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Abstract

An Hj graph is a multigraph on three vertices with double edges be-
tween two pairs of distinct vertices and a single edge between the third pair.
To settle the H3 decomposition problem completely, one needs to complete
the decomposition of a 2K10:45 into H3 graphs. In this paper, we present
two new construction methods for such decompositions, resulting in previ-
ously unknown decompositions for v = 15, 25,35, 45 and two new infinite
families.

1 Introduction

A graph can be decomposed into a collection of subgraphs such that every
edge of the graph is contained in one of the subgraphs. Decomposing a graph
into simple graphs has been well studied in the literature. For a well-written
survey on the decomposition of a complete graph into simple graphs with small
numbers of points and edges, see [1]. A multigraph is a graph where more than
one edges between a pair of points is allowed. A complete multigraph AK,, (A >
1) is a graph on v points with A edges between every pair of distinct points. The
decomposition of copies of a complete graph into proper multigraphs has not
received much attention yet, see [2, 5, 6, 8,9, 11, 12]. An example of a multigraph
is so-called H3 graph as described below.

1.1 H; Graphs

Definition 1 An H; graph is a multigraph on three vertices with double edges
between two pairs of distinct vertices and a single edge between the third pair.
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If V = {a, b, c} and there is a double edge between a and b and a double edge
between b and c, then we denote the H3 graph as (a,b, ¢}y, (see figure 1). An
Hj(v, A) is a decomposition of a AK, into H3 graphs. In particular, an H3(5¢, 2)
is a decomposition of a 2K, graph into 24532’%?2 = t(5¢ — 1) Hj graphs.
In this paper we study the decomposition of a 2K, (¢ > 1 with t odd) into H3
graphs, i.e., an H3(10t + 5,2).

a C

Figure 1: An H3 Graph

Hurd and Sarvate [9] showed that the necessary condition for existence of an
H3(v,2)is v = 5t or v = 5t+1. They prove that an H3(5¢+1, 2) exists fort > 1,
that there does not exist an H3(5,2), and that an H3(10,2) and an H3(15, 2) ex-
ist. The general case for an H3(5¢t,2) where t > 3 was left open. Sarvate and
Zhang [13] prove that an H3(10t,2) exists for ¢ > 1 (i.e. an H3(5¢,2) exists for
t even). In this paper, we continue to work on this problem of H3(10¢ + 5, 2)s.
We provide examples of such decompositions for v = 15,25, 35,45 and of two
infinite families, but to obtain a complete solution is still an open problem.

The following definition and results from combinatorial designs are well-
known (for example, see [3, 10, 15]).

Definition 2 A J-factor of a graph G is a set of pairwise disjoint edges which
partition the vertex set. A I-factorization of a graph G is the set of 1-factors
which partition the edge set of the graph.

A 1-factorization of K, contains (2n — 1) 1-factors as elements [14].

Definition 3 A group divisible design GDD(g, u, k; A1, A2) is a collection of k-
subsets (called blocks) of a set V' of v points such that each point appears in
(called the replication number) blocks. The points of V' are partitioned into u
subsets (called groups) of size g each. Any two points within the same group are
called first associates and appear together in A} blocks; any two points not in the
same group are called the second associates and appear together in A2 blocks.

If the blocks in a design can be partitioned into resolution (or parallel) classes
such that the blocks of each class partition the set V, then the design is called
resolvable. A resolvable GDD(g, u, k; 0, A) is denoted by RGDD(g, u, k; 0, A).
Note that the number of resolution classes is equal to the replication number r =
AMv—g)
gt
Theorem 1 (Theorem 19.33 in [4]) A 3-RGDD (i.e., RGDD(g, u, 3;0, 1)) of type
g* exists if and only if v > 3 and (1) ¢ = 1, 5(mod 6) and v = 3(mod 6); (2)
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9 = 3(mod 6) and « = 1(mod 2); (3) g = 2, 4(mod 6) and u = 0(mod 3), except
for g* € {23,26}; (4) g = 0(mod 6), except for g* = 63.

Let P denote a path with k vertices and k — 1 edges, and let the notation
(G, Py)-design denote a decomposition of a graph G into Ps.

Theorem 2 [7] (Horton) There exists a resolvable (AK,,, P3)-design if and only
ifn = 0(mod 3) and A(n — 1) = 0(mod 4).

Theorem 3 [7] (Ushio) There exists a resolvable (K, 5, P3)-design if and only
ifm +n = 0(mod 3), m < 2n < 4m and 3mn = 0(mod 2(m + n)).

1.2 New Families of H3; Decompositions
We begin with an observation.

Theorem 4 In any Hi(v, \), at most one vertex can occur in the Hs graphs hav-
ing only degree four.

Proof: If there are two (or more) vertices in the Hs graphs having only degree
four then they can not appear together in any of the H; graphs. O

Note that there can be at most one vertex in the H3 graphs of an H3(5t, 2) hav-
ing only degree four. The first construction of an infinite sequence of H3(10¢ +
5,2) is given below. It produces, for example, an H3(15,2) where no vertex oc-
curs as a degree-four vertex in contrast to the known example of an H3(15, 2) (see
next section) where exactly one vertex occurs as a degree-four vertex.

The first construction uses the following procedure.

Procedure PATHS-TO-H3-GRAPHS(R,n' = 7): Given R = {Ry,...,R.},
a collection of r resolution classes from a resolvable (K, P;)-design. For each
block {a,b,c} in R;(i = 1,...,7), construct H; graphs {00;, a, b) g, and {00;, c,
b) 11, where co; ¢ V' In the resulting H3 graphs, there are two edges between oo,
and any point in V' and two edges between any pair of distinct points in V. The
number of new points is n’ = r.

Theorem 5 If v = 9(mod 60), then an H3(7"4‘ 3,2) exists. In other words, an
H3(105¢ + 15, 2) exists for t > 0.

Proof: If v = 9(mod 60), then v = 0(mod 3) and v — 1 = O(mod 4). By
Theorem 2, there exists a resolvable (K, P3)-design. The number of resolution
classes is 7 = 221 = 1(mod 5). Perform PATHS-TO-H3-GRAPHS(R, n/ =
) and obtain an H3(n',2) on the n’ new points (note that n’ = 1(mod 5)). We
have an Hz(v + n’,2) = H3( 7"4_3 ,2). In other words, if we let v = 60t + 9(t >
0),an Ha(Z2,2) = H3(105¢t + 15, 2) exists. O
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Theorem 6 If m + n = 0(mod 3), m < 2n < 4m, 3mn = 0(mod 2(m + n)),
and an Ha(ﬂ%, 2) exists, then an H3(m +n + ﬂ%, 2) exists.

Proof: By Theorem 3, there exists a resolvable (K, », Ps)-design. The num-
ber of resolution classes is r = 2—(3’"—" Perform PATHS-TO-H3-GRAPHS

m+n)
(R,n’ = r) and obtain an H3(n’,2) on the n’ new points. We have an H3(v +

n',2) = Ha(m +n+ -2—(3;"'_*%5,2). 0

Corollary 1 If m = 5t(t > 2), n = 10t and an H3(5t,2) exists, then an
H3(20t,2) exists; If m = 40t(t > 1), n = 120t and an H3(45t, 2) exists, then an
H3(205¢,2) exists; If m = 25t(t > 1), n = 100t and an H3(30¢t, 2) exists, then
an H3(155t,2) exists.

Proof: If m = 5i(t > 2) and n = 10t, then r = s = 5t If
m = 40t(t > 1) and n = 120¢, then 7 = 45¢. If m = 25¢(t > 1) and n = 100¢,
then 7 = 30t. Apply Theorem 6 to each of the three cases, we have an H3(20¢, 2),
an H3(205t, 2), and an H3(155¢,2). O

Here is another new procedure which also gives an infinite sequence of H3(10¢+
5, 2) and previously unknown H3(45, 2).

Procedure THREE-FOR-TWO-CLASSES(Py,...,P,,n' = ¥): Given r
resolution classes P, ..., P, of a RGDD(g, 3,3;0,1) where r = g is an even
number and 7’ = 3 new points that are not in V. Note that there are g blocks
in each class. Let G, G and G73 be the three groups, and P; = {Bj,...,B;,}
G = .,7) where B;; = {b1 € G1,b} € Go,b}; € G3} (§ = 1 .y 9)
represents a block in P, contammg three pomts from each of the three groups
(note that A\; = 0). Divide the resolution classes into % % pairs and perform the
following procedures for the ith pair P and Py(i=1,...3):Forj=1,...,9,
construct (b1, b2;,00}) 1, and (bL;, b3, 00}) ;. Construct (bf,_,, b3, 00?) i, and

by;»00%) b, Also, construct (b3, by, 003) i, and (b3;,b%;,00%) b, Since
eacir palr of resolution classes use 3 new points, the total number of new points is
2' In the resultmg Hj graphs from the procedure, there are two edges between
any of the n’ new point and any point in V. Since A; = 1, there are two edges
between any pair of points in V which are second associates.

Theorem 7 If an H3(15¢,2) exists for t > 1, then an H3(45t, 2) exists.

Proof: By Theorem 1 cases (3) and (4), a RGDD(10¢, 3, 3; 0, 1)) exists. Note
thatr = g = 10t and v = 3g = 30t. Perform THREE-FOR-TWO-CLASSES
(Py,...,Pr,n’ = 3F). The total number of new points is ' = 15¢. Since an
H(10¢, 2) exists [13], obtain an H3(10t, 2) for the 10t points in each of the three
groups. Also, obtain an H3(15¢,2) for the 15¢ new points. In the resulting H;
graphs, there are two edges between any pair of distinct points in V, two edges
between any point in V' and any new point, and two edges between any pair of
distinct new points. Thus, an H3(30t + 15¢,2) = H3(45¢,2) exists. O
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2 Small Examples

Now we provide previously unknown H3(10t + 5, 2) for v = 25 and 35. First
we reproduce an example for v = 15, as it has exactly one vertex which occurs
in the decomposition as degree four only. Recall that an H3(45, 2) is produced in
the previous section.

2.1 Difference Sets for H3(10t + 5, 2)

These examples are based on difference sets and difference families, for ex-
ample, see Stinson [15] for details.

Definition 4 Suppose (G, +) is a finite group of order v with the identity element
“0”. Let 2 < k < v be positive integers. A (v, k, A) difference set in (G, +) is a
subset D C G that satisfies the following properties: 1. |D| = k, 2. the multiset
[z —y:z,y € D,z # y| contains every element in G\ {0} exactly X times. A
difference family [D;, ..., Dy] is a collection of subsets of G satisfying properties
1 and 2 for some integer ! > 1.

In many cases G is taken as (Z,, +), the group of integers modulo v.

Example 1 A (7,3, 1)-difference set in (Z7,+) is D = {3,0,2} since 0 — 3 =
4,2-3=6,3-0=3,2-0=2,3—2=1and0—2 = 5. We get every element
of Z7\{0} exactly once as a difference of two distinct elements in D.

We interpret the difference sets for an H3(5t,2) as follows: let {a,b,c) be a
difference set corresponding to the H3 graph (a, b, ¢) ir,. Then it gives the differ-
ence |a — b| twice and the difference |b — | twice and the difference |a — c| once.
For example, for v = 2(10s + 7) + 1 = 5(4s + 3), the number of Hj graphs is
2(45+3)(10s+ 7). Forall s > 0,let V = {00} U (Z2 X Z10547).

To obtain 2(4s + 3)(10s + 7) Hs graphs of an H3(5(4s + 3),2) , we can
construct a difference family of 2(4s + 3) difference sets and then expand the
difference sets in the difference family modulo (¥, 10s+ 7). The difference sets in
the difference family must provide each of the differences (0,1);,. .., (0,5s+3);
twice for ¢ = 1 and 2 (i.e., differences from each of the two sets appear twice),
respectively, and each of the differences (1,¢) twice, for i = 0,...,10s + 6,
respectively.

Example 2 A difference family solution for an H3(15,2) is given in the table
below. Expand the 6 difference sets modulo (%,7), respectively, we can obtain a
total of 42 Hj graphs for an H3(15,2).

Difference sets Differences

((0,1),(1,1),(1,4)) | (1,0) twice, {0, 3)2 twice, (1, 3) once
((0,1),(1,3),(1,5)) | (1,2) twice, (0,2); twice, (1,4) once
((0,1),(1,2),(0,3)) | (1,1) twice, (1,—1) = (1, 6) twice, (0,2); once
((0,1),(0,0),(0,3)) | (0,1); twice, (0,3); twice, (0,2); once
((0,1),(1,6),(1,5)) | (1,5) twice, (0,1)2 twice, (1,4) once

{(0,1), 00, (1,4)) (1, 3) once
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This example also shows that there can be exactly one vertex (the vertex o)
in the Hj3 graphs of an H3(15, 2) having only degree four.

Example 3 There are 120 Hj blocks in an H3(25, 2). We obtain a difference fam-
ily solution of 10 difference sets and expand them modulo (x,12). Let V = {o0}U
(Z2 % Z32) == {o0}U{(0,0),...,(0,11)}U{(1,0),...,(1,11)}. Note that we
count the difference (0,6), twice in the first difference set {(0,0), (0, 2), (0,6))
because when we expand the difference set modulo 12, the 7" block is {(0,6),
(0,8),(0,0)). Similarly, we count the difference (0, 6)2 twice in the second dif-
ference set {(1,0),(1,1),(1,6)).

Difference sets Differences

,0), (0, 2), (0, (0, 2)1 twice, (0,4)) twice, (0,6); twice
{(1,0),(1,1),(1,6)) | (0,1)2 twice, (0,5)2 twice, (0, 6)2 twice
{(0,0),(0,5),(1,0)) | (0,5); twice, (1,—3) = (1,7) twice, (1,0) once
{(0,0), (0,1),(1,10)) | (0,1)1 twice, (1,9) twice, (1, 10) once
((1,0),(1,2),(0,9)) | (0,2)2 wice, (1,-7) = (1, 5) twice, (1, —-9) = (1,3) once
((0,0), (1,11),(0,3)) | (1,11) rwice, (1, 8) rwice, (0, 3)1 once
((0,0),(1,4),(0,3)} | (1,4) twice, (1,1) twice, (0, 3), once
((1,0),(1,3),(0,9)} | (0,3)2 twice, (1,—86) = (1,6) twice, (1,~9) = (1,3) once
{(1,0),(1,4),(0,2)) | (0,4)2 twice, (1,2) twice, (1, -2) = (1, 10) once
{(0,0), 0, (1,0)) (1,0) once

Example 4 There are 238 Hj blocks in an H3(35,2). We obtain a difference
family solution of 14 difference sets and expand them modulo (*,17). Let V =
{00} U (Z2 x Zy7) = = {00} U{(0,0),...,(0,16)} U {(1,0),...,(1,16)}.

Difference sets Differences

{(0,0),(0,1),(1,2)) [ (0,1)1 swice, (1,1) twice, (1,2) once
{((0,0),(0,2),(1,0)} | (0,2)1 twice, (1,—-2) = (1,15) twice, (1,0) once
{(0,0),(0,3),(1,7)) (0,3)1 twice, (1,4) twice, (1,7) once
{(0,0),(0,4),(1,13)) | (0,4)1 twice, (1,9) twice, (1,13) once

{(0,0), (0,5),(1,13)) | (0,5)1 twice, (1,8) twice, (1,13) once
{(0,0),(0,7),(1,0)} | (0,7)1 twice, (1,—T) = (1,10) twice, (1,0) once
{(0,0),(0,8),(1,7)} (0, 8); twice, (1,—1) = (1, 16) twice, (1, 7) once
{(0,0),(1,12),(0,6)) | (1,12) twice, (1,6) twice, (0,6); once
((0,0),(1,3),(0,6)) | (1,3) rwice, (1,—3) = (1,14) twice, (0,6)1 once
((1,0),(1,3),(1,7)) (0, 3)2 twice, (0,4)2 twice, (0,7)2 once
((1,0),(1,2),(1,10)) | (0,2)2 twice, (0, 8)2 twice, (0,10)2 = (0, 7)2 once
((1,0),(1,1),(1,6)) | (0,1)2 twice, (0,5)2 twice, (0, 6)2 once
((1,0),(0,12),(1,6)) | (1,—12) = (1,5) twice, (1, —6) = (1, 11) twice, (0, 6)2 once
((0,0),00,(1,2)) (1,2) once

3 Summary

We discussed the decomposition of a 2Ko.+5 into H3 graphs in this paper.
Specifically, we provided difference family solutions for v = 15,25, 35, and de-
composition constructions for two infinite families. These show the existence of
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an H3(10t + 5,2) for v = 15,25, 35,45 (by Theorem 7), 135 (by Theorem 7),
155 (by Corollary 1), 205 (by Corollary 1), 225 (by Theorem 5) and 10t + 5 for
t = 1(mod 21) (by Theorem 5). To obtain a complete solution is still an open
problem.
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