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Abstract

For a nontrivial connected graph G, let ¢ : V(G) — Z3 be a ver-
tex coloring of G where c(v) # O for at least one vertex v of G.
Then the coloring ¢ induces a new coloring o : V(G) — Zy of G
defined by o (v) = 3_ ¢ vjy) ¢(u) Where N[v] is the closed neigh-
borhood of v and addition is performed in Z,. If o(v) = 0 € Z,
for every vertex v in G, then the coloring ¢ is called a (mod-
ular) monochromatic (2, 0)-coloring of G. A graph G having
a monochromatic (2,0)-coloring is a (monochromatic) (2,0)-
colorable graph. The minimum number of vertices colored 1
in a monochromatic (2, 0)-coloring of G is the (2, 0)-chromatic
number of G and is denoted by x(2,0)(G). For a (2,0)-colorable
graph G, the monochromatic (2,0)-spectrum S(3,0)(G) of G is
the set of all positive integers k for which exactly k vertices
of G can be colored 1 in a monochromatic (2, 0)-coloring of G.
Monochromatic (2,0)-spectra are determined for several well-
known classes of graphs. If G is a connected graph of order n > 2
and a € S(2,0)(G), then aiseven and 1 < |S(30)(G)| < |n/2]. It
is shown that for every pair k, n of integers with 1 < k < [n/2],
there is a connected graph G of order n such that |S(5,0)(G)| = k.
A set S of positive even integers is (2,0)-realizable if S is the
monochromatic (2,0)-spectrum of some connected graph. Al-
though there are infinitely many non-(2, 0)-realizable sets, it is
shown that every set of positive even integers is a subset of
some (2, 0)-realizable set. Other results and questions are also
presented on (2, 0)-realizable sets in graphs.
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1 Introduction

For an integer k > 2 and a nontrivial connected graph G, let ¢ : V(G) — Z;
be a coloring where adjacent vertices may be assigned the same color. Then
the coloring ¢ induces a new coloring o, : V(G) — Zj of the graph G defined

by
oe(v) = D c(u) (1)

ueN{v]

where N[v] is the closed neighborhood of v (consisting of v and the ver-
tices in the open neighborhood N(v) of v) and addition is performed in
Zi. The number o.(v) is called the color sum of a vertex v with respect
to the coloring c. (We also write o(v) for o.(v) if the coloring ¢ under
consideration is clear.) If o.(u) = o.(v) for every two vertices « and v in G,
then the coloring ¢ is called a modular monochromatic k-coloring or simply
a monochromatic k-coloring. For any connected graph G, there is always
a (trivial) monochromatic k-coloring ¢ where c(v) = 0 for each vertex v of
G. Our interest, however, lies with nontrivial monochromatic k-colorings
¢, where then c(v) 5 0 for at least one vertex v of G. These concepts were
introduced and studied in [1] and were inspired by the well-known com-
binatorial problem called the Lights Out Puzzle (also see [5]) and studied
further in [2, 3].

For a given integer t with 0 <t < k — 1, a monochromatic k-coloring ¢
of G is said to be of type t if the induced vertex coloring o has the property
that o(v) =t for each vertex v of G. Such a coloring is also referred to as
a (modular) monochromatic (k,t)-coloring. A graph G is monochromatic
(k,t)-colorable or (k,t)-colorable if G has a monochromatic (k,t)-coloring
for some integers k and ¢t with 0 <t < k—1. We are particularly interested
in monochromatic (2, 1)-colorings and (2, 0)-colorings. These two colorings
are not only closely related to the Lights Out Puzzle but also related to
some well-known studied domination parameters, namely odd and even
dominations in graphs (see (1, 7, 8}).

A vertex v of a graph G dominates a vertex u if u is in the closed
neighborhood N[v] of v. A set S of vertices of G is a dominating set of G
if every vertex of G is dominated by some vertex in S. A dominating set S
in G is an odd dominating set if every vertex of G is dominated by an odd
number of vertices of S. In 9] Sutner showed that every graph has an odd
dominating set. As a consequence of Sutner’s Theorem, it was observed in
[1] that every connected graph G is (2,1)-colorable. On the other hand,
not every graph is (2, 0)-colorable. A dominating set S in a graph G is an
even dominating set if every vertex of G is dominated by an even number
of vertices of S and the minimum cardinality of an even dominating set
in G is the even domination number of G and is denoted by ~.(G). It
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is known that not every graph has an even dominating set and not every
graph has a monochromatic (2, 0)-coloring. For example, the cycle of order
5 has neither an even dominating set nor a monochromatic (2, 0)-coloring.
The minimum number of vertices colored 1 in a modular monochromatic
(2,0)-coloring of G is defined in [1] the (2,0)-chromatic number of G and
is denoted by X(2,0)(G). A monochromatic (2,0)-coloring of G that assigns
the color 1 to exactly x(2,0)(G) vertices of G is a minimum monochromatic
(2,0)-coloring of G. If G is a connected graph of order n such that x(2,0)(G)
and 7.(G) both exist, then

2<x20(C) £7(G) <n (2)

and x(2,0(G) and 7.(G) are even. In [2], the relationship between (2,0)-
chromatic numbers and even domination numbers of graphs was studied.
More precisely, it was shown that (i) for each pair a,b of even integers
with 2 < a < b, there is a connected graph G such that x(2,0)(G) = @
and 7.(G) = b and (ii) there is a connected graph G of order n such
that x(2,0)(G) = a and 7.(G) = b if and only if a = b, or & < /2 and
(a,b,n) # (2,4,4) or b/2 < a < band n > (2a + b)/2 (see [2]). The (2,0)-
chromatic numbers have been determined for several well-known classes of
graphs. Furthermore, all trees of order n whose (2,0)-chromatic number
belongs to the set {n,n — 1,n — 2,n — 3} have been characterized (see
(1, 2, 3]).

In this work, we investigate the concept of the monochromatic (2,0)-
spectrum of a graph. For a (2,0)-colorable graph G, the monochromatic
(2,0)-spectrum S(5,0y(G) (or simply (2,0)-spectrum) of G is the set of all
positive integers k for which exactly k vertices of G can be colored 1 in a
monochromatic (2,0)-coloring of G. It then follows by (2) that if G is a
(2,0)-colorable graph of order 7 and a € S3,0)(G), then x(2,0(G) < e < n.
The following result describes another property of elements in the (2,0)-
spectrum of a graph. A graph G is called an odd-degree graph if every vertex
of G has odd degree.

Proposition 1.1 (1] Ifc is a monochromatic (2,0)-coloring of a connected
(2,0)-colorable graph G, then the subgraph of G induced by the vertices
colored 1 by c is an odd-degree graph and so the number of vertices colored 1

by ¢ is even.

By Proposition 1.1, if G is a connected (2, 0)-colorable graph of order
n, then

52,00(C) C {x(2,0)(G), x(2.0)(G) +2,...,2|n/2]} € {2,4,...,2|n/2]}. (3)

We refer to the books [4, 6] for graph theory notation and terminology not
described in this paper. All graphs under consideration here are nontrivial
connected graphs.
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2 On (2,0)-Spectra of Some Well-Known
Graphs

In this section, we first determine the (2, 0)-spectra for some well-known
classes of graphs. In order to do this, we first describe several well-known
graphs that are (2, 0)-colorable (see [1]).

Proposition 2.1 (a) Every nontrivial complete graph is (2, 0)-colorable.

(b) For positive integers r and s, the complete bipartite graph K, , of
order r + s is (2,0)-colorable if and only if r and s are odd.

(¢) A path of order n > 2 is (2,0)-colorable if and only if n =2 (mod 3).
(d) A cycle of order n > 3 is (2,0)-colorable if and only if n =0 (mod 3).

For each integer n > 2, let [[n]] = {2,4,...,2|n/2]} be the set of all even
integers between 2 and n. We begin with graphs with the largest possible
(2,0)-spectrum. For a complete graph K, with V(K,) = {v;, va,..., vn}
and for each ¢ with 1 < i < |n/2], let ¢; be the coloring that assigns the
color 1 to each vertex in {v1,v2,...,v2;} and the color 0 to the remaining
vertices of K,,. Then each ¢; (1 < i < [n/2]) is a monochromatic (2,0)-
coloring that assigns the color 1 to exactly 2¢ vertices of K. Therefore,
S(2,0)(Kn) = [[n]] for each n > 2. However, the complete graph K, is not
the only graph of order n whose (2, 0)-spectrum is [[r]]. In fact, more can be
said. First, we present some additional definitions. For two vertex-disjoint
graphs G and H, let G+ H and G V H denote the union and join of G and
H, respectively. For a graph G with V(G) = {v1,v,...,v,} and n pairwise
vertex-disjoint graphs Hy, Ha, ..., Hyn, the composition G[Hy, Hs, ..., Hy)
of G and H; (1 £ i < n) is the graph Hy + H +--- + H, (the union of
Hy,H,,...,H,) together with the edges in the set {zy: z € V(H,),y €
V(H;),viv; € E(G)}. If thereis a graph H such that H;  Hfor1 < i < n,
then we write G[H] = G[H,, Ha, ..., Hy].

Proposition 2.2 For each integer n > 5, there is a connected graph G
that is not complete such that S(5,0)(G) = ([n]].

Proof. For each even integer n > 6, let G = Pp[K>] be the composi-
tion of the path B/, of order n/2 and K, where (u1,u2,...,un/2) and
(v1,v2,...,Uns2) are two copies of Py in G. For each i with 1 < i < n/2,
let V; = {u1,v1,u2,v2,...,ui,v;} and let ¢; be the coloring that assigns the
color 1 to each vertex in V; and the color 0 to the remaining vertices of
G. Since ¢; is a monochromatic (2,0)-coloring that assigns the color 1 to
exactly 2i vertices of G for 1 < i < n/2, it follows that S(;0)(G) = [[n]].
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For each odd integer n > 5, let G = (";'K;) V K1, where ";'Kj is the
union of ";! vertex-disjoint copies of K». Foreach1 <i < (n—1)/2,let ¢;
be the coloring that assigns the color 1 to each vertex in exactly  copies of
K, in G and the color 0 to the remaining vertices of G. Since each ¢; is a
monochromatic (2, 0)-coloring that assigns the color 1 to exactly 2i vertices
of G, it follows that S(5,0)(G) = [[n]].

At the other extreme, there are (2, 0)-colorable graphs having the small-
est possible (2, 0)-spectrum, namely a singleton. A (2,0)-colorable graph G
of order n is defined in [1] to be a (2,0)-extremal graph if x(2,0)(G) =
n. Thus if G is a (2,0)-extremal graph of order n, then S(;0)(G) =
{X(2,00(G)} = {n}. It is not surprising that (2,0)-extremal graphs are
not the only (2,0)-colorable graphs having a singleton (2, 0)-spectrum. In
fact, if G is a (2,0)-colorable graph such that G has a unique monochro-
matic (2,0)-coloring, then S(5,0)(G) is a singleton. This is the case for
(2,0)-colorable complete bipartite graphs, paths and cycles, as we show
next. First, we state a useful observation.

Observation 2.3 [1] Let u and v be two nonadjacent vertices of a con-
nected (2, 0)-colorable graph G such that N(u) = N(v). If ¢ is a monochro-
matic k-coloring of G for some integer k 2> 2, then c(u) = c(v).

Proposition 2.4 Let G be a (2,0)-colorable graph of order n > 3.
(a) If G is a complete bipartite graph, then S(30)(G) = {n}.
(b) If G is a path, then S 0y(G) = {2(n +1)/3}.
(¢) If G is a cycle, then S(30)(G) = {2n/3}.

Proof. First, we consider the complete bipartite graph K. s, where 1 <
r < s and n = r + 5. By Proposition 2.1, if K, ; is (2,0)-colorable, then r
and s are both odd. Let U and V be the two partite sets of K, ; and let ¢
be a monochromatic (2, 0)-coloring of K, ;. By Observation 2.3, ¢(z) = c(y)
if z and y belong to the same partite set of K. ;. Since ¢ assigns the color 1
to at least one vertex of K. s, we may assume that ¢(z) =1 foreach z € U.
On the other hand, if y € V, then o(y) = |U| + ¢(y) = 0 in Zy. Since
[U| is odd, it follows that ¢(y) = 1 and so c¢(v) = 1 for each v € V by
Observation 2.3. Therefore, the only monochromatic (2, 0)-coloring of K, ,
is the coloring that assigns the color 1 to every vertex of K, ,; that is, K, s
is (2,0)-extremal. Therefore, S(2,0)(Kr,s) = {x(2,0)(Krs)} = {r + s}.
Next, let P, = (v1,v2,...,vs) be a (2,0)-colorable path of order n.
Thus n =2 (mod 3) by Proposition 2.1. Let ¢ be a monochromatic (2,0)-
coloring of P,. We claim that ¢(v;) = 1; for otherwise, assume that ig €
{1,2,...,n} is the smallest integer such that c¢(v;;) = 1 and so ip > 2.

101



If i = 2, then U('Uio-—l) = C(Uio-—l) + C(’Uio) =0+ 1; while if i9g > 3,
then o(vi,—1) = c(vig—2) + c(Vig—1) + ¢(vi,) = 0+ 0+ 1. In either case,
o(viy—1) = 1, a contradiction. Thus, as claimed, ¢(v1) = 1. Since o(v;) =0,
it follows that c(vz) = 1. Next, since o(v2) = 0, it forces that c(v3) = 0;
while since o(v3) = 0, it follows that ¢(v4) = 1 and so on. Continuing this
procedure, we obtain

_ 1 ifi=1,2 (mod 3) .
c(vi)—{o ifi=0 (mod 3). )

Therefore, the coloring ¢ defined in (4) is the unique monochromatic (2, 0)-
coloring of P,. Thus S(2,0)(Pr) = {x(2,0)(Pn)} = {2(n 4+ 1)/3}.

A similar argument shows that C, has a unique monochromatic (2,0)-
coloring (up to isomorphism in this case) and so S(3,0)(Cr) = {X(2,0)(Cn)} =
{2n/3} for each n > 3.

We have seen that if G has a unique (2, 0)-coloring (up to isomorphism),
then S(20)(G) is a singleton. However, the converse of this statement is
not true in general. For example, let G be the graph obtained from P; =
(v1,v2,...,vs) and three pairwise nonadjacent vertices 1, z3, z3 by joining
each z; (1 < i < 3) to both vq and vs (see Figure 1).

3

T2

o 0——0 d - o 0——0
u U2 v3 V4 Us Vs V7 Vg

Figure 1: The graph with two different monochromatic (2, 0)-colorings

Then the coloring ¢/ of G that assigns the color 1 to each vertex in
the set {v1,v2,v4,vs, 07,0} and the color O to the remaining vertices of G
is a monochromatic (2, 0)-coloring of G. On the other hand, the coloring
¢ that assigns the color 1 to each vertex in the set {vy,va,v4, 21, 22,23}
and the color 0 to the remaining vertices of G is also a monochromatic
(2,0)-coloring of G. The subgraph induced by the vertices colored 1 in
¢ is 3K5; while the subgraph induced by the vertices colored 1 in ¢” is
K3 + K1,3 and so ¢’ and ¢” are different. We claim that S(5,0)(G) = {6};
that is, every monochromatic (2, 0)-coloring of G must assign the color 1
to exactly 6 vertices of G. Let ¢ be any monochromatic (2,0)-coloring of

102



G. It then follows by Observation 2.3 that ¢(z;) = ¢(z2) = c¢(z3) € {0,1}.
It can be shown that if ¢(z;1) = ¢(z2) = c(z3) = 0, then ¢ = ¢’; while
¢(z1) = c(z2) = c(z3) = 1, then ¢ = ¢”. Therefore, S20)(G) = {6} and G
has exactly two different monochromatic (2, 0)-colorings. In general, using
a similar graph structure along with a similar argument to the one just
described, we can establish the following.

Theorem 2.5 For each even integer k > 4, there exists a (2,0)-colorable
graph G such that (i) S(2,0)(G) = {k} end (ii) G has two monochromatic
(2,0)-colorings ¢’ and ¢” for which the subgraphs induced by the vertices
colored 1 by ¢’ and ¢, respectively, are non-isomorphic.

For each graph G of order n we have considered thus far, either
1S(2,0)(G)| = 1 or |S(2,0)(G)| = [n/2].

This, of course, is not the case in general. As an example, we determine
the (2,0)-spectrum of the wheel W,, = C, V K for each integer n > 3. In
order to do this, we first present some preliminary results and determine
the (2, 0)-chromatic number of wheels.

Proposition 2.6 If ¢ is a monochromatic (2,0)-coloring of a connected
(2, 0)-colorable graph G, then ¢ must assign the color 1 to an even number
of even vertices of G. In particular, if G has exactly one even vertezr z,
then c(z) = 0.

Proof. For a monochromatic (2, 0)-coloring c of G, let

veV(Q)

Since o(v) = 0 in Z; for each v € V(G), it follows that o.(G) = 0 in Z,
and o.(G) is even. Observe that a vertex colored 0 contributes 0 to o.(G);
while each vertex v colored 1 contributes 1+ degg v to o.(G) (namely, c(v)
contributes 1 to each color sum o(u) for every u € N{v]). Let V; be the
set of odd vertices of G and V5 the set of even vertices of G such that each
vertex in V; U V; is colored 1 by ¢. Then

0(G) = Y (1 +deggv) + D _ (1+deggv).
veW veVy

Since 0¢(G) and 3° .y, (1 + degg v) are both even, 3 ., (1 + deggv) is
even and so |V is even.
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Observation 2.7 [1] Let G be a connected (2,0)-colorable graph and let
¢ be a monochromatic (2,0)-coloring of G. If S is any set of vertices of G
that are colored 0 by ¢, then the restriction of c to G—S is a monochromatic
(2,0)-coloring of G — S (where it is possible that the restriction of ¢ assigns
the color 0 to every vertex of some component of G — S).

In Observation 2.7, if the restriction of a monochromatic (2,0)-coloring
of G to the subgraph G — S assigns the color 0 to every vertex of some com-
ponent G’ of G — S, then this restriction is called a trivial monochromatic
(2, 0)-coloring of G'; Otherwise, it is a nontrivial monochromatic (2,0)-
coloring of G’, in which case, ¢ assigns the color 1 to at least one vertex
of G'.

For a monochromatic k-coloring ¢ : V(G) — Zi, k > 2, the comple-
mentary coloring € : V(G) — Zy of ¢ is defined by ¢(v) = k — 1 — ¢(v). In
particular, the complementary coloring ¢ of a monochromatic (2, 0)-coloring
c is defined by ¢(v) = 1 — ¢(v) for each v € V(G). Thus ¢(v) = 0 if and
only if &(v) = 1 and ¢(v) = 1 if and only if ¢(v) =0.

Proposition 2.8 [2] If G is a connected odd-degree graph and ¢ is a
monochromatic (2,0)-coloring, then either € is a trivial coloring that as-
signs the color 0 to every vertex of G or c is a monochromatic (2, 0)-coloring
of G.

Theorem 2.9 For each n > 3, the wheel W;, = C,, vV K, is (2,0)-colorable
if and only if n # 2,4 (mod 6). Furthermore, if W, is (2, 0)-colorable, then

2 ifn=0 (mod 6)
Xx20(Wn)=4q n+1 ifn=1,5 (mod 6) (5)
3+1 ifn=3 (mod6).

Proof. For an integer n > 3, let W, = C, V K}, where C,, =(v;, vy,
.-+ Un, v1) and V(K,) = {v}. First, suppose that W, is (2,0)-colorable.
Assume, to the contrary, that n = 2,4 (mod 6). Let ¢ be a monochromatic
(2, 0)-coloring. Since n is even, v is the only even vertex of W, and so
c(v) = 0 by Proposition 2.6. However then, the restriction of ¢ to the
cycle C, = W,, — v is a (nontrivial) monochromatic (2, 0)-coloring of C,, by
Observation 2.7. This is a contradiction by Proposition 2.1.

For the converse, assume that n #Z 2,4 (mod 6). If n is odd, then W,, is
an odd-degree graph and so W, is (2,0)-colorable. Thus, we may assume
that n is even and so n = 0 (mod 6). Since the coloring ¢ : V(W,) — Z,
defined by

(6)

o(z) = 1 ifzxz=v; wherei=1,2(mod3)and1<i<n
T 1 0 otherwise
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is a monochromatic (2,0)-coloring of Wy, it follows that W,, is (2,0)-
colorable. It remains to verify (5). First, suppose that n = 0 (mod 6).
Since the monochromatic (2, 0)-coloring described in (6) assigns the color 1
to exactly 2n/3 vertices of W,, it follows that x(2,0)(Wn) < 2n/3.

Let ¢ be a minimum monochromatic (2, 0)-coloring of W,,. Since v is the
only even vertex in W,, it follows that ¢(v) = 0. We may assume, without
loss of generality, that c(v;) = 1. Since o(v;) = 0, exactly one of ¢(v,,) and
c(v2) is 0, say c(vn) = 0 and c(v2) = 1. Since o(v2) = 0, it follows that
c(v3) = 0 and then ¢(v4) = 1. Continuing this procedure, we have c(v;) = 1
if i = 1,2 (mod 3) and c(v;) = 0 if ¢ = 0 (mod 3). Thus ¢ assigns the
color 1 to at least 2n/3 vertices of Wy, and so x(z,0y(W») > 2n/3. Hence
X(2,0{Wa) = 2n/3 when n = 0 (mod 6).

Next, suppose that n = 1,5 (mod 6) and we show that x(2,0)(Wxr) =
n+ 1. Assume, to the contrary, that x(2,0)(Wr) < n. Let ¢ be a minimum
monochromatic (2, 0)-coloring of W,,. By Proposition 2.1, ¢(v) = 1 and so
¢(v;) = 0 for some i with 1 < i < n, say ¢(v;) = 0. Since o(v;) = 0, exactly
one of c(v,) and ¢(vz) is 0, say c(vn) = 1 and ¢(v2) = 0. Since o(v2) =0,
it follows that ¢(v3) = 1 and then ¢(v4) = 0. Continuing this procedure,
we have c¢(v;) =0if i =1,2 (mod 3) and ¢(v;) =1 if i =0 (mod 3). Since
n=1,5 (mod 6), it follows that n = 1,2 (mod 3) and so ¢(v,,) = 0, which
is a contradiction. Therefore, x(2,0)(Wn) =n + 1 when n =1,5 (mod 6).

Finally, suppose that n = 3 (mod 6) and we show that x(20)(Wyn) =
1+ n/3. Since the coloring ¢ : V(W,,) — Z; defined by

_J 1 ifrx=vorx=v; wherei=1(mod3)and1<i<n
ofz) = { 0 otherwise (7)

is a monochromatic (2, 0)-coloring of Wy, it follows that x(9,0)(Wn) <1+
n/3. To show that x(2,0y(W,) > 1+n/3, let ¢ be a minimum monochromatic
(2, 0)-coloring of W,,. First, suppose that ¢(v) = 0. Then the restriction of
¢ to C, is a monochromatic (2, 0)-coloring of C,.. Since x(2,0)(Cn) = 2n/3
when n = 0 (mod 3), a contradiction is produced. Next, suppose that
c(v) = 1. Since x(2,0)(Wn) < 14 n/3, it follows that c(v;) = 0 for some ¢
with 1 < ¢ < n, say c(v1) = 0. Since o(v1) = 0, exactly one of ¢(v,) and
c(ve) is 0, say c(vn) = 1 and ¢(vz) = 0. Since o(v2) = 0, it follows that
c(vs) = 1. Since o(v3) = 0, this implies that ¢(v4) = 0 and so ¢(vs) = 0.
Continuing in this procedure, we have c¢(v;) = 0 if i = 1,2 (mod 3) and
c(v;) =11if ¢ =0 (mod 3). Hence c assigns the color 1 to at least 1 +n/3
vertices of W;, and so X(q,0)(Wr) > 1+n/3. Therefore, x(2,0)(Wa) = 1+n/3
when n =3 (mod 6).

We are now prepared to present the following result.

105



Theorem 2.10 For each integer n > 3, if W, = C, V K; is (2,0)-
colorable, then

{2n/3} ifn =0 (mod 6)
S(zlo)(wn) = { {n + 1} zfn = 1,5 (mod 6)
{(n/3)+1,2n/3,n+1} ifn =3 (mod 6).

Proof. Let W, = C,, VK, where C, = (v1,v2,...,Un,v1) for some integer
n >3 and V(K;) = {v}. By Theorem 2.9, n # 2,4 (mod 6). First, suppose
that n = 0 (mod 6). Since x(2,0)(Wn) = 2n/3, it follows that there is no
monochromatic (2, 0)-coloring of W, that assigns the color 1 to £ vertices
where 2 < £ < 2n/3 — 2. Now assume that there is a monochromatic (2, 0)-
coloring ¢ of W,, that assigns the color 1 to k vertices where 2n/3 + 2 <
k < n. Since v is the only vertex that is even degree, ¢(v) = 0. Moreover,
since 2n/3 + 2 < k < n, there are three consecutive vertices of C, that are
assigned the color 1 by ¢; without loss of generality, say c(v;) = e(v) =
¢(v3) = 1. This, however, implies that o(vz) = 1, which is impossible. Thus
such a monochromatic (2,0)-coloring ¢ of W,, does not exist. Therefore,
S(2,0)(Wn) = {271./3}

Next, suppose that n = 1,5 (mod 6). Since x(2,0)(Wx) = n + 1, it fol-
lows that the only (2, 0)-coloring of W, is the coloring that assigns the color
1 to every vertex of W, and so S3,0)(Wn) = {n+1}. Finally, we let n = 3
(mod 6). Note that since W, is an odd-degree graph, it follows that the
coloring that assigns the color 1 to every vertex of W, is a monochromatic
(2,0)-coloring of W,,. Since x(2,0)(Wn) = (n/3) + 1, there is a monochro-
matic (2,0)-coloring of W,, that assigns the color 1 to exactly (n/3) + 1
vertices of Wy,,. By Proposition 2.8 then, W;, has a monochromatic (2, 0)-
coloring that assigns the color 1 to exactly (n+1)—(n/3+1) = 2n/3 vertices
of Wy,. Furthermore, there is no (2, 0)-coloring of W, that assigns the color
1 to exactly £ vertices for each £ with2 < £ <n/3—1lor2n/3+2<¢< n-1.
Now assume that there is a monochromatic (2, 0)-coloring ¢ of W,, that as-
signs the color 1 to t vertices where n/3+3 <t < 2n/3 — 2. If ¢(v) = 0,
then the restriction of ¢ to C, is a monochromatic (2, 0)-coloring of C,, that
assigns the color 1 to ¢ vertices of C,, which is impossible since x(2,0)(Cn)
= 2n/3. If c¢(v) = 1, then since o(v) = 0, there is a vertex v; for some %
(1 £ % £ n) such that e(v;) = 1; without loss of generality, assume that
¢(v1) = 1. Since o(v1) = 0, it follows that c assigns the same color to v,
and vn. If c(vz2) = c(v,) = 1, then it follows that every vertex of W, is
assigned the color 1, which is impossible. Now, if ¢(v2) = c(vn,) = 0, then
since o(v2) = 0, ¢ assigns the color 0 to vs. Since o(v3) = 0, c(v4) = 1.
Continuing this procedure, we have that

(v) = 1 ifi=1 (mod3)
=10 ifi=0,2 (mod 3).
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So the number of vertices colored 1 by ¢ is (n/3) + 1, which is impossible.
Hence S(2,0y(Wn) = {(n/3) +1,2n/3,n+ 1}. ]

For each integer n > 3, let C, O K3 be the Cartesian product of C,
and K> and let cor(C,) be the corona of Cy,. Since C,, O K3 and cor(C,)
are odd-degree graphs for n > 3, they are both (2,0)-colorable. The (2, 0)-
spectra of these two classes of graphs are presented in the next result.

Theorem 2.11 For each integer n > 3, if G € {C,, OO Ka,cor(Cr)}, then

[ {n,2n} ifn is even
Se0(G) = { {2n} * ifn is odd.

Proof. Let G € {C, O K,,cor(Cr)}. If n is odd, then G is a (2,0)-
extremal graph of order 2n and so S(2,0)(G) = {2n}. Thus, we may assume
that n is even. Since G is an odd-degree graph, the coloring that assign
the color 1 to each vertex of G is a monochromatic (2, 0)-coloring of G and
80 2n € S(2,0)(G). Since X(2,0(G) = n, each monochromatic (2, 0)-coloring
must assign the color 1 to at least n vertices of G. Suppose that c is a
monochromatic (2, 0)-coloring of G that assigns the color 1 to £ vertices of
G where n < £ < 2n — 2. By Proposition 2.8, ¢ is a monochromatic (2, 0)-
coloring of G that assigns the color 1 to 2n — £ < n vertices of G. This
implies that £ = n. Consequently, every monochromatic (2, 0)-coloring of G
either assigns the color 1 to all vertices of G or to exactly n vertices of G.
Therefore, S(2,0)(G) = {n,2n}. [

3 A Realization Result

We have seen that if G is a nontrivial connected (2, 0)-colorable graph of
order n, then 1 < |S2,0)(G)| < |n/2). We now show that every pair k,n
of integers with 1 < k < |n/2] can be realized as the cardinality of the
spectrum and the order of a connected (2, 0)-colorable graph, respectively.
The following observation will be useful to us.

Observation 3.1 If uv is a pendant edge in a (2,0)-colorable graph G,
then ¢(u) = c(v) for every monochromatic (2,0)-coloring ¢ of G.

Theorem 3.2 For every pair k,n of integers with 1 < k < |n/2}, there
is a connected (2,0)-colorable graph G of order n such that |S(2,0)(G)| = k.

Proof. Let k and n be integers such that 1 < k < |n/2]. Since the result
is true for k = 1 or k = |n/2] by Propositions 2.4 and 2.2, we may assume
that 2 < k < |n/2] — 1. Thus n > 6. We consider two cases, according to
whether n is odd or n is even.
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Case 1. n is odd. Let H = kK, V K, be the join of kK3 and K, where
V(K;) = {v} and E(kK3) = {viiviz : 1 < ¢ < k}, and let F = K n_2k—2
be the star of order n — 2k — 1, where V(F') = {u,u1,u2,...,Un—2k—2} and
u is the central vertex of F. The graph G of order n is obtained from H
and F by adding the edge uv. We show that |S(50)(G)| = k. For each j
with 1 < j < k, the coloring c; that assigns the color 1 to the vertices in
V; = {vi1,viz : 1 < i < j} and the color 0 to the remaining vertices of G is
a monochromatic (2, 0)-coloring of G. Hence {2,4,...,2k} C S(2,0(G) and
50 |S(2,0(G)| 2 k.

Next, we show that |S2,0)(G)| < k. If |S(2,0)(G)| > k, then there is
a monochromatic (2,0)-coloring ¢ of G such that c assigns the color 1 to
€ > 2(k+1) vertices of G. First, suppose that ¢(v) = 0. Since |V(H)—{v}| =
2k, there is a vertex in V(F') that is colored 1 by c. It then follows by
Observation 3.1 that every vertex in V(F') must be colored 1 by ¢. Since
c(v) = 0, it follows that c(v;;) = c(vi) for 1 < i < k. However then,
o(v) = 1 which is impossible. Next, suppose that c(v) = 1. Since o(u) =0
and c(v) = 1, it follows that every vertex in V(F) must be colored 1 by
c. Since n is odd, n — 2k — 2 is odd and so o(u) = 1, which is impossible.
Therefore, |S(2,0y(G)| < k and so |S(2,0)(G)| = k.

Case 2. n is even. Let H be defined as in Case 1. The graph G of
order n is obtained from H by (i) adding n — 2k — 1 new vertices u, u,,
Ug, ..., Un-gk—2 and (ii) joining u to v;; and v;2 and joining each of u;
(1 €4 < n—2k—2) to the vertex v. We show that |S(2,0)(G)| = k. For each
j with 1 < j < k, the coloring ¢; that assigns the color 1 to the vertices in
V; = {vi1,vi2 : 1 <1 < j} and the color 0 to the remaining vertices of G is
a monochromatic (2, 0)-coloring of G. Hence {2,4,...,2k} C S(5,0)(G) and
s0 |S(2,0)(G)| > k.

Next, we show that |S2,0)(G)| < k. If [S(2,0)(G)| > k, then there is
a monochromatic (2, 0)-coloring ¢ of G such that ¢ assigns the color 1 to
¢ > 2(k + 1) vertices of G. First, suppose that ¢(v) = 0. Then c(u;) =0
for 1 < i £ n— 2k — 2 by Observation 3.1. Thus ¢ assigns the color 1
to at most 2k + 1 vertices in G, which is a contradiction. Next, suppose
that c(v) = 1. Since o(v1;) = c(v) + c(v11) + c(v12) + c(u) = 0, it follows
that either exactly one vertex in {v11,v12,u} is colored 1 or every vertex in
{v11,v12, u} are colored 1. In either case, however, we have that o(u) = 1,
which is impossible. Hence |S(3,0)(G)| < k and so |S(5,0)(G)| = k. n

4 On Realizable Sets

In the proof of Theorem 3.2, we saw that for each pair k,n of positive
integers with 2 < k < |n/2], there is a connected graph G of order n such
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that S(20)(G) = {2,4,...,2k}. This gives rise to the following question:
Let S be a set consisting of k > 2 positive even integers. Does there exist a
connected graph G such that S 0)(G) = S? If the answer is yes, then the
set S is referred to as a monochromatic (2, 0)-realizable set or simply a (2,0)-
realizable set; otherwise, S is a non-(2, 0)-realizable. Thus, {2,4,...,2k} is
(2, 0)-realizable for each integer k > 2. In fact, for each even integer s > 2,
the singleton {s} is (2,0)-realizable. For example, if s = 2, let G = K3
and so S(2,0)(G) = {2}; while if s > 4, let G be a (2, 0)-colorable complete
bipartite graph of order s and so S(;,0)(G) = {s} by Proposition 2.4. On
the other hand, there are infinitely many sets of positive even integers that
are not the (2, 0)-spectrum of any (2, 0)-colorable graph. To show this, we
first present an additional definition and a useful observation.

For two monochromatic (s, t)-colorings ¢ and ¢’ of a connected graph G
and two integers x and y, define the linear combination zc+yc : V(G) — Z,
of c and ¢’ by

(ze + yc')(v) = ze(v) + yc'(v) for each v € V(G).

Lemma 4.1 If c and ¢’ are monochromatic (s, t)-colorings of a connected
graph G, then each linear combination zc + yc¢' of ¢ and ¢’ is a monochro-
matic (s, (z + y)t)-coloring of G for all integers z and y.

Proof. For a vertex v € V(G), let o.(v) = as +t and oo (v) = bs + ¢,
where a,b € Z. Let ¢’ = zc + y¢'. Then ocv(v) = z(as +t) + y(bs +t) =
(za + yb)s + (z + y)t. Thus o (v) = (z + y)t € Z,. ]

The following is an immediate consequence of Lemma 4.1.

Corollary 4.2 If ¢ and ¢’ are monochromatic (s,0)-colorings of a con-
nected graph G for some integer s > 2, then each linear combination is also
a monochromatic (s,0)-coloring of G.

We are now prepared to show that there are infinitely many sets of
positive even integers that are not the (2, 0)-spectrum of any (2, 0)-colorable
graph.

Proposition 4.3 For each integer k > 32, the set {6,14,k} is not the
monochromatic (2, 0)-spectrum for any connected graph.

Proof. Assume, to the contrary, that the set S = {6, 14, k} is the monochro-
matic (2,0)-spectrum for some connected graph G. For each integer i €
{6,14, k}, let ¢; be a monochromatic (2,0)-coloring of G that assigns the
color 1 to exactly ¢ vertices of G and let V; be the set of vertices colored 1 by
¢;. By Corollary 4.2, for each pair ¢, j of distinct integers where ¢, j € S and
i # j, the linear combination ¢; + ¢; of ¢; and ¢; is also a monochromatic
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(2,0)-coloring of G. Let V; ; be the set of vertices colored 1 by ¢; +¢; where
i, € Sand i # j. Then

Vsl = Vil + [V3l = 2|VinVj]. (8)

Also, the linear combination ¢g +¢14 + ¢k is a monochromatic (2, 0)-coloring
of G. Let V5,14, be the set of vertices colored 1 by cg+ci14+ck. Since S is the
monochromatic (2, 0)-spectrum G, it follows that |V; ;| € S for each pair i, j
of distinct integers where ¢, j € S and | Vg 14,x| € S. Let W) = Vg—(V14UV4),
Wy = (Ve NVig) = Vi, Wa = Viy — (Ve UWi), Wy = (Ve N Vi) — Vi,
Ws =VenVignVi, Wg = (ViaNVi) — V6 and Wy = Vi — (Vs U V1y).
Let w; = [W;| for 1 < i < 7. Since 0 < {VgNVyy| < 6 and [Ve4] € S, it
follows by (8) that |Vg 14] < 20, which implies that |Vg N V14| = 3 (and so
|Ve,14| = 14). Similarly, |[VeNVi| = 3 (and so |V x| = k); while |Vi4NVi| =7
(and so |Viq k| = k). Since w; + wp + w3 + wyg +ws +we = [Ve U Viy| =17,
it follows that w; = |V — (V6 U V14)| = k£ — 17 > 15, which implies that
[Vigk] = 15 and |Vg 14,k = 15. Since S = {6,14, k} is the monochromatic
(2,0)-spectrum of G, it follows that Vs 14,x| = k. Therefore, we have the
following:

Vol = 6=w +ws+ws+ws
Va4 14 = wp + w3 + ws + we

V| = k=wq+ws+ ws+wr
VenViy = 3=wy+ws
|V60Vk| = 3=ws+ws
VianW| = 7=ws+ws

Viae| = k=wy+ws+ws+ws

IV,1a6] = k=w + w3+ ws+ws.

Since wq + ws = w4 + ws = 3, it follows that wy = wy. Now wy + w3 +
w4 +wy = w) +ws + ws +wy = k implies that wy + w4 = wy + ws. Because
wy + we + wy + ws = 6, it follows that ws + wy = wy + ws = 3. However
then, we = w4 and ws + wy = 3, which is impossible.

With the aid of an argument similar to the one used in the proof of
Proposition 4.3, we can show that for any given integer ¢ > 3, there is a set
of ¢ positive even integers that is not (2, 0)-realizable; that is, the following
is a consequence of Proposition 4.3.

Corollary 4.4 For each integer t > 3, there is a set S of positive even

integers such that |S| = t and S is not the (2,0)-spectrum of any (2,0)-
colorable graph.
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We have seen that there are infinitely many sets of positive even integers
that are not the (2,0)-spectrum of any (2,0)-colorable graph. However,
every set of positive even integers is a subset of the (2, 0)-spectrum of some
(2,0)-colorable graph. In order to establish this fact, we first present two
additional definitions and some preliminary results. A vertex v is a zero-
vertez of a (2,0)-colorable graph G if ¢(v) = 0 for every monochromatic
(2,0)-coloring ¢ of G. Similarly, a vertex v is a one-vertez of a (2,0)-
colorable graph G if ¢(v) = 1 for every monochromatic (2,0)-coloring c
of G. The following three results provide useful information on certain
(2, 0)-realizable sets related to the spectra of (2,0)-colorable graphs having
zero-vertices or one-vertices. We illustrate the proofs of these results by

verifying the first one.

Theorem 4.5 For each integer i = 1,2, let G; be a (2,0)-colorable graph
having a zero-vertez and let S(2,0)(Gi) = Si. Then the following set is a
(2,0)-realizable set:

S1US U {s1+s2: sieS,-fori=1,2}. 9)

Proof. Let S be the set described in (9). For each integer i = 1,2, let v;
be a zero-vertex of G;. Now, let G be the graph obtained from G; (i = 1,2)
by adding two new vertices z and y and joining each of z and y to both v,
and vp. We show that G is (2, 0)-colorable and S(30)(G) = S.

T

Gl Gz
Figure 2: The graph G in the proof of Theorem 4.5

Let s € S. Then either s = s; where ¢ € {1,2} or s = s; + s3, where
si € S;for i = 1,2. For i = 1,2, let ¢; be a (2,0)-coloring of G; such
that ¢; assigns the color 1 to exactly s; vertices of G;. First, suppose that
s = s; forsome i € {1,2},say¢ = 1. Since ¢;(v1) = 0, the coloring c; can be
extended to a monochromatic (2, 0)-coloring ¢ of G by defining ¢(v) = ¢;(v)
ifv € V(G;) and ¢(v) = 0 otherwise. Thus G is (2, 0)-colorable and c assigns
the color 1 to exactly s; vertices of G and so s = s; € §(2,0)(G). Therefore,
S1USs C S. Next, suppose that s = s1+s2. Define a monochromatic (2, 0)-
coloring ¢ of G from both ¢; and ¢, by defining c(v) = ¢;(v) if v € V{(G;) for
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1 =1,2 and ¢(z) = ¢(y) = 0. Then ¢ assigns the color 1 to exactly s; + sg
vertices of G and so s = 51 + 82 € S(2,0)(G). Therefore, S C 5(3,0)(G).

To show that S(5,0)(G) € S, let ¢ be a monochromatic (2, 0)-coloring of
G that assigns the color 1 to exactly s vertices of G. For each i = 1,2, let
ci be the restrictions of ¢ to G;. Since N(z) = N(y) = {vi1,v2}, it follows
by Observation 2.3 that c(z) = c(y). We claim that ¢(z) = c(y) = 0;
for otherwise, assume that ¢(z) = ¢(y) = 1. Since o.(z) = 0, exactly
one of v; and v, is assigned the color 1 by ¢. We may assume, without
loss of generality, that ¢(v;) = 1. Since o, (v) = 0.(v) =0in Z; if v €
V(G1) — {v1} and o, (v1) = 0c(v1) —2 = 0—2 =0 in Zy, it follows that ¢,
is a monochromatic (2, 0)-coloring of G;. Since c;(v;) = 1, this contradicts
the defining property of v;. Therefore, ¢(z) = ¢(y) =0, as claimed. Observe
that for each i = 1, 2, either ¢; is a trivial coloring (that assigns the color 0
to each vertex of G;) or ¢; is a monochromatic (2, 0)-coloring of G;. Since
c(z) = c(y) = 0, at least one of ¢; and cz is nontrivial; so the nontrivial
coloring ¢; (i = 1,2) is a monochromatic (2,0)-coloring of G;. Suppose
that ¢; (i = 1,2) assigns the color 1 to exactly s; vertices of G;, where then
either s; = 0 or s; € S; and at least one of s; and s3 is not zero. Thus ¢
assigns the color 1 to exactly s = s; + s2 vertices of G, which implies that
either s € Sy, or s € Sy, or s = 81 + s where s; € S; and sy € S3. Hence
S(2,0)(G) € S and so S(2,0)(G) = S. Therefore, S is a (2,0)-realizable set.

Theorem 4.6 For each integer i = 1,2, let G; be a (2,0)-colorable graph
having a one-vertex and let S(30)(G:) = Si. Then the following set is a
(2, 0)-realizable set:

{s1+2,504+2,51+s2: s; €8; fori=1,2}. (10)

Theorem 4.7 For each integer i = 1,2, let G; be a (2,0)-colorable graph
and let S(3,0)(G:) = Si. If Gi contain a zero-vertez and Gy contains a
one-vertez, then the following set is a (2,0)-realizable set:

S]U{32+2,Sl+82+2:si€S§f07’i=1,2}. (11)
We are now prepared to present the following result.

Theorem 4.8 Every set of positive even integers is a subset of the (2,0)-
spectrum of some (2,0)-colorable graph.

Proof. Let S be a set of positive even integers. We proceed by induction
on the cardinality of a set S to prove the following stronger result:

Every set S of positive even integers is a subset of the (2,0)-
spectrum of some (2, 0)-colorable graph containing a zero-vertex.

112



First, suppose that S = {s} for some positive integer s. For s = 2, let
G = K) 3+ e and so S(5,0)(G) = {2} and the end-vertex (and the vertex of
degree 3) is a zero-vertex of G. For s > 4, let G be a path of order 3s/2 —1.
Since 3s/2 — 1 = 2 (mod 3), it follows by Proposition 2.1 that G is (2,0)-
colorable. Moreover, S(2,0)(G) = {s} and G has zero-vertices by the proof
in Proposition 2.4. Suppose for some integer k > 2 and every integer £ with
1 <€ < k—1 that each {-element set of positive even integers is a subset of
the (2, 0)-spectrum of some (2, 0)-colorable graph containing a zero-vertex.
Let S = {s1,82,...,5k} be a set consisting of k positive even integers and
consider S; = § — {sx} and S2 = {sx}. By induction hypothesis, there
are (2, 0)-colorable graphs G; and G such that S; C S(,0)(G;) fori=1,2
and each graph G; contains a zero-vertex. Let v; be a zero-vertex of G; for
i = 1,2 and let G be the graph obtained from G; and G3 by adding two
new vertices  and y and joining each of  and y to both v; and vs. It then
follows by Theorem 4.5 that S(2,0)(G) = S1 U Sz U {51+ sk : 51 € 51} (so
S C S(2,0(G)) and z is a zero-vertex of G. ]

By Theorem 4.8, every set of positive even integers is a subset of a
(2, 0)-realizable set. Consequently, we have the following result.

Corollary 4.9 For each set S of positive even integers, there is an infinite
sequence S1,S53,...,5n,... of (2,0)-realizable sets such that S ¢ 81 ¢ S2 ¢

oG8 C....

We conclude this work with the following problem.

Problem 4.10 Under which conditions, is a set of positive even integers
the (2,0)-spectrum of some (2,0)-colorable graph?
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