,2)=(x+1,x,x).$ This is an edge-3-equitable labeling. The pendant vertices w_1,w_2,\ldots,w_n get the labels $0,0,1,2,0,1,2\ldots 0,1,2$. The non-pendant vertices v_1,v_2,\ldots,v_n get the labels $2,0,2,1,0,2,1,\ldots,0,2,1$ and $f_1(v_0)=1$.



The labeling f1 for H7

Labeling g_1 : One defines the labeling g_1 as follows:

i	$g_1(e_i)$	$g_1(c_i)$	$g_1(p_i)$	$5 \le i \le n$	$g_1(e_i)$	$g_1(c_i)$	$g_1(p_i)$
1	1	0	0	$i \equiv 1 \mod 3$	1	1	2
2	2	2	2	$i \equiv 2 \mod 3$	2	2	0
3	0	1	1	$i \equiv 0 \mod 3$	0	0	1
4	2	1	0	_	_	_	_

It can be checked that $e_{g_1}(0,1,2) = (3x+1,3x+1,3x+1), v_{g_1}^1(0,1,2) = (x,x+1,x+1), v_{g_1}^2(0,1,2) = (x+1,x,x)$. This labeling is an edge-3-equitable labeling. $g_1(v_0) = 2$ and the pendant vertices w_1, w_2, \ldots, w_n get the labels $0, 2, 1, 0, 0, 1, 2, 0, 1, 2, 0, 1, 2, \ldots, 0, 1, 2$.

The non-pendant vertices v_1, v_2, \ldots, v_n get the labels $2, 0, 1, 1, 2, 0, 1, 2, 0, 1, \ldots, 2, 0, 1$

Labeling h_1: One defines the labeling h_1 as follows:

i	$h_1(e_i)$	$h_1(c_i)$	$h_1(p_i)$	$5 \le i \le n$	$h_1(e_i)$	$h_1(c_i)$	$h_1(p_i)$
1	0	2	0	$i \equiv 1 \mod 3$	1	1	1
2	0	1	0	$i \equiv 2 \mod 3$	2	0	0
3	1	2	1	$i \equiv 0 \mod 3$	0	2	2
4	2	1	2	-	-	_	-

The non-pendant vertices $v_1, v_2, ..., v_n$ get the labels 2, 2, 1, 0, 2, 1, 0, 2, 1, 0 ... 2, 1, 0.

The following table gives the information about these labelings for $H_{n,k}$.

Labeling	Labels of pendant vertices	$v^1(0,1,2)$	Equitable or Not
f_1	$0, 0, 1, 2, 0, 1, 2, \ldots, 0, 1, 2$	(x,x+1,x+1)	Equitable
g_1	$0, 2, 1, 0, 0, 1, 2, \ldots, 0, 1, 2$	(x,x+1,x+1)	Equitable
h_1	$0, 0, 1, 2, 0, 2, 1, \ldots, 0, 2, 1$	(x+2,x,x)	Non-equitable
k_1	$0, 0, 2, 1, 0, 2, 1, \ldots, 0, 2, 1$	(x,x+1,x+1)	Equitable

The following proposition gives a clue about how to construct the labelings.

Proposition1: If G is \overline{K}_n union of k helms of type $1, 1 \le k \le 6$ then G is edge-3-equitable.

Proof: If G is \overline{K}_n union of k helms of type 1, by $f_{k,1}$ we mean the edge-3-equitable labeling we construct for G. Let n = 3x + 1. If k = 1, we have an equitable labeling g_1

The following table gives the labelings $f_{k,1}$, $2 \le k \le 6$ and the vertex numbers. The labels of identified vertices for $f_{k,1}$ are obtained by just adding those of previous rows:

$f_{k,1}$:	Labels of identified vertices	$v_{f_{k,1}}^1(0,1,2)$	$v_{f_{k,1}}^2(0,1,2)$
f_1	$0, 0, 1, 2, 0, 1, 2, \ldots, 0, 1, 2$	(x,x+1,x+1)	(x+1,x,x)
$\int f_1$	$0, 0, 1, 2, 0, 1, 2, \ldots, 0, 1, 2$	(x,x+1,x+1)	(x+1,x,x)
$f_{2,1}:$	$0,0,2,1,0,2,1\ldots,0,2,1$	(2x, 2x+2, 2x+2)	(x+1,x,x)
f_1	$0, 0, 1, 2, 0, 1, 2, \ldots, 0, 1, 2$	(x,x+1,x+1)	(x+1,x,x)
g_1	$0, 2, 1, 0, 0, 1, 2, \ldots, 0, 1, 2$	(x,x+1,x+1)	(x+1,x,x)
h_1	$0, 0, 1, 2, 0, 2, 1, \ldots, 0, 2, 1$	(x+2,x,x)	(x+1,x,x)
$f_{3,1}$:	$0, 2, 0, 1, 0, 1, 2 \dots, 0, 1, 2$	(3x+2,3x+2,3x+2)	(x+1,x,x)
$f_{3,1}:$	$0, 2, 0, 1, 0, 1, 2 \dots, 0, 1, 2$	(3x+2,3x+2,3x+2)	(x+1,x,x)
f_1	$0, 0, 1, 2, 0, 1, 2, \ldots, 0, 1, 2$	(x,x+1,x+1)	(x+1,x,x)
$f_{4,1}$:	$0, 2, 1, 0, 0, 2, 1 \dots, 0, 2, 1$	(4x+2,4x+3,4x+3)	(x+1,x,x)
$f_{4,1}$:	$0, 2, 1, 0, 0, 2, 1 \dots, 0, 2, 1$	(4x+2,4x+3,4x+3)	(x+1,x,x)
k_1	$0,0,2,1,0,2,1,\ldots,0,2,1$	(x,x+1,x+1)	(x+1,x,x)
$f_{5,1}$:	$0, 2, 0, 1, 0, 1, 2 \dots, 0, 1, 2$	(5x+2,5x+4,5x+4)	(x+1,x,x)

$f_{k,1}$:	Labels of identified vertices	$v_{f_{k,1}}^1(0,1,2)$	$v_{f_{k,1}}^2(0,1,2)$
$f_{3,1}$	$0, 2, 0, 1, 0, 1, 2 \dots, 0, 1, 2$	(3x+2,3x+2,3x+2)	(x+1,x,x)
$f_{3,1}$	$0, 2, 0, 1, 0, 1, 2 \dots, 0, 1, 2$	(3x+2,3x+2,3x+2)	(x+1,x,x)
$f_{6,1}$:	$0, 1, 0, 2, 0, 2, 1 \dots, 0, 2, 1$	(6x+4,6x+4,6x+4)	(x+1,x,x)

The edges are labeled equally by all the labelings. The last two columns, after adding, show that $f_{k,1}$ is edge-3-equitable for all $k, 1 \le k \le 6$.

Theorem 2: If G is \overline{K}_n -union of $3t, t \ge 1$ helms of type 1, then G is edge-3-equitable.

Proof: Let G_1, G_2, \ldots, G_{3t} be the copies of a helm H_n , where n = 3x + 1. Let G be the \overline{K}_n -union of them. Clearly, |V(G)| = 3t(3x + 2) + 3x + 1 = 9xt + 6t + 3x + 1, |E(G)| = 3t(9x + 3) = 27xt + 9t. Form triple helms K_1, K_2, \ldots, K_t and assign the labeling $f_{3,1}$ to K_1 and also to K_s when s is even. Let $f_{3,1}^T$ be the labeling obtained by reversing $f_{3,1}$ with w_1 as the pivotal vertex. Assign this labeling $f_{3,1}^T$ to $K_s, s > 1$ when s is odd. The labels assigned by $f_{3,1}^T$ to the identified pendent vertices are $0, 2, 1, 0, 2, 1, 0, \ldots 2, 1, 0, 1, 0, 2$ with $x_1^T = (0, 1, 2) = (3x + 2, 3x + 2, 3x$

$$v_{f_{3,1}}^{1}(0,1,2) = (3x+2,3x+2,3x+2), v_{f_{3,1}}^{2}(0,1,2) = (x+1,x,x).$$

The following table gives the sequence of labels of the identified vertices for G when $1 \le t \le 7$. The values of edge numbers as well as $v_{f_{3t,1}}^1(0,1,2)$ are not mentioned in this table since they are all equitably labeled.

Labeling	Sequence of labels of the identified vertices
$f_{3,1}$:	$0, 2, 0, 1, 0, 1, 2, \dots, 0, 1, 2, 0, 1, 2$
$f_{3,1}:$	$0, 2, 0, 1, 0, 1, 2, \dots, 0, 1, 2, 0, 1, 2$
$f_{3,1}:$	$0, 2, 0, 1, 0, 1, 2, \ldots, 0, 1, 2, 0, 1, 2$
$f_{6,1}$:	$0, 1, 0, 2, 0, 2, 1, \ldots, 0, 2, 1, 0, 2, 1$
$f_{3,1}:$	$0, 2, 0, 1, 0, 1, 2, \dots, 0, 1, 2, 0, 1, 2$
$f_{3,1}:$	$0, 2, 0, 1, 0, 1, 2, \dots, 0, 1, 2, 0, 1, 2$
$f_{3,1}^r$:	$0, 2, 1, 0, 2, 1, 0, \dots, 2, 1, 0, 1, 0, 2$
$f_{9,1}$:	$0, 0, 1, 2, 2, 0, 1, \dots, 2, 0, 1, 1, 2, 0$
$f_{9,1}$:	$0, 0, 1, 2, 2, 0, 1, \dots, 2, 0, 1, 1, 2, 0$
$f_{3,1}:$	$0, 2, 0, 1, 0, 1, 2, \dots, 0, 1, 2, 0, 1, 2$
$f_{12,1}:$	$0, 2, 1, 0, 2, 1, 0, \dots, 2, 1, 0, 1, 0, 2$
$f_{12,1}$:	$0, 2, 1, 0, 2, 1, 0, \dots, 2, 1, 0, 1, 0, 2$
$f_{3,1}^r$:	$0, 2, 1, 0, 2, 1, 0, \dots, 2, 1, 0, 1, 0, 2$
$f_{15,1}:$	$0, 1, 2, 0, 1, 2, 0, \dots, 1, 2, 0, 2, 0, 1$

Labeling	Sequence of labels of the identified vertices
$f_{15,1}$:	$0, 1, 2, 0, 1, 2, 0, \dots, 1, 2, 0, 2, 0, 1$
$f_{3,1}:$	$0, 2, 0, 1, 0, 1, 2, \dots, 0, 1, 2, 0, 1, 2$
$f_{18,1}:$	$0, 0, 2, 1, 1, 0, 2, \ldots, 1, 0, 2, 2, 1, 0$
$f_{18,1}:$	0, 0, 2, 1, 1, 0, 2,, 1, 0, 2, 2, 1, 0
$f_{3,1}^r$:	$0, 2, 1, 0, 2, 1, 0, \dots, 2, 1, 0, 1, 0, 2$
$f_{21,1}:$	$0, 2, 0, 1, 0, 1, 2, \dots, 0, 1, 2, 0, 1, 2$

One can see that after this, all the sequences are going to repeat. Thus, we will get the sequences as given in the following table.

$r \text{ where } t \equiv r \mod 6$	Sequence of labels of identified vertices
1	$0, 2, 0, 1, 0, 1, 2, \dots, 0, 1, 2$
2	$0, 1, 0, 2, 0, 2, 1, \ldots, 0, 2, 1$
3	$0, 0, 1, 2, 2, 0, 1, \dots 2, 0, 1, 1, 2, 0$
4	$0, 2, 1, 0, 2, 1, 0, \dots 2, 1, 0, 1, 0, 2$
5	$0, 1, 2, 0, 1, 2, 0, \dots 1, 2, 0, 2, 0, 1$
6	$0, 0, 2, 1, 1, 0, 2, \dots 1, 0, 2, 2, 1, 0$

This shows that $v^1_{f_{3t,1}}(0,1,2) = (3xt+2t,3xt+2t,3xt+2t)$ and $v^2_{f_{3t,1}}(0,1,2) = (x+1,x,x)$, that is, $f_{3t,1}$ is an edge-3-equitable labeling for all $t \in \mathbb{N}$.

Theorem 3: If G is \overline{K}_n -union of 3t+1 or 3t+2 helms of type 1, then G is edge-3-equitable.

Proof: Let k = 3t+1 or 3t+2. Let G be \overline{K}_n -union of k helms G_1, G_2, \ldots, G_k which are copies of the helm H_{3x+1} on 6x+3 vertices. First form \overline{K}_n -union of G_1, \ldots, G_{3t} . Assign the labeling $f_{3t,1}$ to this union.

Case 1: k = 3t + 1. Clearly, |V(G)| = (3t + 1)(3x + 2) + 3x + 1 = 9xt + 6t + 6x + 3, |E(G)| = (3t + 1)(9x + 3). For G_{3t+1} assign the labeling f_1 if t is odd and k_1 if t is even. The following table gives the vertex numbers of these labelings. The edge numbers, being all equal, are not mentioned.

r , where $t \equiv r \mod 6$	Labeling	Sequence
1	$f_{3t,1}$:	$0, 2, 0, 1, 0, 1, 2, \dots, 0, 1, 2, 0, 1, 2$
	f_1 :	$0, 0, 1, 2, 0, 1, 2, \ldots, 0, 1, 2, 0, 1, 2$
	$f_{3t+1,1}$:	$0, 2, 1, 0, 0, 2, 1, \ldots, 0, 2, 1, 0, 2, 1$
2	$f_{3t,1}$:	$0, 1, 0, 2, 0, 2, 1, \ldots, 0, 2, 1, 0, 2, 1$
	k_1 :	$0, 0, 2, 1, 0, 2, 1, \dots, 0, 2, 1, 0, 2, 1$
	$f_{3t+1,1}$:	$0, 1, 2, 0, 0, 1, 2, \ldots, 0, 1, 2, 0, 1, 2$

r , where $t \equiv r \mod 6$	Labeling	Sequence
3	$f_{3t,1}$:	$0,0,1,2,2,0,1,\ldots,2,0,1,1,2,0$
	f_1 :	$0, 0, 1, 2, 0, 1, 2, \ldots, 0, 1, 2, 0, 1, 2$
	$f_{3t+1,1}$:	$0, 0, 2, 1, 2, 1, 0, \dots, 2, 1, 0, 1, 0, 2$
4	$f_{3t,1}$:	$0, 2, 1, 0, 2, 1, 0, \dots, 2, 1, 0, 1, 0, 2$
	k_1 :	$0, 0, 2, 1, 0, 2, 1, \dots, 0, 2, 1, 0, 2, 1$
	$f_{3t+1,1}$:	$0, 2, 0, 1, 2, 0, 1, \dots, 2, 0, 1, 1, 2, 0$
5	$f_{3t,1}$:	$0, 1, 2, 0, 1, 2, 0, \dots, 1, 2, 0, 2, 0, 1$
	f_1 :	$0, 0, 1, 2, 0, 1, 2, \ldots, 0, 1, 2, 0, 1, 2$
	$f_{3t+1,1}$:	$0, 1, 0, 2, 1, 0, 2, \dots, 1, 0, 2, 2, 1, 0$
6	$f_{3t,1}$:	$0, 0, 2, 1, 1, 0, 2, \dots, 1, 0, 2, 2, 1, 0$
	k_1 :	$0, 0, 2, 1, 0, 2, 1, \dots, 0, 2, 1, 0, 2, 1$
	$f_{3t+1,1}$:	$0, 0, 1, 2, 1, 2, 0, \dots, 1, 2, 0, 2, 0, 1$

This table clearly shows that

$$\begin{array}{l} v_{f_{3t+1,1}}^1(0,1,2)=(3xt+2t+x,3xt+2t+x+1,3xt+2t+x+1),\\ v_{f_{3t+1,1}}^2(0,1,2)=(x+1,x,x), \text{that is, } f_{3t+1,1} \text{ is an edge-3-equitable labeling.} \end{array}$$

Case 2: k = 3t + 2. Clearly, |V(G)| = (3t + 2)(3x + 2) + 3x + 1 = 9xt + 6t + 9x + 5, |E(G)| = (3t + 2)(9x + 3). First we note that for \overline{K}_n -union of two helms, if we assign the labeling f_1 to one and the labeling k_1 to the other, then the resulting labeling θ has the following properties:

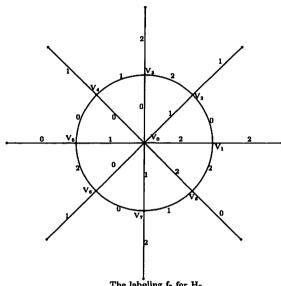
Labeling	Sequence of labels of identified vertices	$v^1(0,1,2)$
f_1 :	$0, 0, 1, 2, 0, 1, 2, \dots, 0, 1, 2$	(x,x+1,x+1)
k_1 :	$0, 0, 2, 1, 0, 2, 1, \dots, 0, 2, 1$	(x,x+1,x+1)
θ:	0,0,0,0,0,0,0,,0,0,0	(2x, 2x+2, 2x+2)

Let G be \overline{K}_n -union of $G_1, G_2, \ldots, G_{3t+2}$ where each of them is a copy of the helm H_{3x+1} . First form \overline{K}_n -union of G_1, G_2, \ldots, G_{3t} and assign the labeling $f_{3t,1}$ to it. For the remaining two helms assign the labeling θ . Call the resulting labeling $f_{3t+2,1}$. This simply means that the sequences of the identified vertices in $f_{3t,1}$ and $f_{3t+2,1}$ are same. One can check that $v_{f_{3t+2,1}}^1(0,1,2)=(3x+2t+2x,3x+2t+2x+2,3x+2t+2x+2)$ and $v_{f_{3t+2,1}}^2(0,1,2)=(x+1,x,x)$, that is $f_{3t+2,1}$ is an edge-3-equitable labeling.

Helms of Type 2:

Let
$$n = 3x + 2, n \ge 8$$
.

Labeling f_2 : One defines the labeling f_2 as follows:



The labeling f2 for H8

i	$f_2(e_i)$	$f_2(c_i)$	$f_2(p_i)$	$6 \le i \le n$	$f_2(e_i)$	$f_2(c_i)$	$f_2(p_i)$
1	2	0	2	$i \equiv 1 \mod 3$	1	1	2
2	1	2	1	$i \equiv 2 \mod 3$	2	2	0
3	0	1	2	$i \equiv 0 \mod 3$	0	0	1
4	0	0	1				
5	1	2	0				

It can be checked that $e_{f_2}(0,1,2) = (3x+2,3x+2,3x+2), v_{f_2}^1(0,1,2) =$ $(x+1,x+1,x+1), v_{f_2}^2(0,1,2) = (x,x+1,x+1)$. This is edge-3-equitable labeling. $f_2(v_0) = 1$. The pendant vertices w_1, w_2, \ldots, w_n get the labels $2,1,2,1,0,1,2,0\dots 1,2,0.$ The non-pendant vertices v_1,v_2,\dots,v_n get the labels $0, 1, 2, 2, 0, 0, 1, 2, \dots, 0, 1, 2$.

Labeling g_2 : One defines the labeling g_2 as follows:

i	$g_2(e_i)$	$g_2(c_i)$	$g_2(p_i)$	$2 \le i \le n-4$	$g_2(e_i)$	$g_2(c_i)$	$g_2(p_i)$
1	2	2	2	$i \equiv 1 \mod 3$	0	2	1
n-3	1	0	0	$i \equiv 2 \bmod 3$	2	1	0
n-2	0	1	1	$i \equiv 0 \bmod 3$	1	0	2
n-1	0	2	2				
\overline{n}	1	0	1				

In fact, g_2 is obtained from f_2 by reversing the order with w_1 as the pivotal. Hence, $e_{g_2}(0,1,2)=(3x+2,3x+2,3x+2)$ and $v_{g_2}^1(0,1,2)=(x+1,x+1,x+1),v_{g_2}^2(0,1,2)=(x,x+1,x+1)$. This is an edge-3-equitable labeling. $g_2(v_0)=1$. The pendant tip vertices w_1,w_2,\ldots,w_n get the labels $2,0,2,1,0,2,1,0\ldots,1,2,1$. The non-pendant vertices v_1,v_2,\ldots,v_n get the labels $0,2,1,0,2,1\ldots,0,2,1,0,0,2,2,1$.

Labeling h₂: One defines the labeling h_2 as follows:

i	$h_2(e_i)$	$h_2(c_i)$	$h_2(p_i)$	$6 \le i < n-1$	$h_2(e_i)$	$h_2(c_i)$	$h_2(p_i)$
1	0	1	1	$i \equiv 1 \mod 3$	0	2	1
2	0	2	2	$i \equiv 2 \mod 3$	2	1	0
3	1	0	1	$i \equiv 0 \mod 3$	1	0	2
4	2	2	2				
5	2	1	0				
n	1	0	0				

It can be checked that $e_{h_2}(0,1,2)=(3x+2,3x+2,3x+2)$ and $v_{h_2}^1(0,1,2)=(x+1,x+1,x+1), v_{h_2}^2(0,1,2)=(x,x+1,x+1)$. This is an 3-equitable labeling. $h_2(v_0)=1$ and the pendant vertices w_1,w_2,\ldots,w_n get the labels $1,2,1,2,0,2,1,0,2,1,0,\ldots,2,1,0$ respectively. The non-pendant vertices v_1,v_2,\ldots,v_n get the labels $2,2,1,0,2,1,0,2,\ldots,1,0,2,1,0,0$ respectively. The labeling h_2 is obtained by triple left shift of g_2 .

The following table shows the details of these labelings which are all edge-3-equitable.

Labeling	Labels of pendant vertices	$v^1(0,1,2)$	$v^2(0,1,2)$
f_2 :	$2, 1, 2, 1, 0, 1, 2, 0, \ldots, 1, 2, 0.$	(x+1,x+1,x+1)	(x,x+1,x+1)
g_2 :	$2, 0, 2, 1, 0, 2, 1, 0, \ldots, 1, 2, 1.$	(x+1,x+1,x+1)	(x,x+1,x+1)
h_2 :	$1, 2, 1, 2, 0, 2, 1, 0, \ldots, 2, 1, 0.$	(x+1,x+1,x+1)	(x,x+1,x+1)

Theorem 4: If G is \overline{K}_n - Union of t helms of type 2, then G is edge-3-equitable.

Proof: Let $G_1, \ldots G_t$ be t copies of helm H_n where n = 3x + 2. Let G be the combined helm of $G_1, \ldots G_t$. Clearly |E(G)| = 9xt + 6t and |V(G)| = 3xt + 3x + 3t + 2.

Assign the labeling f_2 to G_1 and also to G_s when s is even. Assign the labeling h_2 to G_s , s > 1 when s is odd. Call the resulting labeling $f_{t,2}$. One can check that $e_{f_{t,2}}(0,1,2) = (3xt+2t,3xt+2t,3xt+2t)$. Moreover, $v_{f_{t,2}}^1(0,1,2) = (xt+t,xt+t,xt+t), v_{f_{t,2}}^2(0,1,2) = (x,x+1,x+1)$.

The sequences of labels of the pendant tips in $G_1, G_2, G_3, \ldots, G_t$ are as follows:

Case 1: t is even.

For
$$G_1: f_2: 2, 1, 2, 1, 0, 1, 2, 0 \dots 1, 2, 0$$

For $G_2: f_2: 2, 1, 2, 1, 0, 1, 2, 0 \dots 1, 2, 0$
For $G_3: h_2: 1, 2, 1, 2, 0, 2, 1, 0 \dots 2, 1, 0$
For $G_4: f_2: 2, 1, 2, 1, 0, 1, 2, 0 \dots 1, 2, 0$
For $G_5: h_2: 1, 2, 1, 2, 0, 2, 1, 0 \dots 2, 1, 0$
For $G_6: f_2: 2, 1, 2, 1, 0, 1, 2, 0 \dots 1, 2, 0$
 \vdots
For $G_t: f_2: 2, 1, 2, 1, 0, 1, 2, 0 \dots 1, 2, 0$

It can be checked that after adding the respective labels, the identified pendant tips get the labels $1, 2, 1, 2, 0, 2, 1, 0 \dots 2, 1, 0$. Thus, $v_{f_{1,2}}^2(0,1,2) = (x,x+1,x+1)$.

Case 2: t is odd.

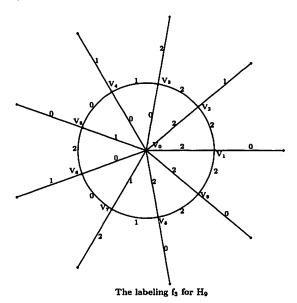
For $G_1: f_2: 2, 1, 2, 1, 0, 1, 2, 0 \dots 1, 2, 0$. For $G_2: f_2: 2, 1, 2, 1, 0, 1, 2, 0 \dots 1, 2, 0$. For $G_3: h_2: 1, 2, 1, 2, 0, 2, 1, 0 \dots 2, 1, 0$. For $G_4: f_2: 2, 1, 2, 1, 0, 1, 2, 0 \dots 1, 2, 0$.

For
$$G_5: h_2: 1, 2, 1, 2, 0, 2, 1, 0 \dots 2, 1, 0$$
.
:
For $G_t: h_2: 1, 2, 1, 2, 0, 2, 1, 0 \dots 2, 1, 0$.

It can be checked that after adding the respective labels, the identified pendant tips get the labels $2, 1, 2, 1, 0, 1, 2, 0 \dots 1, 2, 0$. Thus, $v_{f_{t,2}}^2(0, 1, 2) = (x, x+1, x+1)$. Hence, in both the cases the labeling $f_{t,2}$ is edge-3-equitable.

Helms of Type 3

Let $n = 3x, n \ge 6$.



Labeling f_3: One defines the labeling f_3 as follows:

i	$f_3(e_i)$	$f_3(c_i)$	$f_3(p_i)$
$i \equiv 1 \bmod 3$	2	2	0
$i \equiv 2 \mod 3$	0	0	1
$i \equiv 0 \mod 3$	1	1	2

It can be checked that $e_{f_3}(0,1,2)=(3x,3x,3x), v_{f_3}^1(0,1,2)=(x+1,x,x), v_{f_3}^2(0,1,2)=(x,x,x)$. This is edge-3-equitable labeling. The value $f_3(v_0)=0$ and the pendant vertices w_1,w_2,\ldots,w_n get the labels $0,1,2,0,1,2\ldots$,

respectively and the non-pendant vertices v_1, v_2, \ldots, v_n get the labels $2, 0, 1, 2, 0, 1 \ldots$, respectively.

Labeling g_3: One defines the labeling g_3 as follows:

i	$g_3(e_i)$	$g_3(c_i)$	$g_3(p_i)$	$1 \le i \le n-3$	$g_3(e_i)$	$g_3(c_i)$	$g_3(p_i)$
n-2	0	1	0	$i \equiv 1 \mod 3$	0	2	0
n-1	2	0	1	$i \equiv 2 \mod 3$	1	0	1
n	2	1	2	$i \equiv 0 \mod 3$	2	1	2

It can be checked that $e_{g_3}(0,1,2)=(3x,3x,3x), v_{g_3}^1(0,1,2)=(x-1,x+1,x+1), v_{g_3}^2(0,1,2)=(x,x,x)$. This is not edge-3-equitable labeling though it labels the vertices equitably. $g_3(v_0)=1$ and the pendant vertices $w_1,w_2,...,w_n$ get the labels 0,1,2,0,1,2... respectively and the non-pendant vertices $v_1,v_2,...,v_n$ get the labels 0,1,2,0,1,2,...,2,1,2 respectively.

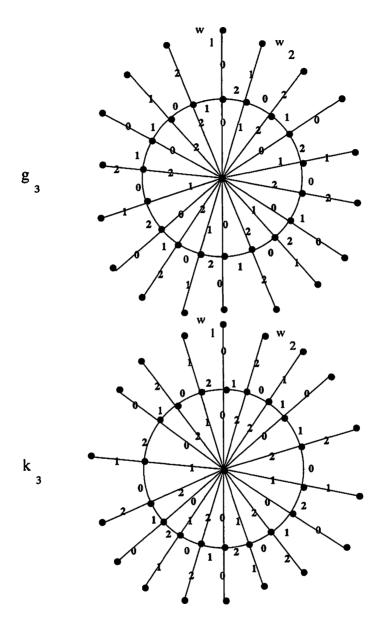
Labeling h₃ One defines the labeling h_3 by reversinf f_3 with w_1 as the pivotal vertex:

$1 \le i \le n$	$h_3(e_i)$	$h_3(c_i)$	$h_3(p_i)$
$i \equiv 1 \mod 3$	2	1	0
$i \equiv 2 \mod 3$	1	0	2
$i \equiv 0 \mod 3$	0	2	1

Clearly, $e_{h_3}(0,1,2)=(3x,3x,3x), v_{h_3}^1(0,1,2)=(x+1,x,x), v_{h_3}^2(0,1,2)=(x,x,x)$. This is edge-3-equitable labeling. $h_3(v_0)=0$ and the pendant vertices w_1,w_2,\ldots,w_n get the labels $0,2,1,0,2,1,\ldots$ respectively and the non-pendant vertices v_1,v_2,\ldots,v_n get the labels $2,1,0,2,1,0\ldots$ respectively.

Labeling k₃: One defines the labeling k_3 by reversing g_3 . The sequence of labels of pendent vertices is $0, 2, 1, \dots, o, 2, 1$.

i	$k_3(e_i)$	$k_3(c_i)$	$k_3(p_i)$	$4 \le i \le n$	$k_3(e_i)$	$k_3(c_i)$	$k_3(p_i)$
1	0	1	0	$i \equiv 1 \mod 3$	0	1	0
2	2	0	2	$i \equiv 1 \mod 3$	2	0	2
3	2	1	1	$i \equiv 1 \mod 3$	1	2	1



The following table gives complete data of these labelings:

	Labels of pendent vertices	$v^1(0,1,2)$	Equitable or not
f_3 :	0,1,2,,0,1,2	(x+1,x,x)	Equitable
<i>g</i> ₃ :	$0, 1, 2, \ldots, 0, 1, 2$	(x-1,x+1,x+1)	Not equitable
h_3 :	$0, 2, 1, \ldots, 0, 2, 1$	(x+1,x,x)	Equitable
k_3 :	$0, 2, 1, \dots, 0, 2, 1$	(x-1,x+1,x+1)	Not equitable

Theorem 5: If G is \overline{K}_n -union of k copies of the helm H_{3x} , then G is edge-3-equitable for $1 \le k \le 6$.

Proof: Let G be \overline{K}_n -union of k copies G_1, G_2, \ldots, G_k of the helm H_{3x} . If k = 1 we have the labeling f_3 which is equitable. If $k \geq 2$, the following table shows the required labeling and vertex numbers. The values of edge numbers as well as $v^2(0,1,2)$ are all equal and hence are not mentioned.

Labeling	Labels of identified vertices	formula	$v^1(0,1,2)$
$f_{2,3}$:	$0, 2, 1, \ldots, 0, 2, 1$	$f_3 + g_3$	(2x, 2x + 1, 2x + 1)
$f_{3,3}$:	$0, 1, 2, \ldots, 0, 1, 2$	$f_3+g_3+h_3$	(3x+1,3x+1,3x+1)
$f_{4,3}$:	$0, 2, 1, \ldots, 0, 2, 1$	$f_{3,3} + f_3$	(4x+2,4x+1,4x+1)
$f_{5,3}$:	$0, 1, 2, \ldots, 0, 1, 2$	$f_{4,3} + k_3$	(5x+1,5x+2,5x+2)
$f_{6,3}$:	$0, 2, 1, \ldots, 0, 2, 1$	$f_{3,3} + f_{3,3}$	(6x+2,6x+2,6x+2)

This shows that $f_{k,3}$ is edge-3-equitable for all $1 \le k \le 6$.

Theorem 6: If G is \overline{K}_n -union of T copies G_1, G_2, \ldots, G_T of the helm H_{3x} of type 3, then G is edge-3-equitable.

Proof: Case 1: T=3t. Let G is \overline{K}_n -union of 3t copies G_1, G_2, \ldots, G_{3t} of the helm H_{3x} of type 3. First form triple helms K_1, K_2, \ldots, K_t using the helms G_1, G_2, \ldots, G_{3t} . Assign the labeling $f_{3,3}$ to K_1, K_2, K_s whenever s is even and assign the labeling $f_{3,3}^T$ obtained by reversing $f_{3,3}$ with the pivotal point w_1 to K_s whenever s > 1 is odd. The following table gives the formula, sequence of labels of identified vertices and $v_{f_{3t,3}}^1(0,1,2)$.

Labeling	Labels of identified	$v^1(0,1,2)$
	Vertices	
$f_{3,3}$:	$0, 1, 2, \ldots, 0, 1, 2$	(3x+1,3x+1,3x+1)
$f_{3,3}$:	$0, 1, 2, \ldots, 0, 1, 2$	(3x+1,3x+1,3x+1)
$f_{3,3}^r$:	$0, 2, 1, \ldots, 0, 2, 1$	(3x+1,3x+1,3x+1)
$f_{9,3}$:	$0, 1, 2, \ldots, 0, 1, 2$	(9x+3, 9x+3, 9x+3)
$f_{3t,3}$ t even:	$0, 2, 1, \ldots, 0, 2, 1$	(3t+t,3t+t,3t+t)
$f_{3t,3}$ t odd:	$0, 1, 2, \ldots, 0, 1, 2$	(3t+t,3t+t,3t+t)

This shows that $f_{3t,3}$ is edge-3-equitable.

Case 2: T = 3t + 1. We first form \overline{K}_n -union of 3t helms and assign it the labeling $f_{3t,3}$. For the remaining helm we assign the labeling h_3 if t is even and the labeling f_3 if t is odd. The following table gives the label numbers as well as the labels of the identified vertices.

Labeling	Labels of identified	$v^1(0,1,2)$
	Vertices	
$f_{3t,3}$ t even:	$0,2,1,\ldots,0,2,1$	(3t+t,3t+t,3t+t)
h_3 :	$0, 2, 1, \ldots, 0, 2, 1$	(x+1,x,x)
$f_{3t+1,3}$ t even:	$0, 1, 2, \ldots, 0, 1, 2$	(3xt+t,3xt+t,3xt+t)
		+(x+1,x,x)
$f_{3t,3}$ t odd:	$0, 1, 2, \ldots, 0, 1, 2$	(3t+t,3t+t,3t+t)
f_3 :	$0,1,2,\ldots,0,1,2$	(x+1,x,x)
$f_{3t+1,3}$ t odd:	$0, 2, 1, \ldots, 0, 2, 1$	(3xt+t,3xt+t,3xt+t)
		+(x+1,x,x)

Case 3: T = 3t + 2. Again we assign the labeling $f_{3t+1,3}$ to the \overline{K}_n -union of the first 3t + 1 helms. The remaining helm is labeled g_3 if t is even and k_3 if t is odd. The following table shows the relevant vertex numbers where edge numbers and $v_{f_{3t+2,3}}^2(0,1,2)$ are not mentioned.

Labeling	Labels of identified vertices	$v^1(0,1,2)$
$f_{3t+1,3}$ t even:	$0, 1, 2, \ldots, 0, 1, 2$	(3xt+t, 3xt+t, 3xt+t) + (x+1, x, x))
g_3 :	$0, 1, 2, \dots, 0, 1, 2$	(x-1,x+1,x+1)
$f_{3t+2,3}$ t even :	0, 2, 1,, 0, 2, 1	(3xt + 2x, 3xt + 2x, 3xt + 2x) + (t, t + 1, t + 1)
$f_{3t+1,3} \text{ t odd}:$	$0, 2, 1, \ldots, 0, 2, 1$	$(3xt+t,3xt+t,3xt+t)\\+(x+1,x,x))$
k_3 :	$0, 2, 1, \dots, 0, 2, 1$	(x-1,x+1,x+1)
$f_{3t+2,3}$ t odd :	$0, 1, 2, \dots, 0, 1, 2$	(3xt + 2x, 3xt + x, 3xt + x) + (t, t + 1, t + 1)

Hence $f_{T,3}$ is edge-3-equitable for all $T \in \mathbb{N}$.

Authors thank the referee for pointing out some mistakes in the original draft as well as for some valuable suggestions to improve it.

References

- Cahit I. and Yilmaz R., E3-cordial graphs, Ars Combinatoria, 54 (2000), 119-127.
- [2] Abhaya M. Chitre and Nirmala B. Limaye, On edge-3-equitability of \overline{K}_{n} -union of gears, JCMCC, 83, November (2012), 129-150.
- [3] Gallian J. A., A dynamic survey of graph labelings, Electronic Journal of Combinatorics, DS6, (2008).

Abhaya M. Chitre
Department of Mathematics
D. G. Ruparel College
Mahim, Mumbai 400016
abhayapatil67@yahoo.co.in

Nirmala B. Limaye
Department of Mathematics
Indian Institute of Technology
Powai, Mumbai 400076
nirmala_limaye@yahoo.co.in