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Abstract

An Eulerian graph G of size m is said to satisfy the Eulerian
Cycle Decomposition Conjecture if the minimum number of odd
cycles in a cycle decomposition of G is a, the maximum number
of odd cycles in a cycle decomposition is b and £ is an integer
such that @ < ¢ < b where £ and m are of the same parity, then
there is a cycle decomposition of G with exactly ¢ odd cycles.
Several regular complete 5-partite graphs are shown to have this

property.
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1 Introduction

Eulerian graphs, namely those graphs containing an Eulerian circuit, were
essentially characterized by Euler [7] in 1736 as connected graphs in which
every vertex has even degree. In 1912 Veblen (9] presented his own char-
acterization of Eulerian graphs as connected graphs possessing a decom-
position into cycles. Consequently, every complete graph K, of odd order
n > 3 has a cycle decomposition. Furthermore, for every even integer n > 4
and a perfect matching M of K, the graph K,, — M has a cycle decompo-
sition. In 1981, Alspach [2] made a conjecture about the lengths of cycles
that can exist in a cycle decomposition of these two classes of graphs. This
conjecture was verified in 2012 by Bryant, Horsley and Pettersson [3].
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Theorem 1.1 (Bryant, Horsley and Pettersson) For an odd integer

n > 3 and integers my, ma,...,m; such that 3 < m; < n for each i (1 <
i <t) and my +mg + -+ my = (3), the graph K, can be decomposed
into the cycles Cpyy,Cimgy ... Cm,. Also, for an even integer n > 4 and

integers my, mya, ..., m such that 3 < m; < n for each i (1 < i < t) with
m+me+---+m = (’2‘) — 5, the graph K,, can be decomposed into a
1-factor and the cycles CpnyyCrnyy oo+ s Crmy -

More recently, a problem involving cycle decompositions of Eulerian
graphs was introduced in [4].

The Eulerian Cycle Decomposition Conjecture (ECDC)

An Eulerian graph G of size m is said to satisfy the Eulerian Cycle Decomn-
position Conjecture if a is the minimum number of odd cycles in a cycle
decomposition of G, b is the mazimum number of odd cycles in a cycle de-
composition of G and for every integer £ such that a < £ < b where £ and m
are of the same parity, there exists a cycle decomposition of G containing
ezactly £ odd cycles.

The major problem here is then: Which Eulerian graphs satisfy the
ECDC? Not all Eulerian graphs satisfy the ECDC as Meszka (8] showed
by giving an example of an Eulerian graph with maximum degree 4 and
minimum degree 2 not having this property. A problem in this connection
is determining an expression f(n) such that if G is an Eulerian graph of
order n with minimum degree 6(G) > f(n), then G satisfies the ECDC.

The complete k-partite graph Ky, n,,....n, of order n = Z:.;l n; has k
partite sets V1, V5, ..., Vi containing nj, ng, ..., ni vertices, respectively. If
n; = 7 for each i (1 <4 < k), then this graph is denoted by Kj(,). The

graph K,y is therefore a (k — 1)r-regular complete k-partite graph of order

kr and size (';)rz. Furthermore, Ky is the complete graph Ky if r = 1

and Ky, is Eulerian if and only if £ is odd or r is even.

It is an immediate consequence of Theorem 1.1 that the complete graph
K, satisfies the ECDC for every odd integer n > 3 and the graph Ky s,
satisfies the ECDC for every integer k > 2. In [4] it was shown that every
Eulerian complete 3-partite graph satisfies the ECDC. For each integer
k > 4, it was shown in (1] that every regular complete k-partite graph
Kp(ry, for which k = 1,3 (mod 6) as well as those graphs Kj;), for which
k =0,4 (mod 6) and r > 2 even, satisfy the ECDC. Therefore, the regular
complete k-partite graph of smallest order for which the ECDC has not
been verified is the 12-regular complete 5-partite graph, Ky = K3.3,3,3,3
of order 15 and size 90. We establish this result here. In addition, we show
that the regular complete 5-partite graphs K4y and Ks(s), as well as all
graphs Ks(,) for which 7 > 6 and r = 0 (mod 3), satisfy the ECDC. We
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begin with the graph K;(). We refer to the book [5] for graph theoretic
notation and terminology not described in this paper.

2 The Graph Kjy3) and the ECDC

In order to show that K53y satisfies the ECDC, we need to know the maxi-
mum and minimum number of odd cycles in a cycle decomposition of K s).
For the purpose of doing this, the following result will be useful. This re-
sult is a special case of a more general theorem of Colbourn, Hoffman and

Rees [6].

Theorem 2.1 (Colbourn, Hoffman and Rees) For integers k > 3
and r > 1, the graph Ky () is C3-decomposable if and only if (k — 1)r is
even and (5)r? is a mutiple of 3.

For the graph Kj s, it is convenient here to denote its five partite sets
b}’ A= {alva2’a3}’ B= {bla b21 b3}s C= {Clv cZyCS}v D= {dly d2:d3} and
E = {e1,ez,e3}. (See Figure 1.) The following theorem determines the
maximum and minimum numbers of odd cycles in a cycle decomposition

of Ky(3). For simplicity, we express a cycle (ui, ua, ..., uk, u1), kK > 3, as
(u1,u2,...,u).
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Figure 1: The five partite sets of K53,

Proposition 2.2 The mazimum number of odd cycles in a cycle decom-
position of K3y is 30 and the minimum number of odd cycles in a cycle

decomposition of Kg) is 0.
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Proof. Let G = Kg(3). By Theorem 2.1, the graph G is C3-decomposable.
Since the size of G is 90, there exists a cycle decomposition of G into 30
triangles (odd cycles) and so the maximum number is 30. It remains to
show that G can be decomposed into even cycles only.

Let Hy 2 Kj(9) be the subgraph of G with partite sets {bs, b3}, {cz, ca},
{d2,d3} and {ez,e3}, let Hy = K 1,1,1,3 be the subgraph of G induced by
the set {1, ¢1,d1, €1} U {a1,a2,a3} and let Hs be the spanning subgraph of
G with edge set E(G)—(E(H;)UE(H2)). Thus the graph G is decomposed
into H;, Hy and Ha. Observe that Hj is a bipartite graph with partite sets
V(H,) and V(H;). Since degHs v==6ifve V(Hl) U {bl,cl,dl,el} and
degy, v = 8 if v € {a1, a2, a3}, it follows that Hj is Eulerian.

As a consequence of Theorem 1.1, the graph H; = Ky has a cycle
decomposition D into even cycles (or with exactly 0 odd cycles). The
graph Hy; has a cycle decomposition D’ into four even cycles, namely
(b1,d1,a1,¢1,€1,a3) = Cs, (b1,c1,d1,e1) = Cy, (b1,a1,€1,82) = Cy and
(e1,a2,d1,a3) = C4. Since Hj is an Eulerian bipartite graph, Hs has a
cycle decomposition D" into even cycles. Then DU D’ U D" is a cycle
decomposition of G into even cycles. Hence the minimum number of odd
cycles in a cycle decomposition of G is 0.

As a consequence of Proposition 2.2, to show that K3 satisfies the
ECDC, it is required to show for every even integer £ with 2 < £ < 28 that
there is a cycle decomposition D¢ of K53y with exactly £ odd cycles. First,
we show the existence of a cycle decomposition D4. Figure 2 describes
such a cycle decomposition of K3y into 26 cycles, exactly 24 of which are
triangles T; (1 < ¢ < 24), one an 8-cycle Cs and the other a 10-cycle Ciq.

T = (al,bx,cl) Te = (bl,cz,ds) T3 = (a!,dl,el) Ty = (02,d2, 32)
Ts = (bs,c2,d2) Te = (az,ds,es) Tr=(bi,dr,e2) Ts=(b1,d2,e1)
To = (b2,d1,e3) Tio=(az,c1,dy) T = (b3, ds,e2) Tiz2 = (c1,d2,e3)
T3 = (a1,¢2,e2) Tia = (bi,c3,e3) Tis = (a3, c2,d1) The = (a3, b2,e2)
Ti7 = (a1,b3,e3) Tis = (b2,c1,e1) Tio = (a1,¢3,d2) Too = (a1,b2,d3)
Ta1 = (az,ca,d3) Too = (a2,b3,e1) Tos = (az,b2,c2) T2a =(as,bs,c3)

Cs = (a3, d2,b3,c3,e3,c1,d3,€1)
Clo = ((12,bl,ﬂg,C],bs,dl,Cs,el,Cg,es).

Figure 2: A cycle decomposition Daq
of Kg(3) having exactly 24 odd cycles

From the cycle decomposition D34, we construct a cycle decomposition
Dag of K53y having exactly 26 odd cycles. In order to do this, we introduce



some useful notation, For two edge-disjoint graphs F and G, let F UG
denote the graph induced by E(F)U E(G). Figure 3 shows the subgraph
H = CsUCy of Ky(3) induced by E(Cs) U E(Cyo), where Cs (indicated
with dashed lines) and C)o (indicated with solid lines) are the two even
cycles in the cycle decomposition D24 of Kjy(3) in Figure 2. The Eulerian
graph H can be decomposed into a 5-cycle Q; = {c1, eg, 3, €1,d3), a 7-cycle
Q2 = (as, c1, b3, d1, ¢3, be, d2) and a 6-cycle Q3 = (az, by, as, e1,¢2,€3). Then

Dys = {T1,T3,...,T24,Q1,Q2,Q3}

is a cycle decomposition of Ks(3y having exactly 26 odd cycles.

..':.dg

Leby

€1

Figure 3: The subgraph H = Cg U C} in Ki3)

Next, from the cycle decomposition D,y in Figure 2, we construct a
cycle decomposition Dag of K5(3) into 28 odd cycles. Consider the subgraph
F = Ty3UT34UC3UC)p of Kgsy in Figure 4, which is induced by E(T23)U
E(T54) U E(Cs)U E(C10), where T3, T24,Cs and Cyq are four cycles in the
cycle decomposition D24 of Kg(3) described in Figure 2. Then F' can be
decomposed into four triangles @, = (az,¢2,e3), Q2 = (as, b3, c1), Q3 =
(b3, c3,dy), Qa4 = (as, c3, e1), a 5-cycle Qs = (ag, by, a3,dz, by) and a 7-cycle
Qs = (b2,c2,€1,d3,c1,€2,¢3). Then

D28 = {TI»T2s~ v ,T‘ZZan’ Q21' e ’QG}

is a cycle decomposition of Kj(s) into exactly 28 odd cycles and no even
cycles.

Therefore, we have the following.

Proposition 2.3 For each integer £ = 24,26,28, there is a cycle decom-
position of Ks(3) with exactly £ odd cycles.

65



‘." ds

Figure 4: The subgraph F' =T33 U T34 U Cg U Cyp in Kpga)

To show that K53y satisfies the ECDC, it therefore remains to show
that for every even integer £ with 2 < £ < 22, there is a cycle decomposi-
tion of Kj5(3) with exactly £ odd cycles. Next, we establish this fact when
2<€<L14.

Proposition 2.4 For each even integer £ with 2 < £ < 14, there is a cycle
decomposition of Ks3y with exactly ¢ odd cycles.

Proof. For G = Ks(3), let H = Kp() be the the subgraph of G with
partite sets {a2,as}, {b2,b3}, {c2,ca}, {d2,das} and {ez,e3}, let Hy = Kj
be the subgraph of G induced by the set {ay, b1, c1,d;, €1} and let H3 be the
spanning subgraph of G with edge set E(G) — (E(H;) U E(H3)). Observe
that H3 is a bipartite graph with partite sets V(H;) and V(Hz). Since
degy, v=4if ve V(H)) and degy, v =8 if v € V(H3), it follows that H3
is Eulerian. Thus the graph G is decomposed into Hy, H, and Hj. Since
K59 satisfies the ECDC, for each even integer ¢’ with 0 < ¢ < 12, there
is a cycle decomposition D of K2y with exactly £ odd cycles. The graph
K5 has a cycle decomposition D’ into two 5-cycles. The Eulerian bipartite
graph Hj has a cycle decomposition D" into even cycles. For each even
integer ¢ with 2 < £ < 14, write £ = 2 + ¢ for some even integer ¢’ with
0<? <12. Then DUD' UD” is a cycle decomposition of G with exactly
£ odd cycles.

We now show the existence of a cycle decompositions D, of K53y with
exactly £ odd cycles for the remaining values of £.
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Proposition 2.5 For each even integer £ with 10 < £ < 22, there is a
cycle decomposition of Ks3) with ezactly £ odd cycles.

Proof. For G = Ks(3), let Hy = Kg(9) be the the subgraph of G with
partite sets {as,as}, {b2, b3}, {c2,c3}, {d2,d3} and {ez,e3} and let T}, T,
..., T1p be the ten edge-disjoint triangles of G described below:

Ty = (a1,b1,d3) T2 =(e1,c1,d3) T3 =(by,c1,e3)

Ty = (a1,d1,e3) Ts=(c1,d1,a3) To=(b1,e1,0a3)

Ty = (dy,e1,b3) Tg=(c1,a1,b3) To=(e1,a1,c3)
T1o = (d1,b1,¢3).

Finally, let H> be the bipartite 4-regular subgraph G whose partite sets
are {ai1, by, c1, di, e1} and {az, b2, c2, d2, e2} and whose edge set is
E(G)—[E(H1 )UE(Tl)UE(Tz)U~ . ~UE(T10)]. Then {H], H, T1,T5,..., Tw}
is a decomposition of G. Since Kj(o) satisfies the ECDC, it follows that,
for each even integer ¢’ with 0 < ¢ < 12, there is a cycle decomposition D
of K5 with exactly ¢ odd cycles. The Eulerian bipartite graph H; has
a cycle decomposition D’ into even cycles. For each even integer ¢ with
10 < £ < 22, write £ = 10 + ¢ for some even integer £ with 0 < ¢ < 12.
Then D, D' and 11, T3, . . ., T1p give rise to a cycle decomposition of G with
exactly £ odd cycles.

As an example, we illustrate a cycle decomposition D23 of K5(3) into

25 cycles, exactly 22 of which are triangles T; (1 < i < 22), one 4-cycle
and two 10-cycles. We begin with the triangles Tj,T5,T3,T4 shown in
Figure 5(a). By rotating T3, T%, T3, Ty clockwise through an angle of 2r/5
radians, we obtain Ts, Ts, T7, T, which are edge-disjoint from Ty, T, T3, T4.
We continue this three more times and obtain 20 edge-disjoint triangles
Tl,Tg, ceey Tzo as follows:

Ty = (e2,a1,b2) T2 = (es,a1,bs) T3=(ds,a1,¢s) Tua=(dz2,a1,c2)

T5 = (az,bl,cz) Ts = (aa,b;,cs) T7 = (83,bl,d3) Ts = (ez,bl,dz)

Ty = (bz,cl,dz) Tio = (bs,cl,dz) T, = (03, 01763) Tl2 = (‘12:01’32)

Tz = (c2,d1,e2) Tha = (ca,d1,es) Tis = (b3, d1,a3) Tie = (b2,d1,a2)

Ti7 = (d2,e1,82) Ths = (ds,e1,a3) Tio = (c3,e1,b3) Too = (c2,e1,b2).
Figure 5(b) shows the two triangles T5;, T22 (whose edges are drawn with
dashed lines) and the 4-cycle (whose edges are drawn with solid lines) in
the cycle decomposition Dz, where Toy = (a1,b1,¢1), To2 = (a1,d;,€1) and
Q1 = (b1, d1,c1,e1). Figures 5(c) and 5(d) show the two copies Q2 and Q3
of Cyp, respectively, in the cycle decomposition D3z, namely

Q2 = (a2v b31 C2, d3’ 62,a39b21 c3, d27 e3)
Q3 (a'21 03,62,b3, d27a3’023 €3, b2) d3)'

]
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Then Dy = {T1, T3, ..., Ta2,Q1,Q2,Q3} is cycle decomposition of K3,
having exactly 22 odd cycles.
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Figure 5: Illustrating a cycle decomposition D2 of Ks(s)

Combining Propositions 2.3, 2.4 and 2.5, we have the following theorem.

Theorem 2.6 The graph Ks3) satisfies the ECDC.

3 The Graphs K5(4) and K5(5) and the ECDC

In this section, we show that the two graphs Ky and Kjs) also satisfy
the ECDC. We begin with K54y. The graph K4y is a 16-regular complete
5-partite graph of order 20 and size (3)4% = 160. Therefore, the maximum
number of odd cycles in a cycle decomposition of Kg(4) is at most 52. We
first show that the minimum number of odd cycles in a cycle decomposition
of Kg(q) is 0 and, in fact, K54y has a cycle decomposition with exactly ¢
odd cycles for every even integer £ with 0 < ¢ < 40.

Proposition 3.1 For each even integer £ with 0 < £ < 40, the graph Kg 4
has a cycle decomposition with ezactly £ odd cycles.
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Proof. Let G = Kjy(4) with partite sets Vy, V2, V3, V4, Vs, where
Vi ={vi1,v:2,vi3,v54) for 1 <i <5.

For £ =0, let H; = K5(2) be the subgraph of G with partite sets {v;,1,vi2}
for i = 1,2,...,5, let Hy = Kgg) be the subgraph of G induced by
{vis,viq} for i = 1,2,...,5, and let H3 be the spanning subgraph of G
with edge set E(G) — (E(H,) U E(H3)). The graph G can therefore be
decomposed into H;, H, and H3, where H3 is an Eulerian bipartite graph
with partite sets V(H)1) and V(H3). Since Kg(3) satisfies the ECDC, there
is a cycle decomposition of K5 into even cycles. Because H3 is an Eu-
lerian bipartite graph, H3 has a cycle decomposition into even cycles. Let
D; be a cycle decomposition of H; into even cycles for ¢ = 1,2,3. Then
Dy UDyUDs is a cycle decomposition of G into even cycles.

For each even integer £ with 2 < £ < 32, we can write ¢ = 2 + ¢ where
¢ is an even integer with 0 < ¢’ < 30. Let H; = Kj3) be the subgraph
of G with partite sets V; — {v;1} for i = 1,2,...,5, let Hy = K;s be the
subgraph of G induced by {v1,1,v2,1,...,v5,1} and let Hs be the spanning
subgraph of G with edge set E(G)— (E(H1)UE(Hz)). The graph G can be
decomposed into Hy, H, and Hj, where H3 is an Eulerian bipartite graph
with partite sets V(H;) and V(Hz). By Theorem 2.6, for each even integer
¢ with 0 < ¢ < 30, there is a cycle decomposition D), of H; with exactly
¢ odd cycles. The graph Hy = Kj; has a cycle decomposition Dj with
exactly two odd cycles. Since Hj is an Eulerian bipartite graph, H3 has
a cycle decomposition Dy into even cycles. Then Dy UDZ U Dy is a cycle
decomposition D, of G with exactly £ odd cycles.

For each even integer £ with 10 < £ < 40, we can write £ = 10 + ¢
where ¢ is an even integer with 0 < & < 30. Let H; = Kjx() be the
subgraph of G with partite sets V; — {v;,1} for i = 1,2,...,5. Next we
construct 10 edge-disjoint triangles T1,75,...,Tio as follows. We begin
with the triangles T} = (v;,4,v2,1,vs,1) and Tp = (vy,4,v3,1,v4,1) shown
in Figure 6. By rotating T} and T3 clockwise through an angle of 27/5
radians, we obtain T3 and Ty (drawn with dashed lines). We continue this
three more times and obtain 10 edge-disjoint triangles Ty, 75, ..., 1o

Finally, let H; be the bipartite Eulerian subgraph G whose partite sets
are {v;) : 1 < i <5} and and {vi2,v:3:1 <i < 5} and whose edge set is

E(G) - [E(Hy) U E(Ty) VE(T3) U - - - U E(Tho)).

Then {H), H2,T1, T, ..., T10} is a decomposition of G. Since Kg3) satisfies
the ECDC, for each even integer ¢/ with 0 < ¢ < 30, there is a cycle
decomposition D of H; with exactly £ odd cycles. The Eulerian bipartite
graph Hs has a cycle decomposition D’ into even cycles. For each even
integer £ with 10 < ¢ < 40, write £ = 10 + ¢ for some even integer ¢’
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v4,1 3,1

Figure 6: Constructing 10 edge-disjoint triangles T3, T3, ..., Tio in K54

with 0 < ¢ < 30. Then D, D’ and T}, T5,...,Tio give rise to a cycle
decomposition of G with exactly ¢ odd cycles.

To show the existence of a cycle decomposition D of K54y with exactly
£ odd cycles for the remaining values of £, it is convenient here to denote
the five partite sets of K54y by

A= {alsa21 as, a4}, B= {bl)b2, b3a b4}’ C = {61’02103764}1
D= {dl$d2ad31d4} and E = {81762163) 64}-
First, we show that G = Kj5(4) has a cycle decomposition Dsy into 50

triangles and two 5-cycles. We begin by constructing 30 triangles Ty, T3,
.. I30. Let T1, T3, ..., Ts be the six triangles shown in Figure 7(a).

(b)

Figure 7: Constructing 32 edge-disjoint odd cycles in K4

By rotating 11,73, ..., T clockwise through an angle of 27/ 5 radians,
we obtain Ty, Ty, ..., Tyo, which are edge-disjoint from T},T5,...,Ts. We

70



continue this three more times and obtain the 30 edge-disjoint triangles
T1,Ts,...,Ts. The subgraph Ks, induced by {ai,b1,c1,d1,€1}, can be
decomposed into the two 5-cycles

Fy = (a1,b1,¢1,d1,€1) and F; = (ay,¢1,€1,b,4d1)
shown in Figure 7(b). Let
H =G - [E(T)U E(T3)U- U E(Ts) U E(F)) U E(Fy)).

Thus H is a 3-partite graph obtained from the complete 3-partite graph
Ks 55 with partite sets {a;, b;, ¢;,di, €:}, i = 2,3,4, by removing the five
triangles (02,0,3,0.4), (b27 b3, b4)a (C27 C3,C4), (d27d31 d4) and (627 €3, 34)' The
graph H is illustrated in Figure 8, where the five triangles are drawn in
dashed lines and the edges of H are not drawn. The graph H can be
decomposed into 20 triangles Q;, @2, ..., Q20 as follows:

(a4,be,e3), (as,e2,b3), (as,c2,ds), (a4, ds,c3),
(bg,az,c3), (b, c2,03), (ba,d2,e3), (bs, €2,d3),
(647 b2’ d3)s (C4, d2! b3)a (04, asz, 83), (04, €2, 03),
(d4v Cc2, 33), (d4y €2, 63)7 (d4i b27 0.3), (d41 Qag, b3))
(34, as, d3)1 (641 d2’ 0,3), (641 b2: C3), (641 C2, b3)

Then Dgy = {Fy, Fo, 11, T3, ...,T30,Q1,Q2,...,Q20} is a cycle decomposi-
tion of G into 52 odd cycles.

Figure 8: The graph H in Ky

From the cycle decomposition Dsz, we construct a cycle decomposition
D, of Ks(4) having exactly £ odd cycles for each even integer £ with 42 <
¢ < 50. For each ¢ = 2,3,4, consider four 3-cycles (a;,b;,d1), (bi,ci,e1),
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(ci,diya1) and (a;,di,e;) in Dsa. These four 3-cycles form the graph F
shown in Figure 9. Then F' can be decomposed into

(1) a 5-cycle (as, bs, ¢;,di,e1) and a 7-cycle (a;,dy, bi, e1,ci,a1,d;) or
(2) three 4-cycles (ai, bi,ciyd;), (ai,d1,bs,e1) and (e1,¢i,a1,d;).

By replacing four triangles in D52 by either a 5-cycle and a 7-cycle or three
4-cycles, we can construct a cycle decomposition D¢ of K54y having exactly
¢ odd cycles for each even integer ¢ with 42 < £ < 50.

a; bi ci d:

Figure 9: The graph F in Kjy

We now show that Kys) satisfies the ECDC. The graph Ky s) is a 20-
regular complete 5-partite graph of order 25 and size (2)52 = 250. There-
fore, the maximum number of odd cycles in a cycle decomposition of Ky
is at most 82. We first show that the minimum number of odd cycles in a
cycle decomposition of Kj(sy is 0 and, in fact, K5(s) has a cycle decompo-
sition with exactly £ odd cycles for every even integer £ with 0 < £ < 70.

Proposition 3.2 For each even integer £ with 0 < £ < 70, the graph Kg s,
has a cycle decomposition with exactly £ odd cycles.

Proof. Let G = Kj(5) with partite sets Vi, V3, Vi, Vy, Vi, where
Vi={vi;:1<j<5}for1 <i<5.

For each even integer £ with 0 < ¢ < 42, we can write ¢ = ¢ 4 ¢”
where ¢’ and ¢ are even integers with 0 < # < 30 and 0 < ¢ < 12.
Let H, = Kj(3) be the subgraph of G with partite sets {v; 1,vi2,vi 3} for
1 <i <5, let Hy = Kso) be the subgraph of G induced by {v;4,v;s}
for 1 € i €5 and let H; be the spanning subgraph of G with edge set
E(G)—(E(H,)UE(H3)). The graph G is therefore decomposed into Hy, Hp
and H3, where H3 is an Eulerian bipartite graph with partite sets V' (H,)
and V(H;). By Theorem 2.6, for each even integer £ with 0 < ¢ < 30,
there is a cycle decomposition D), of H; with exactly ¢ odd cycles. Since
K59) satisfies the ECDC, for each even integer £’ with 0 < £” < 12, there is
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a cycle decomposition Dy, of Hy having exactly £ odd cycles. Because Hs
is an Eulerian bipartite graph, H3 has a cycle decomposition Dy into even
cycles. Then D), UDj, U Dy is a cycle decomposition of G having exactly
¢ odd cycles.

For each even integer £ with 40 < £ < 70, we can write £ = 40+ ¢ where
¢ is an even integer with 0 < £ < 30. Let H; = Kj(3) be the subgraph
of G with partite sets {v;3,v;4,vi5} for 1 <i < 5. Next, we construct 40
edge-disjoint triangles T3, T3,...,T4o as follows.

We begin with the eight triangles T3, T%,...,Ts of Figure 10, namely

Ty = (v1,5,v2,1,¥s,1), T2 = (v1,5,v2,2, V5,2),
T3 = (v1,5,v3,1,s,1), T4 = (v1,5, 3,2, v4,2),
Ts = (v1,4, 2,1, 5,2}, T6 = (v1,4,V2,2,V5,1),

T? = (01,4,03.1,7)4,2), Iz = (01.4703,2,04,1)-

V4,1 3,1

Figure 10: The eight edge-disjoint triangles T1,T3,...,Ts in K,

By rotating these eight triangles T1,T5,...,Ts clockwise through an
angle of 27/5 radians, we obtain another eight edge-disjoint triangles Ty,
Tyo, .- ., Tie. We continue this three more times and obtain 40 edge-disjoint
triangles Ty, T, ..., Tyo Next, let Ho be the bipartite Eulerian subgraph
G whose partite sets are

{vi1,vj2:1 <5 <5} and {v;,3,v5,4,v55 : 1 <j <5}
and whose edge set is

E(G) - |[E(H1) U E(Th) U E(T2) U - - - U E(Tyo)).
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Then {H), H3,T1, T3, ..., Ty} is a decomposition of G. Since Kj3) satisfies
the ECDC, for each even integer ¢’ with 0 < ¢ < 30, there is a cycle
decomposition D}, of H; with exactly £ odd cycles. The Eulerian bipartite
graph H, has a cycle decomposition Dy into even cycles. Then D}, Dy
and T1,T5,..., Ty give rise to a cycle decomposition of G with exactly
£ =40+ ¢ odd cycles. [

To show the existence of a cycle decomposition D; of K55y with exactly £
odd cycles for the remaining values of £, it is again convenient here to denote
the five partite sets of K55y by A = {a1,0a2,...,a5}, B = {b1,bs,...,bs},
C ={e,c2,...,c5}, D={d1,dz,...,ds} and E = {ey,ea,...,es5}.

First, we show that G = Kj(s) has a cycle decomposition Dg; into 80
triangles and two 5-cycles. We begin by constructing 40 triangles T}, T,
..., Tgo. Let T1,T5,...,Tg be the eight triangles obtained by joining the
vertex a; to the two incident edges of each edge in the set

{biei,cidi Ti= 2,3,4, 5}

In a manner similar to that described in the case of K54y (see Figure 7(a)),
we then rotate T3,T%,...,73 clockwise through an angle of 27/5 radi-
ans, producing the eight triangles Ty, Ty,...,T1¢ that are edge-disjoint
from T1,75,...,Ts. We continue this three more times and obtain the
40 edge-disjoint triangles T1,75,...,Ts0. The subgraph Kjs, induced by
{a1,b1,¢1,d1,e1}, can be decomposed into the two 5-cycles

Fi1 = (a1,by,¢1,d1,e1) and Fs = (a1,¢1,€1,b1,d1).

Let H = G - |[E(Ty) UE(T3) U --- U E(Ty) U E(F1) U E(F;)]. Thus H
is a 4-partite graph obtained from the complete 4-partite graph K5 555 =
K45y with partite sets {a;,b;, ¢;, di, €3}, © = 2,3,4,5, by removing the five
copies of K4 induced by A — {a1}, B — {b1}, C — {a1}, D — {d1} and
E — {e;}, respectively. The graph H can be decomposed into 40 triangles
h,Q2,...,Qqo as follows:
(03,b4,C5), (b3,04»d5), (C3,d4,€5), (d3,€4,0'5), (e3sa41b5)a
(a3, eq,ds), (b3,a4,es), (c3,b4,as), (d3,cs,bs), (e3,dq,cs),
(02,C3,34), (a21d3)b4)1 (G.2,€3,d5), (a'2yb31 c5): ((12, C4,€5), (a2,d4s 65)1
(b2,d3,a4), (b2, e3,c4), (b2,0a3,es), (b2, c3,ds), (b2,dy,as), (b2, es,cs),
(02) e37b4)1 (C2,a3,d4), (02, b31a5)1 (621d37e5)1 (C2a e4vb5)1 (02704,(15);
(d210'3a 64), (d2’ b3v 64), (d2703,b5)1 (d2’e3’a5)1 (dg,a4,65), (dz,b4,e5),
(82, b3)d4)1 (62,03, 0'4)1 (62,d3,65), (32, as, b5)1 (62'; b41d5); (62)64; a5)'

Then Dsz = {Fl, Fz, Tl, Tz, e ,T40, Ql,Qz, ceay qu} isa cycle decomposi-
tion of G into 82 odd cycles.
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As in the case of K(4), we can construct (from the cycle decomposition
Dsg2) a cycle decomposition D, of K5y having exactly £ odd cycles for each
even integer £ with 72 < ¢ < 80. For each i = 2, 3, 4, consider four 3-cycles
(@i, b;,dy), (bi,ci,e1), (ci,di,a;) and (ai,d;,e;) in Dgy. These four 3-cycles
form the graph F' shown in Figure 9. Then F can be decomposed into (1)
a 5-cycle (a;, bi, ci,di, e1) and a 7-cycle (a;,d1, bi, e, ¢i,a1,d;) or (2) three
4-cycles (a;, b;, ¢;,d;), (ai,d1,bi,e;) and (e, ¢i,a1,d;). By replacing four
triangles in Dy by either a 5-cycle and a 7-cycle or three 4-cycles, we can
construct a cycle decomposition D, of K(s5) having exactly £ odd cycles for
each even integer £ with 72 < £ < 80.

In summary, we have the following result.

Theorem 3.3 The graphs K54y and Ks(sysatisfy the ECDC.

4 The Graphs K;;,) when r = 0 (mod 3) and
the ECDC

Now that it has been shown that Kg(s), Ks(4) and Kj s satisfy the ECDC,
the next graph to consider is K5g). Here we show, in fact, that for every
integer 7 > 6 and 7 = 0 (mod 3), the graph Ky, satisfies the ECDC. For
an integer r > 3 and r = 0 (mod 3), let r = 3t for some positive integer ¢.
The graph Kp(a;) is a (12t)-regular complete 5-partite graph of order 15t

and size (3)(3t)? = 90¢2.

Theorem 4.1 For each integerr > 3 withr =0 (mod 3), the graph K,
satisfies the ECDC.

Proof. By Theorem 2.6, we may assume that > 6. Let G = Ky,
with partite sets Vi, V3, V3, V4, Vs, where Vi = {v;1,v;i2,vi3,...,vir} for
1 <i<5. Sincer =0 (mod3) and r > 6, it follows that » = 3t for
some integer ¢ > 2. By Theorem 2.1, the graph G is C3-decomposable.
Since the size of G is (3)(3t)? = 90t2, there exists a cycle decomposition
of G into 30¢2 triangles (odd cycles). Hence the maximum number of odd
cycles in a cycle decomposition of G is 30¢2. Next, we show that G has a
cycle decomposition with exactly £ odd cycles for each even integer ¢ with
0 < €< 302

By Theorem 2.1, the graph Kj(s) is C3-decomposable. Since the size of
K3y is 90, there exists a cycle decomposition of Kp3) into 30 triangles.
Replacing each triangle in this decomposition by K¢ = K3() results in
a Kj(y)-decomposition of G into 30 copies of K3(;), which we denote by
Hy,H,,...,Hs. By Theorem 2.6, each graph H; satisfies the ECDC and
S0
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e if t is even, then for each even integer ¢; € {0,2,...,t%}, there exists
a cycle decomposition D; of H; with exactly ¢; odd cycles and

e if ¢ is odd, then for each odd integer ¢; € {1,3,...,t2}, there exists a
cycle decomposition D; of H; with exactly £; odd cycles.

We consider two cases, according to whether £ is even or ¢ is odd.

Case 1. t > 2 is even. Since £ is an even integer with 0 < £ < 30t2, we
can write £ = &3 + 8o +- - -+ £39 where ¢; € {0,2,.. .,t2} andi=1,2,...,30.
Let D; be a cycle decomposition of H; with exactly ¢; odd cycles for 1 <
i < 30. Then D; UD,U- - -UD;yg is a cycle decomposition of G with exactly
¢ odd cycles.

Case 2. t > 3 is odd. First, assume that £ is an even integer with
0 < €< 30. Let Hy = Kg(3(:—1)) be the subgraph of G with partite sets
Vi = {vin,vi2,vi3} for 1 <4 < 5, let Hy = Ky(3) be the subgraph of G
with partite sets {v;1,vi2,vi3} for 1 <7 <5 and let H3 be the spanning
subgraph of G with edge set E(G) — (E(H1) U E(Hz2)). The graph G can
be decomposed into H;, H2 and Hs, where H3 is a bipartite graph with
partite sets V(H,) and V(Hz). Since degy, v = 12 if v € V(H;) and
degy, v = 12(t — 1) if v € V(Hyz), it follows that Hj is Eulerian. Since
t —1 > 2 is even, it follows by Case 1 that H; has a cycle decomposition
D of G into even cycles. By Theorem 2.6, for each even integer £ with
0 < ¢ < 30, there is a cycle decomposition Dy of Hy with exactly £ odd
cycles. Since Hs is an Eulerian bipartite graph, it follows that Hj has a
cycle decomposition Dy into even cycles. Then Dy U Dy U Dy is a cycle
decomposition of G having exactly £ odd cycles.

Next, assume that £ is an even integer with 30 < £ < 30t2. Then we can
write £ = £y + €2+ - -+ €30 where ¢; € {1,3,...,t>} andi = 1,2,...,30. Let
D; be a cycle decomposition of H; with exactly £; odd cycles for 1 < i < 30.
Then Dy UDaU---UDy is a cycle decomposition of G with exactly £ odd
cycles.
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