# On Eulerian Regular Complete 5-Partite Graphs and a Cycle Decomposition Problem

Eric Andrews, Zhenming Bi and Ping Zhang

Department of Mathematics Western Michigan University Kalamazoo, MI 49008, USA

#### Abstract

An Eulerian graph G of size m is said to satisfy the Eulerian Cycle Decomposition Conjecture if the minimum number of odd cycles in a cycle decomposition of G is a, the maximum number of odd cycles in a cycle decomposition is b and  $\ell$  is an integer such that  $a \leq \ell \leq b$  where  $\ell$  and m are of the same parity, then there is a cycle decomposition of G with exactly  $\ell$  odd cycles. Several regular complete 5-partite graphs are shown to have this property.

Key Words: Eulerian graph, Eulerian Cycle Decomposition Conjecture, regular complete multipartite graph.

AMS Subject Classification: 05C38, 05C45.

### 1 Introduction

Eulerian graphs, namely those graphs containing an Eulerian circuit, were essentially characterized by Euler [7] in 1736 as connected graphs in which every vertex has even degree. In 1912 Veblen [9] presented his own characterization of Eulerian graphs as connected graphs possessing a decomposition into cycles. Consequently, every complete graph  $K_n$  of odd order  $n \geq 3$  has a cycle decomposition. Furthermore, for every even integer  $n \geq 4$  and a perfect matching M of  $K_n$ , the graph  $K_n - M$  has a cycle decomposition. In 1981, Alspach [2] made a conjecture about the lengths of cycles that can exist in a cycle decomposition of these two classes of graphs. This conjecture was verified in 2012 by Bryant, Horsley and Pettersson [3].

Theorem 1.1 (Bryant, Horsley and Pettersson) For an odd integer  $n \geq 3$  and integers  $m_1, m_2, \ldots, m_t$  such that  $3 \leq m_i \leq n$  for each i  $(1 \leq i \leq t)$  and  $m_1 + m_2 + \cdots + m_t = \binom{n}{2}$ , the graph  $K_n$  can be decomposed into the cycles  $C_{m_1}, C_{m_2}, \ldots, C_{m_t}$ . Also, for an even integer  $n \geq 4$  and integers  $m_1, m_2, \ldots, m_t$  such that  $3 \leq m_i \leq n$  for each i  $(1 \leq i \leq t)$  with  $m_1 + m_2 + \cdots + m_t = \binom{n}{2} - \binom{n}{2}$ , the graph  $K_n$  can be decomposed into a 1-factor and the cycles  $C_{m_1}, C_{m_2}, \ldots, C_{m_t}$ .

More recently, a problem involving cycle decompositions of Eulerian graphs was introduced in [4].

#### The Eulerian Cycle Decomposition Conjecture (ECDC)

An Eulerian graph G of size m is said to satisfy the Eulerian Cycle Decomposition Conjecture if a is the minimum number of odd cycles in a cycle decomposition of G, b is the maximum number of odd cycles in a cycle decomposition of G and for every integer  $\ell$  such that  $a \leq \ell \leq b$  where  $\ell$  and m are of the same parity, there exists a cycle decomposition of G containing exactly  $\ell$  odd cycles.

The major problem here is then: Which Eulerian graphs satisfy the ECDC? Not all Eulerian graphs satisfy the ECDC as Meszka [8] showed by giving an example of an Eulerian graph with maximum degree 4 and minimum degree 2 not having this property. A problem in this connection is determining an expression f(n) such that if G is an Eulerian graph of order n with minimum degree  $\delta(G) \geq f(n)$ , then G satisfies the ECDC.

The complete k-partite graph  $K_{n_1,n_2,...,n_k}$  of order  $n = \sum_{i=1}^k n_i$  has k partite sets  $V_1, V_2, \ldots, V_k$  containing  $n_1, n_2, \ldots, n_k$  vertices, respectively. If  $n_i = r$  for each i  $(1 \le i \le k)$ , then this graph is denoted by  $K_{k(r)}$ . The graph  $K_{k(r)}$  is therefore a (k-1)r-regular complete k-partite graph of order kr and size  $\binom{k}{2}r^2$ . Furthermore,  $K_{k(r)}$  is the complete graph  $K_k$  if r = 1 and  $K_{k(r)}$  is Eulerian if and only if k is odd or k is even.

It is an immediate consequence of Theorem 1.1 that the complete graph  $K_n$  satisfies the ECDC for every odd integer  $n \geq 3$  and the graph  $K_{k(2)}$  satisfies the ECDC for every integer  $k \geq 2$ . In [4] it was shown that every Eulerian complete 3-partite graph satisfies the ECDC. For each integer  $k \geq 4$ , it was shown in [1] that every regular complete k-partite graph  $K_{k(r)}$ , for which  $k \equiv 1, 3 \pmod{6}$  as well as those graphs  $K_{k(r)}$ , for which  $k \equiv 0, 4 \pmod{6}$  and  $r \geq 2$  even, satisfy the ECDC. Therefore, the regular complete k-partite graph of smallest order for which the ECDC has not been verified is the 12-regular complete 5-partite graph,  $K_{5(3)} = K_{3,3,3,3,3}$  of order 15 and size 90. We establish this result here. In addition, we show that the regular complete 5-partite graphs  $K_{5(4)}$  and  $K_{5(5)}$ , as well as all graphs  $K_{5(r)}$  for which  $r \geq 6$  and  $r \equiv 0 \pmod{3}$ , satisfy the ECDC. We

begin with the graph  $K_{5(3)}$ . We refer to the book [5] for graph theoretic notation and terminology not described in this paper.

## 2 The Graph $K_{5(3)}$ and the ECDC

In order to show that  $K_{5(3)}$  satisfies the ECDC, we need to know the maximum and minimum number of odd cycles in a cycle decomposition of  $K_{5(3)}$ . For the purpose of doing this, the following result will be useful. This result is a special case of a more general theorem of Colbourn, Hoffman and Rees [6].

Theorem 2.1 (Colbourn, Hoffman and Rees) For integers  $k \geq 3$  and  $r \geq 1$ , the graph  $K_{k(r)}$  is  $C_3$ -decomposable if and only if (k-1)r is even and  $\binom{k}{2}r^2$  is a multiple of 3.

For the graph  $K_{5(3)}$ , it is convenient here to denote its five partite sets by  $A = \{a_1, a_2, a_3\}$ ,  $B = \{b_1, b_2, b_3\}$ ,  $C = \{c_1, c_2, c_3\}$ ,  $D = \{d_1, d_2, d_3\}$  and  $E = \{e_1, e_2, e_3\}$ . (See Figure 1.) The following theorem determines the maximum and minimum numbers of odd cycles in a cycle decomposition of  $K_{5(3)}$ . For simplicity, we express a cycle  $(u_1, u_2, \ldots, u_k, u_1)$ ,  $k \geq 3$ , as  $(u_1, u_2, \ldots, u_k)$ .



Figure 1: The five partite sets of  $K_{5(3)}$ 

**Proposition 2.2** The maximum number of odd cycles in a cycle decomposition of  $K_{5(3)}$  is 30 and the minimum number of odd cycles in a cycle decomposition of  $K_{5(3)}$  is 0.

**Proof.** Let  $G = K_{5(3)}$ . By Theorem 2.1, the graph G is  $C_3$ -decomposable. Since the size of G is 90, there exists a cycle decomposition of G into 30 triangles (odd cycles) and so the maximum number is 30. It remains to show that G can be decomposed into even cycles only.

Let  $H_1 \cong K_{4(2)}$  be the subgraph of G with partite sets  $\{b_2, b_3\}$ ,  $\{c_2, c_3\}$ ,  $\{d_2, d_3\}$  and  $\{e_2, e_3\}$ , let  $H_2 \cong K_{1,1,1,1,3}$  be the subgraph of G induced by the set  $\{b_1, c_1, d_1, e_1\} \cup \{a_1, a_2, a_3\}$  and let  $H_3$  be the spanning subgraph of G with edge set  $E(G) - (E(H_1) \cup E(H_2))$ . Thus the graph G is decomposed into  $H_1, H_2$  and  $H_3$ . Observe that  $H_3$  is a bipartite graph with partite sets  $V(H_1)$  and  $V(H_2)$ . Since  $\deg_{H_3} v = 6$  if  $v \in V(H_1) \cup \{b_1, c_1, d_1, e_1\}$  and  $\deg_{H_3} v = 8$  if  $v \in \{a_1, a_2, a_3\}$ , it follows that  $H_3$  is Eulerian.

As a consequence of Theorem 1.1, the graph  $H_1 \cong K_{4(2)}$  has a cycle decomposition  $\mathcal{D}$  into even cycles (or with exactly 0 odd cycles). The graph  $H_2$  has a cycle decomposition  $\mathcal{D}'$  into four even cycles, namely  $(b_1,d_1,a_1,c_1,e_1,a_3)\cong C_6$ ,  $(b_1,c_1,d_1,e_1)\cong C_4$ ,  $(b_1,a_1,e_1,a_2)\cong C_4$  and  $(c_1,a_2,d_1,a_3)\cong C_4$ . Since  $H_3$  is an Eulerian bipartite graph,  $H_3$  has a cycle decomposition  $\mathcal{D}''$  into even cycles. Then  $\mathcal{D}\cup\mathcal{D}'\cup\mathcal{D}''$  is a cycle decomposition of G into even cycles. Hence the minimum number of odd cycles in a cycle decomposition of G is 0.

As a consequence of Proposition 2.2, to show that  $K_{5(3)}$  satisfies the ECDC, it is required to show for every even integer  $\ell$  with  $2 \le \ell \le 28$  that there is a cycle decomposition  $\mathcal{D}_{\ell}$  of  $K_{5(3)}$  with exactly  $\ell$  odd cycles. First, we show the existence of a cycle decomposition  $\mathcal{D}_{24}$ . Figure 2 describes such a cycle decomposition of  $K_{5(3)}$  into 26 cycles, exactly 24 of which are triangles  $T_i$  ( $1 \le i \le 24$ ), one an 8-cycle  $C_8$  and the other a 10-cycle  $C_{10}$ .

$$\begin{array}{lllll} T_1 = (a_1,b_1,c_1) & T_2 = (b_1,c_2,d_3) & T_3 = (a_1,d_1,e_1) & T_4 = (a_2,d_2,e_2) \\ T_5 = (b_3,c_2,d_2) & T_6 = (a_3,d_3,e_3) & T_7 = (b_1,d_1,e_2) & T_8 = (b_1,d_2,e_1) \\ T_9 = (b_2,d_1,e_3) & T_{10} = (a_2,c_1,d_1) & T_{11} = (b_3,d_3,e_2) & T_{12} = (c_1,d_2,e_3) \\ T_{13} = (a_1,c_2,e_2) & T_{14} = (b_1,c_3,e_3) & T_{15} = (a_3,c_2,d_1) & T_{16} = (a_3,b_2,e_2) \\ T_{17} = (a_1,b_3,e_3) & T_{18} = (b_2,c_1,e_1) & T_{19} = (a_1,c_3,d_2) & T_{20} = (a_1,b_2,d_3) \\ T_{21} = (a_2,c_3,d_3) & T_{22} = (a_2,b_3,e_1) & T_{23} = (a_2,b_2,c_2) & T_{24} = (a_3,b_3,c_3) \\ & C_8 & = (a_3,d_2,b_2,c_3,e_2,c_1,d_3,e_1) \\ & C_{10} & = (a_2,b_1,a_3,c_1,b_3,d_1,c_3,e_1,c_2,e_3). \end{array}$$

Figure 2: A cycle decomposition  $\mathcal{D}_{24}$  of  $K_{5(3)}$  having exactly 24 odd cycles

From the cycle decomposition  $\mathcal{D}_{24}$ , we construct a cycle decomposition  $\mathcal{D}_{26}$  of  $K_{5(3)}$  having exactly 26 odd cycles. In order to do this, we introduce

some useful notation, For two edge-disjoint graphs F and G, let  $F \cup G$  denote the graph induced by  $E(F) \cup E(G)$ . Figure 3 shows the subgraph  $H = C_8 \cup C_{10}$  of  $K_{5(3)}$  induced by  $E(C_8) \cup E(C_{10})$ , where  $C_8$  (indicated with dashed lines) and  $C_{10}$  (indicated with solid lines) are the two even cycles in the cycle decomposition  $\mathcal{D}_{24}$  of  $K_{5(3)}$  in Figure 2. The Eulerian graph H can be decomposed into a 5-cycle  $Q_1 = (c_1, e_2, c_3, e_1, d_3)$ , a 7-cycle  $Q_2 = (a_3, c_1, b_3, d_1, c_3, b_2, d_2)$  and a 6-cycle  $Q_3 = (a_2, b_1, a_3, e_1, c_2, e_3)$ . Then

$$\mathcal{D}_{26} = \{T_1, T_2, \dots, T_{24}, Q_1, Q_2, Q_3\}$$

is a cycle decomposition of  $K_{5(3)}$  having exactly 26 odd cycles.



Figure 3: The subgraph  $H = C_8 \cup C_{10}$  in  $K_{5(3)}$ 

Next, from the cycle decomposition  $\mathcal{D}_{24}$  in Figure 2, we construct a cycle decomposition  $\mathcal{D}_{28}$  of  $K_{5(3)}$  into 28 odd cycles. Consider the subgraph  $F = T_{23} \cup T_{24} \cup C_8 \cup C_{10}$  of  $K_{5(3)}$  in Figure 4, which is induced by  $E(T_{23}) \cup E(T_{24}) \cup E(C_8) \cup E(C_{10})$ , where  $T_{23}, T_{24}, C_8$  and  $C_{10}$  are four cycles in the cycle decomposition  $\mathcal{D}_{24}$  of  $K_{5(3)}$  described in Figure 2. Then F can be decomposed into four triangles  $Q_1 = (a_2, c_2, e_3), \ Q_2 = (a_3, b_3, c_1), \ Q_3 = (b_3, c_3, d_1), \ Q_4 = (a_3, c_3, e_1), \ a$  5-cycle  $Q_5 = (a_2, b_1, a_3, d_2, b_2)$  and a 7-cycle  $Q_6 = (b_2, c_2, e_1, d_3, c_1, e_2, c_3)$ . Then

$$\mathcal{D}_{28} = \{T_1, T_2, \dots, T_{22}, Q_1, Q_2, \dots, Q_6\}$$

is a cycle decomposition of  $K_{5(3)}$  into exactly 28 odd cycles and no even cycles.

Therefore, we have the following.

**Proposition 2.3** For each integer  $\ell = 24, 26, 28$ , there is a cycle decomposition of  $K_{5(3)}$  with exactly  $\ell$  odd cycles.



Figure 4: The subgraph  $F = T_{23} \cup T_{24} \cup C_8 \cup C_{10}$  in  $K_{5(3)}$ 

To show that  $K_{5(3)}$  satisfies the ECDC, it therefore remains to show that for every even integer  $\ell$  with  $2 \le \ell \le 22$ , there is a cycle decomposition of  $K_{5(3)}$  with exactly  $\ell$  odd cycles. Next, we establish this fact when  $2 \le \ell \le 14$ .

**Proposition 2.4** For each even integer  $\ell$  with  $2 \le \ell \le 14$ , there is a cycle decomposition of  $K_{5(3)}$  with exactly  $\ell$  odd cycles.

**Proof.** For  $G = K_{5(3)}$ , let  $H_1 \cong K_{5(2)}$  be the the subgraph of G with partite sets  $\{a_2, a_3\}$ ,  $\{b_2, b_3\}$ ,  $\{c_2, c_3\}$ ,  $\{d_2, d_3\}$  and  $\{e_2, e_3\}$ , let  $H_2 \cong K_5$  be the subgraph of G induced by the set  $\{a_1, b_1, c_1, d_1, e_1\}$  and let  $H_3$  be the spanning subgraph of G with edge set  $E(G) - (E(H_1) \cup E(H_2))$ . Observe that  $H_3$  is a bipartite graph with partite sets  $V(H_1)$  and  $V(H_2)$ . Since  $\deg_{H_3} v = 4$  if  $v \in V(H_1)$  and  $\deg_{H_3} v = 8$  if  $v \in V(H_2)$ , it follows that  $H_3$  is Eulerian. Thus the graph G is decomposed into  $H_1, H_2$  and  $H_3$ . Since  $K_{5(2)}$  satisfies the ECDC, for each even integer  $\ell'$  with  $0 \leq \ell' \leq 12$ , there is a cycle decomposition  $\mathcal{D}$  of  $K_{5(2)}$  with exactly  $\ell'$  odd cycles. The graph  $K_5$  has a cycle decomposition  $\mathcal{D}'$  into two 5-cycles. The Eulerian bipartite graph  $H_3$  has a cycle decomposition  $\mathcal{D}''$  into even cycles. For each even integer  $\ell$  with  $0 \leq \ell' \leq 12$ , write  $\ell = 2 + \ell'$  for some even integer  $\ell'$  with  $0 \leq \ell' \leq 12$ . Then  $\mathcal{D} \cup \mathcal{D}' \cup \mathcal{D}''$  is a cycle decomposition of G with exactly  $\ell$  odd cycles.

We now show the existence of a cycle decompositions  $\mathcal{D}_{\ell}$  of  $K_{5(3)}$  with exactly  $\ell$  odd cycles for the remaining values of  $\ell$ .

**Proposition 2.5** For each even integer  $\ell$  with  $10 \le \ell \le 22$ , there is a cycle decomposition of  $K_{5(3)}$  with exactly  $\ell$  odd cycles.

**Proof.** For  $G = K_{5(3)}$ , let  $H_1 \cong K_{5(2)}$  be the the subgraph of G with partite sets  $\{a_2, a_3\}$ ,  $\{b_2, b_3\}$ ,  $\{c_2, c_3\}$ ,  $\{d_2, d_3\}$  and  $\{e_2, e_3\}$  and let  $T_1, T_2, \ldots, T_{10}$  be the ten edge-disjoint triangles of G described below:

$$T_1 = (a_1, b_1, d_3)$$
  $T_2 = (e_1, c_1, d_3)$   $T_3 = (b_1, c_1, e_3)$   
 $T_4 = (a_1, d_1, e_3)$   $T_5 = (c_1, d_1, a_3)$   $T_6 = (b_1, e_1, a_3)$   
 $T_7 = (d_1, e_1, b_3)$   $T_8 = (c_1, a_1, b_3)$   $T_9 = (e_1, a_1, c_3)$   
 $T_{10} = (d_1, b_1, c_3)$ .

Finally, let  $H_2$  be the bipartite 4-regular subgraph G whose partite sets are  $\{a_1, b_1, c_1, d_1, e_1\}$  and  $\{a_2, b_2, c_2, d_2, e_2\}$  and whose edge set is  $E(G)-[E(H_1)\cup E(T_1)\cup E(T_2)\cup\cdots\cup E(T_{10})]$ . Then  $\{H_1, H_2, T_1, T_2, \ldots, T_{10}\}$  is a decomposition of G. Since  $K_{5(2)}$  satisfies the ECDC, it follows that, for each even integer  $\ell'$  with  $0 \le \ell' \le 12$ , there is a cycle decomposition  $\mathcal D$  of  $K_{5(2)}$  with exactly  $\ell'$  odd cycles. The Eulerian bipartite graph  $H_2$  has a cycle decomposition  $\mathcal D'$  into even cycles. For each even integer  $\ell$  with  $10 \le \ell \le 22$ , write  $\ell = 10 + \ell'$  for some even integer  $\ell'$  with  $0 \le \ell' \le 12$ . Then  $\mathcal D$ ,  $\mathcal D'$  and  $T_1, T_2, \ldots, T_{10}$  give rise to a cycle decomposition of G with exactly  $\ell$  odd cycles.

As an example, we illustrate a cycle decomposition  $\mathcal{D}_{22}$  of  $K_{5(3)}$  into 25 cycles, exactly 22 of which are triangles  $T_i$  ( $1 \leq i \leq 22$ ), one 4-cycle and two 10-cycles. We begin with the triangles  $T_1, T_2, T_3, T_4$  shown in Figure 5(a). By rotating  $T_1, T_2, T_3, T_4$  clockwise through an angle of  $2\pi/5$  radians, we obtain  $T_5, T_6, T_7, T_8$ , which are edge-disjoint from  $T_1, T_2, T_3, T_4$ . We continue this three more times and obtain 20 edge-disjoint triangles  $T_1, T_2, \ldots, T_{20}$  as follows:

$$\begin{array}{llll} T_1 = (e_2,a_1,b_2) & T_2 = (e_3,a_1,b_3) & T_3 = (d_3,a_1,c_3) & T_4 = (d_2,a_1,c_2) \\ T_5 = (a_2,b_1,c_2) & T_6 = (a_3,b_1,c_3) & T_7 = (e_3,b_1,d_3) & T_8 = (e_2,b_1,d_2) \\ T_9 = (b_2,c_1,d_2) & T_{10} = (b_3,c_1,d_3) & T_{11} = (a_3,c_1,e_3) & T_{12} = (a_2,c_1,e_2) \\ T_{13} = (c_2,d_1,e_2) & T_{14} = (c_3,d_1,e_3) & T_{15} = (b_3,d_1,a_3) & T_{16} = (b_2,d_1,a_2) \\ T_{17} = (d_2,e_1,a_2) & T_{18} = (d_3,e_1,a_3) & T_{19} = (c_3,e_1,b_3) & T_{20} = (c_2,e_1,b_2). \end{array}$$

Figure 5(b) shows the two triangles  $T_{21}$ ,  $T_{22}$  (whose edges are drawn with dashed lines) and the 4-cycle (whose edges are drawn with solid lines) in the cycle decomposition  $\mathcal{D}_{22}$ , where  $T_{21} = (a_1, b_1, c_1)$ ,  $T_{22} = (a_1, d_1, e_1)$  and  $Q_1 = (b_1, d_1, c_1, e_1)$ . Figures 5(c) and 5(d) show the two copies  $Q_2$  and  $Q_3$  of  $C_{10}$ , respectively, in the cycle decomposition  $\mathcal{D}_{22}$ , namely

$$Q_2 = (a_2, b_3, c_2, d_3, e_2, a_3, b_2, c_3, d_2, e_3)$$

$$Q_3 = (a_2, c_3, e_2, b_3, d_2, a_3, c_2, e_3, b_2, d_3).$$

Then  $\mathcal{D}_{22} = \{T_1, T_2, \dots, T_{22}, Q_1, Q_2, Q_3\}$  is cycle decomposition of  $K_{5(3)}$  having exactly 22 odd cycles.



Figure 5: Illustrating a cycle decomposition  $\mathcal{D}_{22}$  of  $K_{5(3)}$ 

Combining Propositions 2.3, 2.4 and 2.5, we have the following theorem. Theorem 2.6 The graph  $K_{5(3)}$  satisfies the ECDC.

## 3 The Graphs $K_{5(4)}$ and $K_{5(5)}$ and the ECDC

In this section, we show that the two graphs  $K_{5(4)}$  and  $K_{5(5)}$  also satisfy the ECDC. We begin with  $K_{5(4)}$ . The graph  $K_{5(4)}$  is a 16-regular complete 5-partite graph of order 20 and size  $\binom{5}{2}4^2 = 160$ . Therefore, the maximum number of odd cycles in a cycle decomposition of  $K_{5(4)}$  is at most 52. We first show that the minimum number of odd cycles in a cycle decomposition of  $K_{5(4)}$  is 0 and, in fact,  $K_{5(4)}$  has a cycle decomposition with exactly  $\ell$  odd cycles for every even integer  $\ell$  with  $0 \le \ell \le 40$ .

**Proposition 3.1** For each even integer  $\ell$  with  $0 \le \ell \le 40$ , the graph  $K_{5(4)}$  has a cycle decomposition with exactly  $\ell$  odd cycles.

**Proof.** Let  $G = K_{5(4)}$  with partite sets  $V_1$ ,  $V_2$ ,  $V_3$ ,  $V_4$ ,  $V_5$ , where

$$V_i = \{v_{i,1}, v_{i,2}, v_{i,3}, v_{i,4}\} \text{ for } 1 \le i \le 5.$$

For  $\ell=0$ , let  $H_1\cong K_{5(2)}$  be the subgraph of G with partite sets  $\{v_{i,1},v_{i,2}\}$  for  $i=1,2,\ldots,5$ , let  $H_2\cong K_{5(2)}$  be the subgraph of G induced by  $\{v_{i,3},v_{i,4}\}$  for  $i=1,2,\ldots,5$ , and let  $H_3$  be the spanning subgraph of G with edge set  $E(G)-(E(H_1)\cup E(H_2))$ . The graph G can therefore be decomposed into  $H_1,H_2$  and  $H_3$ , where  $H_3$  is an Eulerian bipartite graph with partite sets  $V(H_1)$  and  $V(H_2)$ . Since  $K_{5(2)}$  satisfies the ECDC, there is a cycle decomposition of  $K_{5(2)}$  into even cycles. Because  $H_3$  is an Eulerian bipartite graph,  $H_3$  has a cycle decomposition into even cycles. Let  $\mathcal{D}_i$  be a cycle decomposition of  $H_i$  into even cycles for i=1,2,3. Then  $\mathcal{D}_1\cup\mathcal{D}_2\cup\mathcal{D}_3$  is a cycle decomposition of G into even cycles.

For each even integer  $\ell$  with  $2 \leq \ell \leq 32$ , we can write  $\ell = 2 + \ell'$  where  $\ell'$  is an even integer with  $0 \leq \ell' \leq 30$ . Let  $H_1 \cong K_{5(3)}$  be the subgraph of G with partite sets  $V_i - \{v_{i,1}\}$  for  $i = 1, 2, \ldots, 5$ , let  $H_2 \cong K_5$  be the subgraph of G induced by  $\{v_{1,1}, v_{2,1}, \ldots, v_{5,1}\}$  and let  $H_3$  be the spanning subgraph of G with edge set  $E(G) - (E(H_1) \cup E(H_2))$ . The graph G can be decomposed into  $H_1, H_2$  and  $H_3$ , where  $H_3$  is an Eulerian bipartite graph with partite sets  $V(H_1)$  and  $V(H_2)$ . By Theorem 2.6, for each even integer  $\ell'$  with  $0 \leq \ell' \leq 30$ , there is a cycle decomposition  $\mathcal{D}'_{\ell'}$  of  $H_1$  with exactly  $\ell'$  odd cycles. The graph  $H_2 \cong K_5$  has a cycle decomposition  $\mathcal{D}''_2$  with exactly two odd cycles. Since  $H_3$  is an Eulerian bipartite graph,  $H_3$  has a cycle decomposition  $\mathcal{D}_0$  into even cycles. Then  $\mathcal{D}'_{\ell'} \cup \mathcal{D}''_2 \cup \mathcal{D}_0$  is a cycle decomposition  $\mathcal{D}_\ell$  of G with exactly  $\ell$  odd cycles.

For each even integer  $\ell$  with  $10 \le \ell \le 40$ , we can write  $\ell = 10 + \ell'$  where  $\ell'$  is an even integer with  $0 \le \ell' \le 30$ . Let  $H_1 \cong K_{5(3)}$  be the subgraph of G with partite sets  $V_i - \{v_{i,1}\}$  for  $i = 1, 2, \ldots, 5$ . Next we construct 10 edge-disjoint triangles  $T_1, T_2, \ldots, T_{10}$  as follows. We begin with the triangles  $T_1 = (v_{1,4}, v_{2,1}, v_{5,1})$  and  $T_2 = (v_{1,4}, v_{3,1}, v_{4,1})$  shown in Figure 6. By rotating  $T_1$  and  $T_2$  clockwise through an angle of  $2\pi/5$  radians, we obtain  $T_3$  and  $T_4$  (drawn with dashed lines). We continue this three more times and obtain 10 edge-disjoint triangles  $T_1, T_2, \ldots, T_{10}$ 

Finally, let  $H_2$  be the bipartite Eulerian subgraph G whose partite sets are  $\{v_{i,1}: 1 \leq i \leq 5\}$  and  $\{v_{i,2}, v_{i,3}: 1 \leq i \leq 5\}$  and whose edge set is

$$E(G) - [E(H_1) \cup E(T_1) \cup E(T_2) \cup \cdots \cup E(T_{10})].$$

Then  $\{H_1, H_2, T_1, T_2, \ldots, T_{10}\}$  is a decomposition of G. Since  $K_{5(3)}$  satisfies the ECDC, for each even integer  $\ell'$  with  $0 \le \ell' \le 30$ , there is a cycle decomposition  $\mathcal{D}$  of  $H_1$  with exactly  $\ell'$  odd cycles. The Eulerian bipartite graph  $H_2$  has a cycle decomposition  $\mathcal{D}'$  into even cycles. For each even integer  $\ell$  with  $10 \le \ell \le 40$ , write  $\ell = 10 + \ell'$  for some even integer  $\ell'$ 



Figure 6: Constructing 10 edge-disjoint triangles  $T_1, T_2, \ldots, T_{10}$  in  $K_{5(4)}$ 

with  $0 \le \ell' \le 30$ . Then  $\mathcal{D}$ ,  $\mathcal{D}'$  and  $T_1, T_2, \ldots, T_{10}$  give rise to a cycle decomposition of G with exactly  $\ell$  odd cycles.

To show the existence of a cycle decomposition  $\mathcal{D}_{\ell}$  of  $K_{5(4)}$  with exactly  $\ell$  odd cycles for the remaining values of  $\ell$ , it is convenient here to denote the five partite sets of  $K_{5(4)}$  by

$$A = \{a_1, a_2, a_3, a_4\}, B = \{b_1, b_2, b_3, b_4\}, C = \{c_1, c_2, c_3, c_4\},$$
  
$$D = \{d_1, d_2, d_3, d_4\} \text{ and } E = \{e_1, e_2, e_3, e_4\}.$$

First, we show that  $G=K_{5(4)}$  has a cycle decomposition  $\mathcal{D}_{52}$  into 50 triangles and two 5-cycles. We begin by constructing 30 triangles  $T_1, T_2, \ldots, T_{30}$ . Let  $T_1, T_2, \ldots, T_6$  be the six triangles shown in Figure 7(a).



Figure 7: Constructing 32 edge-disjoint odd cycles in  $K_{5(4)}$ 

By rotating  $T_1, T_2, \ldots, T_6$  clockwise through an angle of  $2\pi/5$  radians, we obtain  $T_7, T_8, \ldots, T_{12}$ , which are edge-disjoint from  $T_1, T_2, \ldots, T_6$ . We

continue this three more times and obtain the 30 edge-disjoint triangles  $T_1, T_2, \ldots, T_{30}$ . The subgraph  $K_5$ , induced by  $\{a_1, b_1, c_1, d_1, e_1\}$ , can be decomposed into the two 5-cycles

$$F_1 = (a_1, b_1, c_1, d_1, e_1)$$
 and  $F_2 = (a_1, c_1, e_1, b_1, d_1)$ 

shown in Figure 7(b). Let

$$H = G - [E(T_1) \cup E(T_2) \cup \cdots \cup E(T_{30}) \cup E(F_1) \cup E(F_2)].$$

Thus H is a 3-partite graph obtained from the complete 3-partite graph  $K_{5,5,5}$  with partite sets  $\{a_i,b_i,c_i,d_i,e_i\}$ , i=2,3,4, by removing the five triangles  $(a_2,a_3,a_4)$ ,  $(b_2,b_3,b_4)$ ,  $(c_2,c_3,c_4)$ ,  $(d_2,d_3,d_4)$  and  $(e_2,e_3,e_4)$ . The graph H is illustrated in Figure 8, where the five triangles are drawn in dashed lines and the edges of H are not drawn. The graph H can be decomposed into 20 triangles  $Q_1,Q_2,\ldots,Q_{20}$  as follows:

$$(a_4,b_2,e_3),\ (a_4,e_2,b_3),\ (a_4,c_2,d_3),\ (a_4,d_2,c_3),\ (b_4,a_2,c_3),\ (b_4,c_2,a_3),\ (b_4,d_2,e_3),\ (b_4,e_2,d_3),\ (c_4,b_2,d_3),\ (c_4,d_2,b_3),\ (c_4,a_2,e_3),\ (c_4,e_2,a_3),\ (d_4,c_2,e_3),\ (d_4,e_2,c_3),\ (d_4,b_2,a_3),\ (d_4,a_2,b_3),\ (e_4,a_2,d_3),\ (e_4,d_2,a_3),\ (e_4,b_2,c_3),\ (e_4,c_2,b_3).$$

Then  $\mathcal{D}_{52} = \{F_1, F_2, T_1, T_2, \dots, T_{30}, Q_1, Q_2, \dots, Q_{20}\}$  is a cycle decomposition of G into 52 odd cycles.



Figure 8: The graph H in  $K_{5(4)}$ 

From the cycle decomposition  $\mathcal{D}_{52}$ , we construct a cycle decomposition  $\mathcal{D}_{\ell}$  of  $K_{5(4)}$  having exactly  $\ell$  odd cycles for each even integer  $\ell$  with  $42 \leq \ell \leq 50$ . For each i = 2, 3, 4, consider four 3-cycles  $(a_i, b_i, d_1)$ ,  $(b_i, c_i, e_1)$ ,

 $(c_i, d_i, a_1)$  and  $(a_i, d_i, e_1)$  in  $\mathcal{D}_{52}$ . These four 3-cycles form the graph F shown in Figure 9. Then F can be decomposed into

- (1) a 5-cycle  $(a_i, b_i, c_i, d_i, e_1)$  and a 7-cycle  $(a_i, d_1, b_i, e_1, c_i, a_1, d_i)$  or
- (2) three 4-cycles  $(a_i, b_i, c_i, d_i)$ ,  $(a_i, d_1, b_i, e_1)$  and  $(e_1, c_i, a_1, d_i)$ .

By replacing four triangles in  $\mathcal{D}_{52}$  by either a 5-cycle and a 7-cycle or three 4-cycles, we can construct a cycle decomposition  $\mathcal{D}_{\ell}$  of  $K_{5(4)}$  having exactly  $\ell$  odd cycles for each even integer  $\ell$  with  $42 \le \ell \le 50$ .



Figure 9: The graph F in  $K_{5(4)}$ 

We now show that  $K_{5(5)}$  satisfies the ECDC. The graph  $K_{5(5)}$  is a 20-regular complete 5-partite graph of order 25 and size  $\binom{5}{2}5^2=250$ . Therefore, the maximum number of odd cycles in a cycle decomposition of  $K_{5(5)}$  is at most 82. We first show that the minimum number of odd cycles in a cycle decomposition of  $K_{5(5)}$  is 0 and, in fact,  $K_{5(5)}$  has a cycle decomposition with exactly  $\ell$  odd cycles for every even integer  $\ell$  with  $0 \le \ell \le 70$ .

**Proposition 3.2** For each even integer  $\ell$  with  $0 \le \ell \le 70$ , the graph  $K_{5(5)}$  has a cycle decomposition with exactly  $\ell$  odd cycles.

**Proof.** Let  $G = K_{5(5)}$  with partite sets  $V_1, V_2, V_3, V_4, V_5$ , where  $V_i = \{v_{i,j} : 1 \le j \le 5\}$  for  $1 \le i \le 5$ .

For each even integer  $\ell$  with  $0 \leq \ell \leq 42$ , we can write  $\ell = \ell' + \ell''$  where  $\ell'$  and  $\ell'$  are even integers with  $0 \leq \ell' \leq 30$  and  $0 \leq \ell'' \leq 12$ . Let  $H_1 \cong K_{5(3)}$  be the subgraph of G with partite sets  $\{v_{i,1}, v_{i,2}, v_{i,3}\}$  for  $1 \leq i \leq 5$ , let  $H_2 \cong K_{5(2)}$  be the subgraph of G induced by  $\{v_{i,4}, v_{i,5}\}$  for  $1 \leq i \leq 5$  and let  $H_3$  be the spanning subgraph of G with edge set  $E(G) - (E(H_1) \cup E(H_2))$ . The graph G is therefore decomposed into  $H_1, H_2$  and  $H_3$ , where  $H_3$  is an Eulerian bipartite graph with partite sets  $V(H_1)$  and  $V(H_2)$ . By Theorem 2.6, for each even integer  $\ell'$  with  $0 \leq \ell' \leq 30$ , there is a cycle decomposition  $\mathcal{D}'_{\ell'}$  of  $H_1$  with exactly  $\ell'$  odd cycles. Since  $K_{5(2)}$  satisfies the ECDC, for each even integer  $\ell'$  with  $0 \leq \ell'' \leq 12$ , there is

a cycle decomposition  $\mathcal{D}''_{\ell''}$  of  $H_2$  having exactly  $\ell''$  odd cycles. Because  $H_3$  is an Eulerian bipartite graph,  $H_3$  has a cycle decomposition  $\mathcal{D}_0$  into even cycles. Then  $\mathcal{D}'_{\ell'} \cup \mathcal{D}''_{\ell''} \cup \mathcal{D}_0$  is a cycle decomposition of G having exactly  $\ell$  odd cycles.

For each even integer  $\ell$  with  $40 \le \ell \le 70$ , we can write  $\ell = 40 + \ell'$  where  $\ell'$  is an even integer with  $0 \le \ell' \le 30$ . Let  $H_1 \cong K_{5(3)}$  be the subgraph of G with partite sets  $\{v_{i,3}, v_{i,4}, v_{i,5}\}$  for  $1 \le i \le 5$ . Next, we construct 40 edge-disjoint triangles  $T_1, T_2, \ldots, T_{40}$  as follows.

We begin with the eight triangles  $T_1, T_2, \ldots, T_8$  of Figure 10, namely

$$T_1 = (v_{1,5}, v_{2,1}, v_{5,1}), T_2 = (v_{1,5}, v_{2,2}, v_{5,2}),$$

$$T_3 = (v_{1,5}, v_{3,1}, v_{4,1}), T_4 = (v_{1,5}, v_{3,2}, v_{4,2}),$$

$$T_5 = (v_{1,4}, v_{2,1}, v_{5,2}), T_6 = (v_{1,4}, v_{2,2}, v_{5,1}),$$

$$T_7 = (v_{1,4}, v_{3,1}, v_{4,2}), T_8 = (v_{1,4}, v_{3,2}, v_{4,1}).$$



Figure 10: The eight edge-disjoint triangles  $T_1, T_2, \ldots, T_8$  in  $K_{5(5)}$ 

By rotating these eight triangles  $T_1, T_2, \ldots, T_8$  clockwise through an angle of  $2\pi/5$  radians, we obtain another eight edge-disjoint triangles  $T_9, T_{10}, \ldots, T_{16}$ . We continue this three more times and obtain 40 edge-disjoint triangles  $T_1, T_2, \ldots, T_{40}$  Next, let  $H_2$  be the bipartite Eulerian subgraph G whose partite sets are

$$\{v_{j,1}, v_{j,2} : 1 \le j \le 5\}$$
 and  $\{v_{j,3}, v_{j,4}, v_{j,5} : 1 \le j \le 5\}$ 

and whose edge set is

$$E(G) - [E(H_1) \cup E(T_1) \cup E(T_2) \cup \cdots \cup E(T_{40})].$$

Then  $\{H_1, H_2, T_1, T_2, \ldots, T_{40}\}$  is a decomposition of G. Since  $K_{5(3)}$  satisfies the ECDC, for each even integer  $\ell'$  with  $0 \le \ell' \le 30$ , there is a cycle decomposition  $\mathcal{D}'_{\ell'}$  of  $H_1$  with exactly  $\ell'$  odd cycles. The Eulerian bipartite graph  $H_2$  has a cycle decomposition  $\mathcal{D}_0$  into even cycles. Then  $\mathcal{D}'_{\ell'}$ ,  $\mathcal{D}_0$  and  $T_1, T_2, \ldots, T_{40}$  give rise to a cycle decomposition of G with exactly  $\ell = 40 + \ell'$  odd cycles.

To show the existence of a cycle decomposition  $\mathcal{D}_{\ell}$  of  $K_{5(5)}$  with exactly  $\ell$  odd cycles for the remaining values of  $\ell$ , it is again convenient here to denote the five partite sets of  $K_{5(5)}$  by  $A = \{a_1, a_2, \ldots, a_5\}$ ,  $B = \{b_1, b_2, \ldots, b_5\}$ ,  $C = \{c_1, c_2, \ldots, c_5\}$ ,  $D = \{d_1, d_2, \ldots, d_5\}$  and  $E = \{e_1, e_2, \ldots, e_5\}$ .

First, we show that  $G = K_{5(5)}$  has a cycle decomposition  $\mathcal{D}_{82}$  into 80 triangles and two 5-cycles. We begin by constructing 40 triangles  $T_1, T_2, \ldots, T_{40}$ . Let  $T_1, T_2, \ldots, T_8$  be the eight triangles obtained by joining the vertex  $a_1$  to the two incident edges of each edge in the set

$$\{b_ie_i,c_id_i: i=2,3,4,5\}.$$

In a manner similar to that described in the case of  $K_{5(4)}$  (see Figure 7(a)), we then rotate  $T_1, T_2, \ldots, T_8$  clockwise through an angle of  $2\pi/5$  radians, producing the eight triangles  $T_9, T_9, \ldots, T_{16}$  that are edge-disjoint from  $T_1, T_2, \ldots, T_8$ . We continue this three more times and obtain the 40 edge-disjoint triangles  $T_1, T_2, \ldots, T_{40}$ . The subgraph  $K_5$ , induced by  $\{a_1, b_1, c_1, d_1, e_1\}$ , can be decomposed into the two 5-cycles

$$F_1 = (a_1, b_1, c_1, d_1, e_1)$$
 and  $F_2 = (a_1, c_1, e_1, b_1, d_1)$ .

Let  $H = G - [E(T_1) \cup E(T_2) \cup \cdots \cup E(T_{40}) \cup E(F_1) \cup E(F_2)]$ . Thus H is a 4-partite graph obtained from the complete 4-partite graph  $K_{5,5,5,5} = K_{4(5)}$  with partite sets  $\{a_i, b_i, c_i, d_i, e_i\}$ , i = 2, 3, 4, 5, by removing the five copies of  $K_4$  induced by  $A - \{a_1\}$ ,  $B - \{b_1\}$ ,  $C - \{c_1\}$ ,  $D - \{d_1\}$  and  $E - \{e_1\}$ , respectively. The graph H can be decomposed into 40 triangles  $Q_1, Q_2, \ldots, Q_{40}$  as follows:

$$(a_3,b_4,c_5), (b_3,c_4,d_5), (c_3,d_4,e_5), (d_3,e_4,a_5), (e_3,a_4,b_5),\\ (a_3,e_4,d_5), (b_3,a_4,e_5), (c_3,b_4,a_5), (d_3,c_4,b_5), (e_3,d_4,c_5),\\ (a_2,c_3,e_4), (a_2,d_3,b_4), (a_2,e_3,d_5), (a_2,b_3,c_5), (a_2,c_4,e_5), (a_2,d_4,b_5),\\ (b_2,d_3,a_4), (b_2,e_3,c_4), (b_2,a_3,e_5), (b_2,c_3,d_5), (b_2,d_4,a_5), (b_2,e_4,c_5),\\ (c_2,e_3,b_4), (c_2,a_3,d_4), (c_2,b_3,a_5), (c_2,d_3,e_5), (c_2,e_4,b_5), (c_2,a_4,d_5),\\ (d_2,a_3,c_4), (d_2,b_3,e_4), (d_2,c_3,b_5), (d_2,e_3,a_5), (d_2,a_4,c_5), (d_2,b_4,e_5),\\ (e_2,b_3,d_4), (e_2,c_3,a_4), (e_2,d_3,c_5), (e_2,a_3,b_5), (e_2,b_4,d_5), (e_2,c_4,a_5).$$

Then  $\mathcal{D}_{82} = \{F_1, F_2, T_1, T_2, \dots, T_{40}, Q_1, Q_2, \dots, Q_{40}\}$  is a cycle decomposition of G into 82 odd cycles.

As in the case of  $K_{5(4)}$ , we can construct (from the cycle decomposition  $\mathcal{D}_{82}$ ) a cycle decomposition  $\mathcal{D}_{\ell}$  of  $K_{5(5)}$  having exactly  $\ell$  odd cycles for each even integer  $\ell$  with  $72 \leq \ell \leq 80$ . For each i=2,3,4, consider four 3-cycles  $(a_i,b_i,d_1)$ ,  $(b_i,c_i,e_1)$ ,  $(c_i,d_i,a_1)$  and  $(a_i,d_i,e_1)$  in  $\mathcal{D}_{82}$ . These four 3-cycles form the graph F shown in Figure 9. Then F can be decomposed into (1) a 5-cycle  $(a_i,b_i,c_i,d_i,e_1)$  and a 7-cycle  $(a_i,d_1,b_i,e_1,c_i,a_1,d_i)$  or (2) three 4-cycles  $(a_i,b_i,c_i,d_i)$ ,  $(a_i,d_1,b_i,e_1)$  and  $(e_1,c_i,a_1,d_i)$ . By replacing four triangles in  $\mathcal{D}_{82}$  by either a 5-cycle and a 7-cycle or three 4-cycles, we can construct a cycle decomposition  $\mathcal{D}_{\ell}$  of  $K_{5(5)}$  having exactly  $\ell$  odd cycles for each even integer  $\ell$  with  $72 \leq \ell \leq 80$ .

In summary, we have the following result.

**Theorem 3.3** The graphs  $K_{5(4)}$  and  $K_{5(5)}$  satisfy the ECDC.

## 4 The Graphs $K_{5(r)}$ when $r \equiv 0 \pmod{3}$ and the ECDC

Now that it has been shown that  $K_{5(3)}$ ,  $K_{5(4)}$  and  $K_{5(5)}$  satisfy the ECDC, the next graph to consider is  $K_{5(6)}$ . Here we show, in fact, that for every integer  $r \geq 6$  and  $r \equiv 0 \pmod{3}$ , the graph  $K_{5(r)}$  satisfies the ECDC. For an integer  $r \geq 3$  and  $r \equiv 0 \pmod{3}$ , let r = 3t for some positive integer t. The graph  $K_{5(3t)}$  is a (12t)-regular complete 5-partite graph of order 15t and size  $\binom{5}{2}(3t)^2 = 90t^2$ .

**Theorem 4.1** For each integer  $r \geq 3$  with  $r \equiv 0 \pmod{3}$ , the graph  $K_{5(r)}$  satisfies the ECDC.

**Proof.** By Theorem 2.6, we may assume that  $r \geq 6$ . Let  $G = K_{5(r)}$  with partite sets  $V_1, V_2, V_3, V_4, V_5$ , where  $V_i = \{v_{i,1}, v_{i,2}, v_{i,3}, \ldots, v_{i,r}\}$  for  $1 \leq i \leq 5$ . Since  $r \equiv 0 \pmod{3}$  and  $r \geq 6$ , it follows that r = 3t for some integer  $t \geq 2$ . By Theorem 2.1, the graph G is  $C_3$ -decomposable. Since the size of G is  $\binom{5}{2}(3t)^2 = 90t^2$ , there exists a cycle decomposition of G into  $30t^2$  triangles (odd cycles). Hence the maximum number of odd cycles in a cycle decomposition of G is  $30t^2$ . Next, we show that G has a cycle decomposition with exactly  $\ell$  odd cycles for each even integer  $\ell$  with  $0 \leq \ell \leq 30t^2$ .

By Theorem 2.1, the graph  $K_{5(3)}$  is  $C_3$ -decomposable. Since the size of  $K_{5(3)}$  is 90, there exists a cycle decomposition of  $K_{5(3)}$  into 30 triangles. Replacing each triangle in this decomposition by  $K_{t,t,t} = K_{3(t)}$  results in a  $K_{3(t)}$ -decomposition of G into 30 copies of  $K_{3(t)}$ , which we denote by  $H_1, H_2, \ldots, H_{30}$ . By Theorem 2.6, each graph  $H_i$  satisfies the ECDC and so

- if t is even, then for each even integer  $\ell_i \in \{0, 2, ..., t^2\}$ , there exists a cycle decomposition  $\mathcal{D}_i$  of  $H_i$  with exactly  $\ell_i$  odd cycles and
- if t is odd, then for each odd integer  $\ell_i \in \{1, 3, ..., t^2\}$ , there exists a cycle decomposition  $\mathcal{D}_i$  of  $H_i$  with exactly  $\ell_i$  odd cycles.

We consider two cases, according to whether t is even or t is odd.

Case 1.  $t \geq 2$  is even. Since  $\ell$  is an even integer with  $0 \leq \ell \leq 30t^2$ , we can write  $\ell = \ell_1 + \ell_2 + \cdots + \ell_{30}$  where  $\ell_i \in \{0, 2, \dots, t^2\}$  and  $i = 1, 2, \dots, 30$ . Let  $\mathcal{D}_i$  be a cycle decomposition of  $H_i$  with exactly  $\ell_i$  odd cycles for  $1 \leq i \leq 30$ . Then  $\mathcal{D}_1 \cup \mathcal{D}_2 \cup \cdots \cup \mathcal{D}_{30}$  is a cycle decomposition of G with exactly  $\ell$  odd cycles.

Case 2.  $t \geq 3$  is odd. First, assume that  $\ell$  is an even integer with  $0 \leq \ell \leq 30$ . Let  $H_1 \cong K_{5(3(\ell-1))}$  be the subgraph of G with partite sets  $V_i - \{v_{i,1}, v_{i,2}, v_{i,3}\}$  for  $1 \leq i \leq 5$ , let  $H_2 \cong K_{5(3)}$  be the subgraph of G with partite sets  $\{v_{i,1}, v_{i,2}, v_{i,3}\}$  for  $1 \leq i \leq 5$  and let  $H_3$  be the spanning subgraph of G with edge set  $E(G) - (E(H_1) \cup E(H_2))$ . The graph G can be decomposed into  $H_1, H_2$  and  $H_3$ , where  $H_3$  is a bipartite graph with partite sets  $V(H_1)$  and  $V(H_2)$ . Since  $\deg_{H_3} v = 12$  if  $v \in V(H_1)$  and  $\deg_{H_3} v = 12(t-1)$  if  $v \in V(H_2)$ , it follows that  $H_3$  is Eulerian. Since  $t-1 \geq 2$  is even, it follows by Case 1 that  $H_1$  has a cycle decomposition  $\mathcal{D}'_0$  of G into even cycles. By Theorem 2.6, for each even integer  $\ell$  with  $0 \leq \ell \leq 30$ , there is a cycle decomposition  $\mathcal{D}''_\ell$  of  $H_2$  with exactly  $\ell$  odd cycles. Since  $H_3$  is an Eulerian bipartite graph, it follows that  $H_3$  has a cycle decomposition  $\mathcal{D}_0$  into even cycles. Then  $\mathcal{D}'_0 \cup \mathcal{D}''_\ell \cup \mathcal{D}_0$  is a cycle decomposition of G having exactly  $\ell$  odd cycles.

Next, assume that  $\ell$  is an even integer with  $30 \le \ell \le 30t^2$ . Then we can write  $\ell = \ell_1 + \ell_2 + \dots + \ell_{30}$  where  $\ell_i \in \{1, 3, \dots, t^2\}$  and  $i = 1, 2, \dots, 30$ . Let  $\mathcal{D}_i$  be a cycle decomposition of  $H_i$  with exactly  $\ell_i$  odd cycles for  $1 \le i \le 30$ . Then  $\mathcal{D}_1 \cup \mathcal{D}_2 \cup \dots \cup \mathcal{D}_{30}$  is a cycle decomposition of G with exactly  $\ell$  odd cycles.

### References

- E. Andrews, G. Chartrand, H. Jordon and P. Zhang, On the Eulerian cycle decomposition conjecture and complete multipartite graphs. *Bull. Inst. Combin. Appl.* To appear.
- [2] B. Alspach, Research problems, Problem 3. Discrete Math. 36 (1981) 333.
- [3] D. Bryant, D. Horsley and W. Pettersson, Cycle decompositions V: Complete graphs into cycles of arbitrary lengths. *Proc. London Math. Soc.* To appear.

- [4] G. Chartrand, H. Jordon and P. Zhang, A cycle decomposition conjecture for Eulerian graphs. *Australas. J. Combin.* 58 (2014) 48-59.
- [5] G. Chartrand, L. Lesniak and P. Zhang, Graphs & Digraphs: 5th Edition, Chapman & Hall/CRC, Boca Raton, FL (2010).
- [6] C. J. Colbourn, D. G. Hoffman and R. Rees, A new class of group divisible designs with block size three. J. Combin. Theory Ser. A 59 (1992) 73-89.
- [7] L. Euler, Solutio problematis ad geometriam situs pertinentis. Comment. Academiae Sci. I. Petropolitanae 8 (1736) 128-140.
- [8] M. Meszka, Personal communication (December 2013).
- [9] O. Veblen, An application of modular equations in analysis situs. Ann. of Math. 14 (1912) 86-94.