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Abstract

For two graphs H and G, a decomposition D ={H,, Ho, ...,
Hi., R} of G is called an H-maximal k-decomposition if H; & H
for 1 <1 < k and R contains no subgraph isomorphic to H. Let
Min(G, H) and Max(G, H) be the minimum and maximum k,
respectively, for which G has an H-maximal k-decomposition.
A graph H without isolated vertices is said to possess the inter-
mediate decomposition property if for each connected graph G
and each integer k with Min(G, H) < k < Max(G, H), there ex-
ists an H-maximal k-decomposition of G. For a set S of graphs
and a graph G, a decomposition D = {Hy, Hs,...,Hi, R} of
G is called an S-maximal k-decomposition if H; & H for scme
H € S for each integer ¢ with 1 < 7 < k and R contains no
subgraph isomorphic to any subgraph in S. Let Min(G, S) and
Max(G, S) be the minimum and maximum & , respectively, for
which G has an S-maximal k-decomposition. A set S of graphs
without isolated vertices is said to possess the intermediate de-
composition property if for every connected graph G and each
integer k with Min(G, S) < k < Max(G, S), there exists an S-
maximal k-decomposition of G. While all those graphs of size 3
have been determined that possess the intermediate decompo-
sition property as have all sets consisting of two such graphs,
here all remaining sets of graphs having size 3 that possess the
intermediate decomposition property are determined.

Key Words: maximal decompositions, remainder subgraph, intermediate
decomposition property.

AMS Subject Classification: 05C70.

JCMCC 94 (2015), pp. 79-95



1 Introduction

A graph H is said to divide a graph G, often expressed by writing H | G, if
G is H-decomposable, that is, if G has a decomposition {H}, Hs,..., Hi},
where H; 2 H fori=1,2,...,k. If G has size m, H has size m' and H | G,
then certainly m’' | m. On the other hand, if H { G, then either G does
not contain a subgraph isomorphic to H or G contains a decomposition
of D = {H,,Hs,...,H,R} where H; = H for each i (1 < i < k) and
R is a nonempty subgraph of G containing no subgraph isomorphic to H.
The subgraph R may be referred to as the remainder subgraph for this
decomposition. As described in [4], this observation may be considered a
graph theory analogue of the famous Division Algorithm for integers, where
if the positive integer b is divided by the positive integer a, then there exist
integers g and » with 0 < r < a such that b = ag + . Unlike the Division
Algorithm for integers where g and r are unique, in this so-called Division
Algorithm for graphs G and H, resulting in a decomposition D (above) of
G in terms of H, the integer k and remainder graph R need not be unique.
This observation suggests the problem of determining all graphs H such
that for every graph G the integers &k in such decompositions constitute a
set of consecutive integers.

As described in [4], one of the major topics in graph theory concerns
graph decompositions. A problem of primary interest in this case has been
to determine for graphs G and H whether it is possible to decompose G into
subgraphs, each isomorphic to H, that is, whether G is H-decomposable.
A classic historical problem in this context is the determination of those
integers n > 3 for which the complete graph K, is K3-decomposable. This
is equivalent to the problem of determining those integers n > 3 for which
there is a Steiner triple system S, a problem initiated and solved in 1847
by the famous combinatorialist Thomas Kirkman (8], who showed that this
occurred if and only if n =1 (mod 6) or n =3 (mod 6). Another familiar
result of this type is that K,, can be decomposed (actually factored in this
case) into Hamiltonian cycles if and only if n is odd, a result attributed to
Walecki [2]. Not all decomposition problems have dealt with decomposing
a graph into subgraphs, each isomorphic to the same graph. The following
theorem, due to Bryant, Horsley and Pettersson [5], verified a conjecture
on cycle decompositions made by Alspach {1] in 1981.

Theorem 1.1 Suppose that n > 3 is an odd integer and that my, mo,
.., my are integers such that 3 < m; < n for eachi (1 < ¢ < t) and
my+meg+---4+m = (’2') Then K, can be decomposed into the cycles
Cmys Cmyy -+, Cm,. Furthermore, for every even integer m > 4 and
integers my, my, ..., m, such that 3 < m; < n for each i (1 < i <t) with

my +mg + -+ 4+ my = (n? — 2n)/2, there is a decomposition of K, into a
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1-factor and the cycles Cpny, Crmy,y - -+, Cr,.

The famous topologist Oswald Veblen [9] proved that every Eulerian
graph can be decomposed into cycles. A conjecture involving cycle decom-
positions of Eulerian graphs was introduced in [6].

The Eulerian Cycle Decomposition Conjecture (ECDC)

Let G be an Eulerian graph of size m, where a is the minimum number of
odd cycles in a cycle decomposition of G and b is the mazimum number of
odd cycles in a cycle decomposition of G. For every integer £ such that a <
£ < b and £ and m are of the same parity, there exists a cycle decomposition
of G containing ezactly £ odd cycles.

It is therefore a consequence of the theorem by Bryant, Horsley and
Pettersson that the ECDC is true for all complete graphs of odd order.
This conjecture was verified for several classes of graphs in [3, 6] but remains
open in general.

In [4] we investigated, for graphs G and H, decompositions of G into k+
1 > 1 subgraphs, k of which are isomorphic to H and where the remaining
subgraph contains no subgraph isomorphic to H. For two graphs H and
G, a decomposition D = {Hy, Ha, ..., Hi, R} of G is called H-mazimal or
an H-mazimal k-decomposition if H; 22 H for 1 < i < k and R contains
no subgraph isomorphic to H. If G contains no subgraph isomorphic to H,
then £ =0 and R = G. For graphs H and G, let

Min(G,H) = min{k:G has an H-maximal k-decomposition}
Max(G,H) = max{k:G has an H-maximal k-decomposition}.

Obviously, Min(G, H) < Max(G, H). Throughout this work, we assume
that H is a graph without isolated vertices. A graph H is said to possess
the intermediate decomposition property (IDP) and H is called an ID-graph
if for each graph G and each integer k with

Min(G, H) < k < Max(G, H),

there exists an H-maximal k-decomposition of G. Trivially, the graph K,
is an ID-graph. On the other hand, neither the claw K 3 nor the triangle
K3 is an ID-graph. For example, the graph G of Figure 1 has a K 3-
maximal 1-decomposition and a K 3-maximal 3-decomposition but has no
K, 3-maximal 2-decomposition. Similarly, the graph F of Figure 1 has a
K3-maximal 1-decomposition and a K3-maximal 3-decomposition but has
no Ks-maximal 2-decomposition.
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Figure 1: Illustrating that K; 3 and K3 are not ID-graphs

These observations lead to the following problem that initially appeared
in [4].

The Intermediate Value Problem for H-Maximal Decompositions
Which graphs (without isolated vertices) are ID-graphs?
In [4] all ID-graphs of size 2 or 3 are determined. For a graph F' and

a positive integer k, the graph kF' is the union of k disjoint copies of the
graph F.

Theorem 1.2 [4] A graph H of size 2 or 3 is an ID-graph unless
He {Ka, K1,3, 3K2}.

For a set S of graphs and a graph G, a decomposition D ={H,, H,,
..., Hi, R} of G is called S-mazimal or an S-mazimal k-decomposition if
H; = H for some H € S for each integer i with 1 < i < k and R contains no
subgraph isomorphic to any subgraph in S. For a set S of graphs without
isolated vertices and a graph G, let

Min(G,S) = min{k:G has an S-maximal k-decomposition}
Max(G, S) max{k : G has an S-maximal k-decomposition}.

A set S of graphs without isolated vertices is said to possess the intermediate
decomposition property (IDP) and S is called an ID-set if for every graph
G and each integer & with Min(G, S) < k < Max(G, S), there exists an
S-maximal k-decomposition of G. For example, if S = {Ps3} or § = {2K},
then S is an ID-set by Theorem 1.2. On the other hand, the set § =
{K1,3, K3} is not an ID-set. For example, the graph G of Figure 1 has an
S-maximal 1-decomposition and an S-maximal 3-decomposition but has no
S-maximal 2-decomposition. (On the other hand, the graph F' of Figure 1
has an S-maximal k-decomposition for £ = 1,2, 3.) As another illustration,
the set S = {K3,C4} is not an ID-set. For example, the graph G of Figure 2
has an S-maximal 1-decomposition D1 = {Hy, R1} where H; = C; and
R; & Cg and an S-maximal 4-decomposition Dy = {Lj, La, L3, L4, R4}
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Figure 2: Illustrating that {C3,C4} is not an ID-set

where L; 2 K3 for i = 1,2, 3,4 and R, is an empty graph. However, G has
neither an S-maximal 2-decomposition nor an S-maximal 3-decomposition.
The following problem also appeared in [4].

The Intermediate Value Problem for S-Maximal Decompositions

Which sets of graphs (without isolated vertices) are ID-sets?

In [4] all ID-sets consisting of two graphs of size 3 are determined. For
two graphs F' and H, the graph F + H denotes the union of F and H.

Theorem 1.3 [4] Every 2-element subset S of
{Ps, K3, K13, P3 + K3, 3K>}
is an ID-set unless S is a 2-element subset of {K3, K1 3,3K2}.

By Theorems 1.2 and 1.3, all ID-sets consisting of one or two graphs of
size 3 without isolated vertices were determined in [4]. In this paper, we
determine all ID-sets consisting of three or more graphs of size 3. We refer
to the book {7] for graph theoretic notation and terminology not described
in this paper.

2 Preliminary Results

In this section, we present some information which will be useful in deter-
mining graphs or sets of graphs possessing an intermediate decomposition
property. For a set S of graphs, a graph G is said to have the intermediate
decomposition property with respect to S (IDP-S) if for each integer k£ with
Min(G, S) € k < Max(G, S), there exists an S-maximal k-decomposition
of G. In this case, the graph G is referred to as an IDP-S graph; otherwise,
G is a non-IDP-S graph. Therefore, if every graph is an IDP-S graph, then
S is an ID-set.
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Theorem 2.1 [4] Let S be a set of graphs without isolated vertices that is
not an ID-set and let Fs be the set of all non-IDP-S graphs, where G is a
graph of minimum size in Fg. Moreover, let a and b be the smallest integers
with 1 < a < b—1 such that (i) G has an S-mazimal a-decomposition
D, = {Hy,Hs,...,Hs, R} and an S-mazimal b-decomposition Dy ={L,,
Ly, ..., Ly, Ry} but (i1) G has no S-mazimal k-decomposition for every
integer k with a < k < b.

(I) If D, is an S-mazimal c-decomposition of G where ¢ > b, then H; ¢
D, for alli with1 <i<a.

(II) For all pairsi,j wherei € {1,2,...,a} and j € {1,2,...,b}, it follows
that E(H;) N E(L;) # 0.

(IIT) The number b satisfies b < min{|E(H;)|:1 <i < a}.

By Theorem 2.1, every graph of size 2 is an ID-graph. For a set S
of graphs without isolated vertices that is not an ID-set, a graph G of
minimum size that is not an IDP-S graph (as described in Theorem 2.1)
is referred to as a minimum non-IDP-S graph. If S = {H} consists of a
single graph H, then a minimum non-IDP-S graph is also referred to as
a minimum non-IDP-H graph. We now apply Theorem 2.1 to prove that
{3K3, P4} is an ID-set. This result was stated in [4] without a proof and
so we provide a complete proof here.

Theorem 2.2 The set {3K3, Py} is an ID-set.

Proof. Assume, to the contrary, that S = {3K>, P} is not an ID-set. Let
G be a minimum non-IDP-S graph. By Theorem 2.1 then, G has an S-
maximal 1-decomposition Dy and an S-maximal 3-decomposition D3 but no
S-maximal 2-decomposition. Let D, = {H), R;} and D3 = {L,, Ls, L3, R3},
where Hy, L; € S (i = 1,2,3) and neither R; nor R3 contains an subgraph
isomorphic to any graph in S. Let E(H;) = {e1, €2, €3} and we may assume,
without loss of generality, that e; € E(L;) for i = 1,2, 3 by Theorem 2.1(II).
Since L; and L; are edge-disjoint for i # j and %,j € {1,2,3}, it follows
that L; — e; is a subgraph of R; and so |[E(R;)] =t > 6. We claim the
following;:

Hy=3Kyand L; = Py fori=1,2,3. 1)

We first show that H; = 3K5. Assume, to the contrary, that H, = Py =
(v1,v2,v3,v4) Where e; = v;u;4 for i = 1,2,3 (see Figure 3). We now show
that L; & Py for i = 1,2,3. If this is not the case, then we may assume,
without loss of generality, that L; = 3K, or Ly =2 3K,. We consider these
two cases.
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H : o —0 o 0

Figure 3: The graph H, in the proof of Theorem 2.2

Case 1. Ly = 3K,. Let E(Ly) = {e1, f1, f2} where e; = vjva. Thus
each f; (¢ = 1,2) is incident with neither v; nor v,. We show that f;
(i = 1,2) is not incident with vs. If this were not the case, then we may
assume that f; is incident with v3. Let F; = G[{e1, ez, fi}] = Py, Fo = L3
and Ry = G—(E(F,)UE(F3)). Since Ry is a subgraph of Ry, it follows that
{F1, F2, Rp} is an S-maximal 2-decomposition, which is impossible. Since
f1 and f7 are nonadjacent, at most one of f; and f; can be incident with v4.
We may assume that f) is not incident with vs. Let Fy = G[{e1, e3, f1}] &
3K,, F; = Ly and Ry = G — (E(F1) U E(F2)). Since R; is a subgraph of
Ry, it follows that {F, F2, Ry} is an S-maximal 2-decomposition, which is
impossible. Thus, Ly & P,. Similarly, L3 = Py.

Case 2. L, = 3K,. Let E(L2) = {e2,91,92} where e = vovz. Thus
each g; (i = 1,2) is incident with neither v nor v3. We show that each
gi (i = 1,2) is incident with neither v; nor v4. If this were not the case,
then we may assume that g; is incident with vy. Let F} = L;, F5 =
Gl{g1,e2,e3}] = P, and Ry = G — (E(F1)UE(F:)). Since R; is a subgraph
of Ry, it follows that { F}, F2, Rz} is an S-maximal 2-decomposition, which
is impossible. Hence neither g; nor g» in L, is adjacent to any edge in
{e1,e2,e3}. Since L, = P, (by Case 1), there is an edge f € L; — {e1}
that is adjacent to e; = v vs and so f is incident with exactly one of v,
and v2. Thus G contains a subgraph F' isomorphic to one of the graphs in
Figure 4(a)-(e).

o If F is the graph in Figure 4(a), let F; = G[{f,e1,e2}] = P; and

F, = Lj.
o If F is the graph in Figure 4(b)-(d), let F} = G|{e1, f,e3}] & P; and
F, =1L,

e If F is the graph in Figure 4(e), let Fy = G[{f, ez, e3}] = P; and
Fy = {e1,01,92} = 3Ko.

In each case, let Ry = G — (E(F1) U E(F3)). Since R, is a subgraph of
R,, it follows that {F}, F3, R,} is an S-maximal 2-decomposition, which is
impossible. Thus, L, = Pj.

Therefore, if Hy; = Py, then L; & P, for i = 1,2,3. Hence D, is a P;-
maximal 1-decomposition and Dj is a Ps-maximal 3-decomposition. How-
ever then, since P4 is an ID-graph, G has a Ps-maximal 2-decomposition

85



[o] (o]
:/gv CZ 625 es/ €1/ e ,
7

fl (2) (b) T

f
f f (c)
e o) €3 e e €3
(d) (e)

Figure 4: A step in the proof of Theorem 2.2

(and so an S-maximal 2-decomposition), which is impossible. Therefore,
as claimed, H; = 3K5.
Next, we show that L; = P, for i = 1,2,3. We consider two cases.

Case (i). At least two of Ly, Ly and L3 are isomorphic to 3K3, say L &
L, = 3K,. Let E(L,) = {ey, f1, f2} and E(L2) = {e2,91,92}. We show
that each f; (i = 1,2) is adjacent to both ez and e3 and each g; (i = 1,2)
is adjacent to both e; and es. If this is not the case, we may assume that
f1 is not adjacent to ea. Then let F; = G{{ey, ez, f1}] = 3Ky, let F> = L
and let Ry = G— (E(F1)U E(F2)). Since Ry is a subgraph of R, it follows
that {F}, F2, R2} is an S-maximal 2-decomposition, which is impossible.
Therefore, we may assume that G contains a subgraph isomorphic to the
graph of Figure 5. Let Fy = G[{g1,e1,92}] & P4, F> = G[{e2, f1,e3}] = P4
and let Ry = G— (E(F1)U E(F3)). Since R; is a subgraph of Ry, it follows
that {F}, F», Ry} is an S-maximal 2-decomposition, which is impossible.

g fi
/_\ /—_-\0
(e}
e €3 €2
O o
g2 f 2

Figure 5: A step in Case (i) of the proof of Theorem 2.2

Case (it). Ezactly one of L1,Ls and L3 is isomorphic to 3Ks, say
L, = 3K, and L; = Py for i = 2,3. Again, let E(L,) = {ey, f1, f2}-
By the argument employed in Case (i), each of fi and fs is adjacent to
es and e3. Thus, G contains the graph of Figure 6(a) as a subgraph.
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We first show that no edge in Ly — ey can be adjacent to both e; and
ez and no edge in L3z — e3 can be adjacent to both e; and es. If this is
not case, we may assume that g € E(L; — e3) and g is adjacent to both
e; and e2. Let F1 = G[{e;,g,e2}] & Ps, F> = G[{f1,e3, f2}] & P4 and
let Ry = G — (E(F,) U E(F,)). Since R; is a subgraph of R, it follows
that {F1, F3, Ry} is an S-maximal 2-decomposition, which is impossible.
Suppose that E(L;) = {e2, 91,92} and E(L3) = {es, k1, ha} where g; is
adjacent to ez and h; is adjacent to e3. Note that neither g; nor k; can
be adjacent to both e; and e3; for otherwise, we may assume that g; is
adjacent to both e; and es. Then let F; = Ly, F;, = G[{ez,g1,e3}] = P4
and let Ry = G — (E(F1)U E(F3)). Since R; is a subgraph of Ry, it follows
that {F}, F5, Ry} is an S-maximal 2-decomposition, which is impossible.
Hence G contains one of the graphs of Figure 6(b)-(d) as a subgraph.

fi o f1 hy
€ ez es 611 €2 l €3
fa 91 fo
(2) (b)
f N1
o N
ey es e3 € e Tes
hy
g9 fa hy fa
(©) (@ 9 °

Figure 6: A step in Case (ii) of the proof of Theorem 2.2

First, suppose that G contains a subgraph isomorphic to the graph in
Figure 6(b). Now let Fy = G[{e1,g1,h1}] = 3K, F; = G[{ez, f2,e3}] = Py
and let Ry = G — (E(F1) U E(F3)). Since R, is a subgraph of Ry, it fol-
lows that {F}, F3, R2} is an S-maximal 2-decomposition, which is impos-
sible. Next, suppose that G contains a subgraph isomorphic to the graph
in Figure 6(c) or in Figure 6(d). However then, R; contains the subgraph
G[{91, f2, h1}] = P4, which is a contradiction.

Therefore, H; = 3K, and L; = Py for i = 1,2, 3, as we claimed in (1).
We now show that if an edge in L; — e; that is adjacent to e;, then this edge
is not adjacent to any edges in E(H;) —{e;} for i = 1,2,3. If this is not the
case, we may assume that f; € E(L,) is adjacent to e; and e; (see Figure 7).
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Let Fy = G[{e1, f1,e2}] = Py, Fo = L3 and let Ry = G — (E(F1) U E(F3)).
Then {F1, F2, Ry} is an S-maximal 2-decomposition, which is impossible.

o o}
e €2 €3

O o

f1
Figure 7: A step in Case (ii) the proof of Theorem 2.2

Next, we show that each e; is the interior edge of L; for i = 1,2,3.
If this is not the case, we may assume that L; = (e1, f1,f2). If fo is
not adjacent to e, then let Fi = Gl[{e), f2,e2}] = 3Ky, F; = L3z and
let R, = G — (E(F,) U E(F2)). Then {Fy,F5, Rz} is an S-maximal 2-
decomposition, which is impossible. Similarly, if f2 is not adjacent to es,
then there is an S-maximal 2-decomposition, which is impossible. Thus f
is adjacent to both e; and e;. However then, since f, is adjacent to fo,
either f; and e, are adjacent or fi and e are adjacent, which is impossible.
Therefore, e; is the interior edge of L; for i = 1,2, 3, as claimed.

Let Ly = (fi,e1, f2), L2 = (g1,e2,92) and L3 = (hy,e3,h2). It then
follows from the argument above that L, Ls and L3 have the following
properties:

(a) Noedgein L; (i = 1,2, 3) is adjacent to any edges in {e1, e, e3} —{e;}.

(b) Since R; contains no subgraph isomorphic to Py, it follows tﬁat
{f1, f2}: {91, 92} and {h1, h2} are sets of two independent edges.

Since R, contains no subgraph isomorphic to 3K>, there are adjacent edges
in {f1, f2,91,92, h1, h2}. By (a) and (b), we may assume that f; and g,
are adjacent. Let F1 = G({e1, f1,01}] & P3, F; = {f2,e2,e3} = 3K,
and let Ry = G — (E(F1) U E(F3)). Then {F1,F;, Ry} is an S-maximal
2-decomposition, which is impossible. "

3 ID-Sets and Non-ID Sets of Graphs Size 3

In this section, all ID-sets consisting of graphs of size 3 are described.
First, observe that if S is the set of all graphs (connected or disconnected)
of the same size m, then S is an ID-set. To see this, let G be a graph,
a = Min(G,S) and let D = {Hy,H,,...,Hs, R} be any S-maximal a-
decomposition of G. Since R contains no subgraph that is isomorphic to
any graph in S, it follows that 0 < |E(R)| < m — 1. Thus Min(G, S) =
Max(G, S) = a. We state this observation below.
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Observation 3.1 [4] For each positive integer m, the set Sy, of all graphs
(connected or disconnected) of size m is an ID-set.

By Observation 3.1, the set {Ps, K3, K1,3, P3 + K3, 3K>} consisting of
all graphs of size 3 is an ID-set. By Theorems 1.2, 1.3 and Observation 3.1,
it remains to determine the ID-sets and non-ID sets that are subsets S of
{P4,K3,K1,3,P3 + K2,3K2} with ]Sl =3 or IS] =4,

We first show that neither of the sets {K3,3K5, P4} and {K1,3, 3K>2, Py}
is an ID set. For {K3,3K3, P4}, let G = K3 + 2K; 3 be the union of
K3 and two copies of K 3. Then G has an S-maximal 1-decomposition
Dy = {H1, Ry}, where H, = K3 and R, & 2K, 3 and an S-maximal 3-
decomposition D3 = {L;, L2, L3, Ra} where L; = L, & L3 = 3K, and
R3 is an empty graph. However, G has no S-maximal 2-decomposition.
For {K,3,3K2, P4}, let G = 2K3 + K; 3 be the union of two copies of
K3 and K3 3. Then G has an S-maximal 1-decomposition D; = {Hy, R},
where H; = K, 3 and R; = 2K3 and an S-maximal 3-decomposition D3 =
{L1,L2, L3, R3} where Ly = L, = L3 & 3K, and R3 is an empty graph.
However, G has no S-maximal 2-decomposition. Hence neither set is an
ID-set.

Next, we show that if S C { Py, K3, K1,3, P3+ K2, 3K,} with |S| € {3,4}
such that S is neither {K3,3K>, P4} nor {K} 3,3K3, P4}, then S is an ID-
set. In order to do this, we first present three useful observations, the first
of which is a consequence of Theorem 2.1(I) and (II).

Observation 3.2 Let S be a non-ID-set of graphs of size 3. If G is a min-
imum non-IDP-S graph having an S-mazimal 1-decomposition {Hy, R;},
then the size of R; is at least 6.

Observation 3.3 Suppose that R is a graph without isolated vertices hav-
ing size t > 6.

(a) If R does not contain Ps+ K, as a subgraph, then R=tK2, R= K,
orR= K4.

() If R does not contain 3K, as a subgraph, then R has at most two
components and R = Ky, R =K, + K, ; where 1l <r < s and
r+s=t R=2K3 or R=K3z+ Kj3.

(¢} If R does not contain P, as a subgraph, then each component of R is
K3 or stars.

Observation 3.4 Suppose that S is a non-ID-set of graphs and S con-
tains an ID-subset So. If G is a non-IDP-S graph such that G has an S-
mazimal a-decomposition Dy ={H,, Hz, ..., Hs, R.} and an S-mazimal b-
decomposition Dy = {L,, Lo, ..., Ly, Ry} but no S-mazimal k-decomposition
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for every integer k with a < k < b, then either H; € S — Sy for some
i€{1,2,...,a} or L € S — Sy for some j € {1,2,...,b}.

Proposition 3.5 The set {K1,3, K3, P4} is an ID-set.

Proof. Assume, to the contrary, that S = {K} 3, K3, P4} is not an ID-set.
Let G be a minimum non-IDP-S graph. Since each graph in S has size 3,
it follows by Theorem 2.1(III) that G has an S-maximal 1-decomposition
D; and an S-maximal 3-decomposition D3 but G has no S-maximal 2-
decomposition. Let D; = {H,, R1} and D3 = {L1, Ly, L3, R3}, where each
of Hy, Ly, Lo, L3 is isomorphic to some graph in S and R; and R3 contain
no subgraph isomorphic to any graph in S. Let E(H,) = {e1,ez2,e3}. We
may assume, without loss of generality, that e; € E(L;) for i = 1,2,3 by
Theorem 2.1(II). Since L; and L; are edge-disjoint for ¢ # j and i,j €
{1,2,3}, it follows that L; — e; is a subgraph of R; and so |E(R,)| > 6.
Furthermore, each component of R; has size at most 2 (since R; contains
no subgraph isomorphic to any graph in S).

We now construct an S-maximal 2-decomposition Dy = {F, F3, R2} of
G as follows. Let F; = Ly € S. Now, let e € E(L3) — {e2} that is adjacent
to ez. Then the subgraph F» = G{{ey, e3, e}] induced by {e3, e3, e} is a con-
nected subgraph of size 3 and so F; € S. Furthermore, E(Fy)NE(F3) = 0.
Since e1,en,e3 € E(F)) U E(F3), it follows that Ry is a subgraph of R;
and so R, contains no subgraph isomorphic to any graph in S. There-
fore, Dy = {F1, F2, Rz} is an S-maximal 2-decomposition of G, which is a
contradiction.

Proposition 3.6 Fach of the following sets is an ID-set:
{K13, K3,3K2}, {K13, K3,3K>2, Py} and {K13,K3,3K2, P3 + K2}, (2)

Proof. Let S be one of the sets in (2). Assume, to the contrary, that
S is not an ID-set. Let G be a minimum non-IDP-S graph. By Theo-
rem 2.1 then, G has an S-maximal 1-decomposition Dy = {Hj, R} where
|[E(R:)| =t > 6 by Observation 3.2. Since R; does not contain 3K as a
subgraph, Ry = Ky, Ri = K1, + K1 s where 1 <r < sandr+ s = ¢,
R, =2K; or Ry = K3 + K;,:—3 by Observation 3.3(b). Since R; contains
neither K 3 nor K3 and |[E(R;)| =t > 6, this is impossible.

Proposition 3.7 Each of the following sets is an ID-set:
{K1,3,3K2,P3 +K2} and {K1,3,3K2,P3 +K2,P4}. (3)

Proof. Let S be one of the sets in (3). Assume, to the contrary, that
S is not an ID-set. Let G be a minimum non-IDP-S graph. By Theo-
rem 2.1 then, G has an S-maximal 1-decomposition D; = {H,, R} where

90



|E(R1)| =t > 6 by Observation 3.2. Since R; does not contain P; + K,
as a subgraph, R) = tKs, Ry = K;; or Ry = K4 by Observation 3.3(a).
Since R, contains neither K 3 nor 3K> as a subgraph and ¢ > 6, this is
impossible.

Proposition 3.8 The set {K, 3, K3, Ps + K3} is an ID-set.

Proof. Assume, to the contrary, that S = {K 3, K3, P; + K2} is not an
ID-set. Let G be a minimum non-IDP-S graph. Then G has an S-maximal
1-decomposition D; = {H1, R} and an S-maximal 3-decomposition D3 =
{L1, L, L3, R3} but no S-maximal 2-decomposition. Then |[E(R;)| =t > 6
by Observation 3.2. Since R; does not contain P; + K3 as a subgraph,
R, =tK,, R; = K, or R; = K4 by Observation 3.3(a). Since R; contains
neither K3 nor K3 as a subgraph and t > 6, it follows that R; = tK>. Let
E(H,) = {e1,ea,e3}, where say e; € E(L;) for i =1,2,3, and so L; — e; is
a subgraph of R;. Since R; = tKj, it follows that L; — e; = 2K and so
Li=P;+Kyfori=1,2,3.

o If Hy = Ky 3, then let §' = (K1, Ps + Ka).
o If Hy = K3, then let S’ = {Ks,Pa + KQ}
e If Hy = P3 + K5, then let §' = {P3 + Kg}.

In each case, S’ is an ID-set. Since D; is an S’-maximal 1-decomposition
and Ds is an S’-maximal 3-decomposition, it follows that G has an S'-
maximal 2-decomposition, which is a contradiction. =

Proposition 3.9 Each of the following sets is an ID-set:
{K1,3, P4, P3s + K3} and {K),3, K3, Py, P3 + K2} (4)

Proof. Let S be one of the sets in (4). Assume, to the contrary, that
S is not an ID-set. Let G be a minimum non-IDP-S graph. Then G
has an S-maximal 1-decomposition D; = {Hy, R;} and an S-maximal 3-
decomposition D3 = {L;, L2, L3, R3} but no S-maximal 2-decomposition.
Then |[E(R;)| =t > 6 by Observation 3.2. Since R; does not contain P; +
K as a subgraph, Ry = tKj, R; = K, or Ry = K4 by Observation 3.3(a).
Since R; contains neither K; 3 nor P4 as a subgraph and ¢ > 6, it follows
that Ry = tKs. Let E(H;) = {ei1,e2,e3}, where say e; € E(L;) for i =
1,2,3, and so L; — e; is a subgraph of R;. We consider two cases.

Case 1. S = {Ki1,3,P4,P3 + K2}. Then L; € {P;, P3 + K>}. Since
{Ps, P3 + K2} is an ID-set, it follows that Hy; = K, 3. Because {K1 3, Ps}
and {K, 3, P3 + K3} are both ID-sets, at least one of L; (1 < i < 3) is
P, and at least one of L; (1 < i < 3) is P3 + Ko. We may assume that
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L, = Py = (f1,e1, f2) where e; is the middle edge of L, and Ly = P + K>
where e; is adjacent an edge in Lo, say e is adjacent to g in La. This
implies that G contains a subgraph isomorphic to one of the graphs in
Figures 8(a) and 8(b), where the edges in L; are drawn in bold. In each
case, let F; = L, and Fy = G[{ez,e3,9}]. Thus F5> = K, 3 or F5 = P,.
Since ey, ez,e3 € E(F)U E(Fy), E(F1)NE(F2) =0, and Ry is a subgraph
of Ry, it follows that {F}, F3, Ry} is an S-maximal 2-decomposition of G,
which is a contradiction.

o) o 9 o
g
() €2
o) o) o o o o o
€1 €1
es3 €3
o] o}
(a) (b)

Figure 8: A step in the proof of Proposition 3.9

Case 2. S = {K1,3,K3,P4,P3 + Kz} Then L; € {P4,P3 +K2}, where
i = 1,2,3. In particular, L; 2 K3 for i = 1,2,3. Furthermore, we claim
that H; % Kj3. If this were not the case, then observe that at least one edge
of R, is adjacent to some edge of H,; for otherwise, G = K3 + tKy and
G cannot have an S-maximal 3-decomposition. On the other hand, since
t > 6, at least two edges of R, are not adjacent to any edge of H;. Let
f1, f2, f3 € E(R;) such that f; is adjacent to some edge of H,, say f is
adjacent to e;, while neither fo nor f3 is adjacent to any edge of H;. Let
Fy = G({e1, f1, f2}] = Ps + K3, F; = G[{ez,e3,f3}| =¥ Ps + K; and Ry =
G — (E(F1) UE(F3)). Since ey, ez,e3 € E(F1) U E(Fy), E(F\)NE(F2) =0
and R, is a subgraph of Ry, it follows that {F}, F, Ry} is an S-maximal 2-
decomposition of G, which is a contradiction. Thus, H; % K3, as claimed.
Hence Hy,L; € S’ = {K, 3, P4, P3 + K3} for i = 1,2,3. Since S’ is an ID-
set by Case 1, it follows that G has an S-maximal 2-decomposition, which,
again, is impossible.

In order to show that the remaining sets of graphs of size 3 are ID-sets,
we first present a lemma.

Lemma 3.10 Let S = {K3, Py, P3+ K»}. If G is a minimum non-IDP-S
graph and Dy = {Hy, R1} is an S-mazimal 1-decomposition, then R, # tK»
where t > 6.
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Proof. Assume, to the contrary, that R; = tK, where t > 6. Since G is
a minimum non-IDP-S graph, G also has an S-maximal 3-decomposition
D3 = {Li, La, L3, R3} but no S-maximal 2-decomposition. Let E(H;) =
{e1,e2,e3}, where say e; € E(L;) for i = 1,2,3, and so L; —e; is a subgraph
of R;. Since Ry = tK>, each e; (i = 1,2,3) must be adjacent to some edge
of R;; for otherwise, at least one of L;, La, L3 is 3K3, which is impossible.

First, suppose that H; = K3 or H; = P4. Then at least one edge of R;
is adjacent to some edge of H,. Since Ry = tKy and t > 6, at least two
edges of R; are not adjacent to any edge of H;. Let fi, f2, f3 € E(R;) such
that f, is adjacent to some edge of H;, say f; is adjacent to e, while neither
f2 nor f3 is adjacent to any edge of Hy. Let F1 = G[{ey, f1, f2}] = Ps+ Ko,
F = G[{eg,es,fs}] >~ P+ Kyand Ry = G - (E(Fl) U E(Fz)) Since
ey, ez,e3 € E(F1)U E(F,) and E(Fy) N E(F3) = 0, it follows that Ry is a
subgraph of R, and {Fi, Fo, R} is an S-maximal 2-decomposition of G,
which is a contradiction.

Next, suppose that H; = P3 + K. We may assume that e; and e; are
adjacent to edges in H;. Since t > 6, there is an edge in R; that is not
adjacent to any edge of H;. Furthermore, since G is connected, at least
one of e; and e, is adjacent to some edge of R; and e3 is adjacent to some
edge of R;. Let f1, fo, f3 € E(R;) such that f; is not adjacent to any edge
of H,, f2 is adjacent to e3 and f3 is adjacent to e3. First, suppose that
fa # fa. Let Fy = G[{ez, f1, fo}] & P3+ Ko, F5 = G[{ey, e3, f3}] = P34+ K>
and R, = G — (E(F)) U E(F3)). Next, suppose that fo = f3. Since t > 6,
there is f4 € E(R;) ~ {f1} such that f4 is not adjacent to any edge of Hj.
Let Fy = Gl{e1,e2, f4}] = Ps + K3, F2 = G[{es, f1,f3}] = P3 + K3 and
Ry = G - (E(F1) U E(F3)). In either case, e;,ez,e3 € E(F1) U E(F2) and
E(F\) N E(Fy) = 0. Therefore, R, is a subgraph of R; and so {Fi, F», Rz}
is an S-maximal 2-decomposition of G, which is a contradiction.

Proposition 3.11 FEach of the following sets is an ID-set:
{K3s 3K27 P3 + K2}! {K37P4’ P3 + K2}v
{3K2, Py, Ps + Ko}, {K3,3K3, Py, P + K}

Proof. Let S be one of the sets described above. Assume, to the contrary,
that S is not an ID-set. Then G has an S-maximal 1-decomposition D; =
{H,R,} and an S-maximal 3-decomposition D3 = {L, L2, L3, R3} but no
S-maximal 2-decomposition. Then |E(R;)| = t > 6 by Observation 3.2.
Since R; does not contain P3 + K3 as a subgraph, R; = tKs, Ry = K,
or R; = K, by Observation 3.3(a). For each set S under consideration, it
follows that (i) either 3K, € S or S = {K3, P4, P3 + K3} and (ii) either
P, € Sor Ks € S. Hence R, # tKo (by Lemma 3.10) and R; # Kj.
Therefore, Ry = K. Let E(Ry) = {f1, f2,..., ft} where t > 6 and let
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E(H,) = {e1,ez,e3} where, say, e; € E(L;) for i =1,2,3, and so L; —e; is
a subgraph of R;. First, we make an observation. For ¢ = 1,2, 3, since (a)
L;€ Sand K3 ¢ S and (b) L; — e; is a subgraph of R; and R; = K},
it follows that e; is not incident with the center vertex of R; (or e; cannot
be adjacent to all edges in R;). Since Hy € {K3,3K>, Py, P3 + K>}, we
consider four cases.

Case 1. H; = K3. Then at least three edges in R; that are not adjacent
to any edges in H;, say fi, fo and f3 are three such edges in R;. Let
FL=Gl{er,fi.f2}] = Ps+ Ky €8, F, =G[{ez,e3,f3}] =P+ K2 € S
and Ry = G — (E(F1) U E(Fy)).

Case 2. H; = 3K;. Then {3K,,Ps + K2} € S. We may assume
that e; is adjacent to f; (and possibly to f»), eq is adjacent to f3 (and
possibly to f4) and ej is adjacent to fs (and possibly to fs). More precisely,
neither e; nor ez is adjacent to f3 and ez is not adjacent to f; or fa. Let
Fy = G[{ey,e3, f3}) 2 3K; € S, F>, = G[{ez, f1,f2}] = Ps+ K2 € S and
Ry = G - (E(F1) U E(F2)).

Case 3. H; = P;. As we observed earlier, no edge in H; is incident with
the center vertex of R;. Thus at least two edges in R; are not adjacent to
any edge in Hy, say f; and f; are two such edges in R;. We may assume
that H) = (e, e2,e3). Then there is f3 € E(Ry) — {f1, f2} such that f3 is
not adjacent to e;. (It is possible that ¢ = 6 and G contains the graph of
Figure 9 as a subgraph). Let F; = G[{e1, f1,f3}] = P3 + K2 € S where
E(Ps) = {f1,fa}, Fo = G[{ea,e3,f2}] & Ps + K, € S, where E(P3) =
{ea,e3}, and Ry = G — (E(F1) U E(F?)).

fi e
o f2
f3 e
(o]
€3

Figure 9: A step in the proof of Proposition 3.11

Case 4. H, = P; + K,. Let e; and ez be the two adjacent edges in
H,. We may assume (i) f; is not adjacent to e; or ez and (ii) f2 and f3
are not adjacent to e3. Let F1 = G({ey,e2,f1i}] X Ps+ K2 € S, F; =
G[{ea,fg, f3}] P4+ KeeSand R =G — (E(Fl) U E(Fg)).

In each case, e),e2,e3 € E(F1) U E(F2) and E(F;) N E(F3) = 0. Hence
R, is a subgraph of R; and so {F}, F3, R2} is an S-maximal 2-decomposition
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of G, which is a contradiction. ]

In summary, we have the following.

Theorem 3.12 A subset S of the set {Py, K3, K13, Ps + K2,3K3} of all
graphs of size 3 without isolated vertices is an ID-set if and only if S is not
one of the following eight sets:

{3K3}, {K3}, {K1,3}, {3K2, K3}, {3K2, K13},
{K3, K13}, {3K3, K3, Ps}, {3K2, K1 3, P4}.
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