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Abstract

Given two graphs G and H and a function f C V(G) x V(H),
Hedetniemi (9] defined the function graph GfH by V(GfH) = V(G)U
V(H) and E(GfH) = E(G)U E(H)U {uv|v = f(u)}. Whenever
G = H, the function graph was called a functigraph by Chen, Fer-
rero, Gera and Yi [7]. A function graph is a generalization of the
a-permutation graph introduced by Chartrand and Harary (5]. The
independence number of a graph is the size of a largest set of mu-
tually non-adjacent vertices. In this paper, we study independence
number in function graphs. In particular, we give a lower bound in
terms of the order and the chromatic number, which improves on
some elementary results and has a number of interesting corollaries.
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1 Introduction and Definitions

Let G = (V(G), E(G)) be a simple graph with vertex set V(G), edge set
E(G), and order n = |V(G)|. Given a subhset S C V(QG), the subgraph
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induced by S is denoted by G[S]. A set I C V(G) is independent if no two
vertices in [ are joined by an edge. Similarly, a set of edges is independent
if no two edges share a common vertex. The independence number o(G)
equals the cardinality of a largest independent set in G. The chromatic
number, denoted x(G), equals the minimum number of independent sets
that the vertex set can be partitioned into. The reader is referred to [6] for
any additional terminology and notation.

Punction graphs, obtained from two graphs with additional edges repre-
senting a function from the vertices of one graph to the other, were intro-
duced by Hedetniemi [9]. The main result of this paper is a lower bound for
the independence number of a function graph (Theorem 3.3). This result
has a number of nice corollaries, one of which improves on the lower bound
implied by a result of Chartrand and Frechen, which is described later in
the article. Formally, function graphs are defined as follows:

Definition 1.1. Given two graphs G and H and a function f C V(G) x
V(H), the function graph GfH is the graph in which

V(GfH) = V(G)UV(H) and E(GfH) = E(G) U E(H) U {uv|v = f(u)}.

Independently Chen, Ferrero, Gera, and Yi introduced functigraphs
in (7], which differ only in name and notation. Throughout this paper,
whenever H is an isomorphic copy of G, we use G and G’ to denote the two
copies. Thus, GfG’ is the function graph of G with respect to the function
il

Function graphs are extensions of a-permutation graphs, introduced by
Chartrand and Harary [5]. A permutation graph (or a-permutation graph)
P(G) is formed from two copies of a graph G by adding nonadjacent edges
joining all the vertices of one copy to those of the other according to a
permutation. Thus, permutation graphs are simply function graphs when
the function is a bijection. Chartrand and Harary studied their planarity
in {5]. Note that a prism, typically described as a Cartesian product of the
form GOK, is a permutation graph. Also, the generalized Petersen graphs
are a subclass of the permutation graphs. Recall that Generalized Pe-
tersen Graph P(n,k) has V(P(n,k)) = {ao,a1,...,8n-1,b0,b1,...,ba"1},
and E(P(n,k)) = {aiai+1,0:b;,bibi1 |0 < i < n — 1}, where the subscripts
are expressed as integers modulo n (n > 5). The independence numbers of
generalized Petersen graphs have been investigated in {2, 8].

Finally, we let C,, denote a cycle of length n > 3, and id denote the
identity function, V(G) = {v1,v2,...,v,}, and V(G') = {v],v5,...,v,}.
Whenever A is a subset of V(G), we denote its copy in G’ by A’. When
G = C,, we assume that the vertices of G and G’ are labeled cyclically.
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2 Bounds on a(GfG’)

We start with general bounds on the independence numbers of the function
graphs GfG’ in terms of the independence number of the graph G. A result
related to the upper bound of the theorem below, but for the residue instead
of the independence number, is given by Amos, Davila and Pepper in [1].
Since any maximum independent set in G (or G') is an independent set in
GfG’, and since no independent set in GfG’ can be larger than the union
of maximum independent sets of G and G’ we have the following bounds.

Theorem 2.1. For any graph G and any function f : V(G) —» V(G),
o(G) < a(GfG') < 2a(G),
and these bounds are sharp. Furthermore,
(i) a(GfG') = a(G) if and only if G is empty and f is a bijection, and

(ii) a(GfG") = 2a(G) if and only if G contains (not necessarily disjoint)
mazimum independent sets A and B such that f(A)NB' = .

Proof: The proofs of the stated bounds are immediate. To prove sharp-
ness, it suffices to prove (i) and (ii).

First suppose that G is an empty graph and f is a bijection. Since G
is empty, o(G) = |V(G)|. Since f is a bijection, GfG’ consists of n(G)
independent edges. Since at most one vertex from each of these edges is in
any independent set in GfG’, it follows that a(GfG’) = a(G).

Conversely, suppose that a(GfG’) = a(G). Let I be a maximum in-
dependent set in G. If I # V(G), then V(G') — f(I) # 0. In this case,
let v € V(G') — f(I). Then IU {v} is an independent set in GfG’, and
o(GfG') 2 o(G) +1, contradicting our assumption. So I = V(G) and G is
empty. If f is not a bijection, then V(G') — f(I) # 0 and we get the same
contradiction as before.

Now suppose that a(GfG’) = 2a(G). Let I be a maximum independent
set in GfG'. Thenlet A=INV(G) and B’ = INV(G'). So a(G) = |A| =
|B'| = |B|, I = AUB’, and A and B are maximum independent sets in
G. Since I is independent, there are no edges between vertices in A and
vertices in B’, so f(A)n B’ = .

For the converse, suppose that G contains (not necessarily disjoint)
maximum independent sets A and B where f(A)NB’' = 0. Let I = AUB'.
Then I is an independent set in GfG', and a(GfG') > |I| = |A| +|B'| =
|A| +|B| = 2a(G). .

If the graph G is connected, we get a tighter lower bound than the one
from the theorem ahove.
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Corollary 2.2. Let G be a nontrivial connected graph. Then
a(G) +1 < o(GfG') < 2o(G),
and the bounds are sharp.

Proof: The upper bound is a corollary of Theorem 2.1 and so is its sharp-
ness.

Let I be a maximum independent set in G. Since G is non-trivial,
V(G)—I#0. Let ve V(G) — I, and J = TU {v}. Then J' =TI'U{v'}.
Since |J'| = [I'| + 1 = [I| + 1 > |f(D)], J' = f(I) # 0. Let w € J' — f(I).
Then JU{w} is an independent set in G fG’ with at least a(G) +1 vertices.

Proposition 2.3 shows the sharpness of the bounds, as well as the real-
ization of the values in between the bounds. ]

All values between the lower and upper bound above are realizable. It
suffices to show realization results for an arbitrary connected graph G as
described in Corollary 2.2.

Proposition 2.3. For every choice of n > 1, there exists a connected graph
G of order n and a family F = {f;|1 < j < a(G)} of functions from V to
V' such that a(G f; G') = o(G) + j for each choice of j.

Proof: Let n > 1 and let G = K, ,—1. It suffices to show that for any
J € Z, where 1 < j < n — 1, there exists a function f; with the property
that (G f; G') =n—1+j. Let G and G’ denote the two copies of G. Let
the vertices of G be wg,vy,...v,_1, and label the corresponding vertices
of G’ as vy, v,...,v,_;. Let vp and vy be the central vertices of G and
G', respectively. For 1 < j < n — 1, construct f; by mapping v; to v}, for
0<i<jand v tov for j+1 <i <n—1; note that f,,_; maps all of
V(G) to vg. For each choice of j, one maximum independent set is the set
{vo,v1,- -y Vn-1,v],...,vj}. =

This shows that every value in the range given by Corollary 2.2 can he
achieved. The illustration of Figure 1 shows the case n = 5, j = 2, with
the dashed edges representing f5.

3 Lower Bounds on a(GfG’)

In this section we partition the vertex set of G (with any number of sets),
and give improved lower bounds on the independence number of the func-
tion graph GfG'. First, we present the result of Chartrand and Frechen! [4].

'We thank the referee for bringing this result to our attention
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Figure 1: The graph GfG’; the dashed edges represent the function f.

Theorem A: For any greph G and any permutation graph P(G) of G,

x(6) < x(P(©) s 24

Since, for any graph G, a(G) > : g , it follows - for any graph G and any
function f - that,

n > MGSG)

From this we deduce the following corollary to Theorem A.
Corollary 3.1. For any graph G and any permutation graph P(G) of G,

3n(G)
2x(G)
This bound will be improved upon for all non-empty graphs in what

follows. Before proceeding, we present a lemma which is needed for the
proof of our main theorem.

a(P(G)) 2

Lemma 3.2, Let Ay,..., A, be pairwise disjoint sets. For any set C,
r T
Slai-c12 Y 1Al -cl.
i=1 =1

Proof: Since the sets A;, As,..., A, are pairwise disjoint, then the sets
A NC,AsNC,...,A. N C are pairwise disjoint subsets of C. It follows
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that » |4;NC| < |C|, but then

i=1
r r
Y lAi=Cl = Y |Ai-(4nC)
= 3 (4l -l4ncl)
i=1
= Yl4l-3l4nc
i=1 i=1
r
2 Z || = |C].
i=1
Thus the proof is complete. "

We now present the main theorem of the section, followed by some of
its corollaries.

Theorem 3.3. Let G be a graph, {Ay,...,A.} be a partition of the vertez
set V(G), and f : V(G) = V(G') be any function. Then

T

> al(GlA)),

=1

2r

-1
r2

o(GfG') =

and the inequality is sharp.

Proof: Let {A;,...,A,} be any partition of V(G). Let I; be a maximum
independent set in G[A;]. Note that, for every i,5 € {1,...,r}, ;U (I; -
F(I})) is an independent set in GfG’. So

(CGfG) 2 max LT = f(L)).
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Therefore,

ra(GfG) 2 )Y 1L U]~ £(1))] 2
i=1 j——l
—ZZ Ll + 105 — £(L)) 3)
i=1 j=1

(Z L+ > 11— f(L-)I) (4)

=1 \j=1 =1

(rll.-l +> 15| - |f(1i>|) )
ji=1

e

i=1
=rS ML+ 31— Z ea] (6)
i=1 j=1 i
>2erI|—Z|I| (7
=(2r—-1) Z o(G[Ai)). (8)
t=1

The inequality between lines (3) and (4) follows from Lemma 3.2.

The bound of this theorem is sharp. To see this, consider the function
graph depicted in Figure 2, where the dashed lines represent the function.
Partitioning G into its four color classes (since x(G) = 4), we see that the
right hand side of the inequality is exactly 7, while a(GfG’) = 7 as well.
Moreover, this can be generalized, for p > 5, by taking p copies of Kp,
instead of 4 copies of K4 to form the graph G. Thus we have an infinite
family of graphs where equality holds. .

Notice that when r = 1, we obtain the lower bound in Theorem 2.1.

Since every graph G can be partitioned into x(G) sets, all of which are
independent, the following is an immediate consequence:

Corollary 3.4. For any graph G with chromatic number x(G), and aeny
function f : V(G) = V(G'), we have

Cl!(GfGI) > 2X(G) -1

= "o

and this bound is sharp.
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Figure 2: The graph GfG’; the dashed edges represent the function f.

For sharpness, see the class of graphs described at the end of the proof
of Theorem 3.3. First, to see that Corollary 3.4 can sometimes be a better
lower bound than the trivial bound given in Inequality 1 above, let G and
GfG' be the graphs described at the end of the proof of Theorem 3.3.
Then,

2x(G) -1 2(G) -1 y
G n(G) 2 "5 (G) (GfG") 9)
1 /
> XO+1 n(GfG') (10)
(G
= X@rey (1D

where (10) follows since x(G) > 1, and (11) follows since x(GfG') = x(G)+
1, for all members of the family of graphs in question.

Moreover, Corollary 3.4 implies the following corollary, which general-
izes Corollary 3.1.

Corollary 3.5. For any non-empty greph G and and any function
f:V(G) = V(G),
3n(G)

a(GfG) 2 o
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Note that when each of the A; is a color class, and then particularly for
planar graphs, the following are consequences of Theorem 3.3. Note that if
each A; is a color class then, ) [_; a(G[4;]) = Y°i_, |4i| = n(G), and then
the Four Color Theorem implies Corollary 3.6.

Corollary 3.6. For any planar graph G and any function f : V(G) —
V(G),

o(GFG) 2 1xn(G),
and this bound is sharp.

For sharpness, see the class of graphs described at the end of the proof
of Theorem 3.3.

It is interesting to note that Corollary 3.6 also says that if G is planar
then 7
«(GfG') 2 n(GIG),

which is only slightly worse than the 3% = % that we would get for free if
GfG' was planar. So a function graph of a planar graph is almost planar
(we lose only 512- from the lower hound). Notice that planarity of function
graphs has been characterized in [7].

Now we consider the special case of Theorem 3.3 which follows from
considering a bipartition {A, B} of the vertex set of G, including tight
bounds in the case where G is either bipartite, or has at least two disjoint
maximum independent sets.

Corollary 3.7. For any planar graph G, any partition {A, B} of the vertez
set V(QG), and any function f: V(G) = V(G'),

a(GFC') > %(aww) +a(G[B]>).

Note that Corollary 3.7 would be a poor choice for split graphs since
the lower bound of 2(a(G) +1) is even worse than the general lower bound

of Corollary 2.2.

Notice that if we restrict our attention to bipartite graphs then each of
A and B is an independent set. Thus a(G[A]) + o(G[B]) = n(G), where
n(G) be the order of G, and so we have the following quick corollary.
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Corollary 3.8. For any bipartite graph G and any function f : V(G) —
V(G&),

&(GfG') 2 37(6),
and the bound is sharp.

To see the sharpness of the bound, let G = C,, for some even n, f :

V(G) — V(G”), f(ve;) = v}, f(vaj—1) = v}, V5,1 < j < |§]. Then the set

{v2i 11895 U {vy: |% J +1<i< 2} forms a maximum independent
set in Cp fChp.

Corollary 3.9. For any graph G having two disjoint mazimum independent
sets, and any function f: V(G) = V(G'),

a(GFG) 2 2a(G),

and the bound is sharp.

The class in Corollary 3.8 also shows that the bound in this corollary is
sharp.

A consequence of Corollary 3.7 gives bounds on the independence num-
ber of function graphs for cycles.

Corollary 3.10. Let C,, be a cycle on n vertices, and f be any function.
Then

[ n(a.)] < &(CafCa) < 2["(0 ).
and the bounds are sharp.

The class in Corollary 3.8 also shows that the bound in this corollary is
sharp.

4 Special Functions
In this section we find the independence number of the function graph for
specialized functions. First we consider the constant function, by charac-

terizing which graphs achieve one of the two values of the independence
number.
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Theorem 4.1. For each connected graph G of order n and each constant
function f : V(G) — {z}, for any vertez z € V(G),

20(G) - 1 < a(GfG') < 2a(G).

Moreover, o(GfG’') = 2a(G) — 1 if and only if G has a unique mazimum
independent set S and Range(f) € S.

Proof: The upper hound was previously addressed. To obtain the lower
bound, let S be a maximum independent set in G, and let Range(f) =
{w} € G’. Then an independent set will be at least as large as |S U
S’ — {w}]. Moreover, the lower bound holds with equality if and only if
{w} = Range(f) C S’ and every vertex of G'—S" has a neighbor in $'—{w},
i.e., SUS" — {w} is the unique maximum independent set in GfG'. .

Next we present the independence number of a function graph with
identity function, in terms of the order of the graph, =.

Theorem 4.2. Let G be a connected graph on n > 3 vertices and id be the
identity function. Then

2 <a(GidG') < n,
and the bounds are sharp. Moreover,
a(GidG') =2 if and only if G = K,,,
and

a(GidG') =n if and only if G is a bipartite graph

Proof: Choose vertices u; € V(G) and vy € V(G’) such that id(u;) # va.
Then a(Gid G’) > |{u1,v2}| = 2. For the upper bound, let A; be a maxi-
mum independent set in G. Then a(GidG') < |A U(V(G') — f(A1)) | =n.

For the characterization of the lower bound, notice that a(K,,id) = 2.
On the other hand, if G 2 K,,, say G & K,, — uju,, for some arbitrary
vertices uy,ug € V(G), then

a(GidG') 2 [{uy, ua,vs : id(u1) # v3, id(ug) # v3}| = 3.

For the characterization of the upper bound, let G be a bhipartite graph,
with the partite sets U; and Uy, and G’ be a copy of G with its partite sets V}
and V3, respectively (V; corresponding to U;, i = 1,2). Then a(GidG’) =
[Uy U V| = |Us UVy| = n. Moreover, if G is not a bipartite graph, then
a(G) < 3] and similarly a(G’) < [%], which gives that o(GidG') < n. =
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All values in between the lower and upper bound of Theorem 4.2 are
realizable as we show next.

Proposition 4.3. Let id be the identity function. For every choice ofn > 1
and for every choice of i satisfying 2 < i < n, there exists a connected graph
G such that a(GidG’) = 1.

Proof: Suppose that n > 1 and 2 < i < n. Let G be the split graph whose
independent set S has size i — 1 and whose clique K has size n —i+1. One
maximum independent set in the function graph G id G’ is the set SU {v'},
where v’ is an arbitrary vertex in the clique of G'. .

The illustration of Figure 1 shows the case n = 5, i = 2, with the dashed
edges representing the identity function.

Acknowledgements: The authors would like to thank the referees
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appreciated and led to a much better article.
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