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Abstract

For a connected graph G of order at least 3 and an integer
k > 2, a twin edge k-coloring of G is a proper edge coloring of
G with the elements of Z; so that the induced vertex coloring
in which the color of a vertex v in G is the sum (in Z;) of the
colors of the edges incident with v is a proper vertex coloring.
The minimum k for which G has a twin edge k-coloring is called
the twin chromatic index of G and is denoted by x}(G). It was
conjectured that A(T) < xi(T) £ 2+ A(T) for every tree of
order at least 3, where A(T) is the maximum degree of T. This
conjecture is verified for several classes of trees, namely brooms,
double stars and regular trees.
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1 Introduction

Among the various colorings studied in graph theory, the best-known and
most-studied are proper vertex colorings and proper edge colorings. In a
proper vertez coloring of a graph G, each vertex of G is assigned a color
from a given set of colors where adjacent vertices are colored differently. The
minimum number of colors needed in a proper vertex coloring of a graph G
is the chromatic number of G and denoted by x(G). While x(G) < A(G)+1
where A(G) is the maximum degree of G, one of the famous theorems in
this area of research is due to Brooks 3], who proved that x(G) < A(G)
for every connected graph G that is not an odd cycle or a complete graph.
In a proper edge coloring of a graph G, each edge of G is assigned a color
from a given set of colors where adjacent edges are colored differently. The
minimum number of colors needed in a proper edge coloring of G is called
the chromatic indez of G and is denoted by x'(G). Thus x'(G) = A(G) for
every nonempty graph G. The classic theorem in this connection is due to
Vizing [7] who proved that x'(G) < A(G)+1 for every nonempty graph G.
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A related and also well-studied graph coloring is the so-called total col-
oring of a graph G that assigns colors to both the vertices and edges of G so
that not only the vertex coloring and edge coloring are proper but no vertex
and an incident edge are assigned the same color. The minimum number
of colors required for a total coloring of G is the total chromatic number
of G, denoted by x”(G). It then follows that x"’(G) > A(G) + 1. It was
conjectured independently by Behzad and Vizing that x”(G) < A(G) + 2
for every graph G (see (6, pp. 282]).

Recently, another related coloring was introduced by Chartrand and
studied in [1, 2]. For a connected graph G of order at least 3, let ¢ :
E(G) — Zi be a proper edge coloring of G for some integer £ > 2. A
vertex coloring ¢’ : V(G) — Zj is then defined by

d(v) = Z c(e) in Zg,

eeEv

where E, is the set of edges of G incident with a vertex v and the indicated
sum is computed in Zx. If the induced vertex coloring ¢’ is a proper vertex
coloring of G, then c is referred to as a twin edge k-coloring or simply a twin
edge coloring of G. The minimum k for which G has a twin edge k-coloring
is called the twin chromatic index of G and is denoted by x;(G). This
concept was introduced by Gary Chartrand and studied in [1, 2]. Since a
twin edge coloring is not only a proper edge coloring of G but induces a
proper vertex coloring of G, it follows that

xt(G) 2 max{x(G), x'(G)}. (1)

Since max{x(G),x'(G)} = x'(G) except when G is a complete graph of
even order, we have x}(G) > x'(G) except when G is a complete graph of
even order as we describe in Theorem 1.2. While x}(G) does not exist if G
is the connected graph of order 2, every connected graph of order at least 3
has a twin edge coloring. A twin edge 4-coloring of a graph G is shown in
Figure 1. In fact, x}(G) = 4 for this graph G.

Figure 1: A twin edge 4-coloring of a graph
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It was shown in [1] that x;(Cs) = 5 = A(Cs) + 3. For each connected
graph that is not the 5-cycle, the following conjecture analogous to the
Total Coloring Conjecture.

Conjecture 1.1 (2] If G is a connected graph of order at least 3 that is
not a 5-cycle, then xi(G) < A(G) + 2.

Conjecture 1.1 was verified in [1] for several well-known classes of graphs,
namely paths, cycles, complete graphs and complete bipartite graphs, which
we state next.

Theorem 1.2 [1] Ifn,a,b are integers withn >3,1<a<band b>2,
then

x¢(Pn) = 3
3 ifn=0 (mod3)
xt(Cn) = 4 ifn#0 (mod3)andn#5
5 i4fn=5
n if n is odd
n+1 if n is even
b ifb>a+2anda>2
b+1 ifeithera=1andb#1 (mod 4)

Xe(Kn) =

Xi(Kap) = orb=a+1>3
b+2 ifeithera=1andb=1 (mod4)
orb=a2>2.

Conjecture 1.1 was verified in [2] for several classes of graphs having
small maximum degree, namely all permutation graphs of the 5-cycle Cs
(see [4]), prisms, grids and all trees of maximum degree at most 6. We state
the result on trees next.

Theorem 1.3 [2] If T is a tree of order at least 3 such that A(T) < 6,
then
xt(T) < A(T) +2.

In this work, we verify Conjecture 1.1 for several classes of trees, namely
brooms, double stars and regular trees. The following two definitions will
be useful to us. For integers a and b with a < b, let

[@..b) = {a,a+1,...,b}
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be the set of integers between a and b and let o(a, b) denote the sum of
integers between a and b, that is,

b
ola,b)=) i=a+(a+1)+---+b. (2)

i=a

We refer to the books [5, 6] for graph theory notation and terminology not
described in this paper. All graphs under consideration here are connected
graphs of order at least 3.

2 Brooms and Double Stars

By Theorem 1.2, xi{(P,) = 3 for each integer n > 3 and for each integer
22,
] _ [ r+1 if r# 1(mod 4)
xi(Kyr) = { r+2 if r=1(mod 4) (3)

Paths and stars belong to a special class of trees, namely brooms. A broom
is a tree obtained from a path by adding pendant edges at exactly one of
the end-vertices of the path. We first verify Conjecture 1.1 for brooms. In
fact, more can be said.

Theorem 2.1 IfT is a broom that is not a star, then T has a twin edge
(A(T) + 1)-coloring and so x4 (T) < A(T) + 1.

Proof. By Theorem 1.2, we may assume that T is not a path and so
A(T) = A > 3. Suppose that T is obtained from the path P, = (v =
v1,v2,...,V) by adding A — 1 pendant edges u;v (1 < i < A —1) at the
end-vertex v. We consider two cases, according to whether A is even or A
is odd.

Case 1. A is even. Let A = 2t for some integer t > 2. Define a proper
edge coloring ¢ : E(T) — Zg41 such that (i)

{e(uw) :1<i <2t -1} ={0,2,3,...,2t — 1} = [0..2t — 1] — {1}
and (ii) c(vjvj41) =rif j =7 (mod 3) wherer € {1,2,3}and 1 < j < £-1.
Then the induced vertex coloring ¢’ satisfies that ¢/(u;) = c(u;v) # 1 for

1<i<2t—1and d(v) =0(0,2t — 1) =1 in Zy41, where (0,2t — 1) is
the sum of integers between 0 and 2t — 1, as described in (2). Let

sp = (c'(v2),c (v3), - .., (ve). (4)
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If £ = 3, then s, = (3,2), if £ = 4, then s, = (3,5,3), if £ = 5, then
sp = (3,5,4,1) and if £ > 6, then

,5,4,3,5,8) if £=1(mod 3)
,1) if £ = 2 (mod 3) (5)
13y 9y Iy ;3,2) 1f£EO(mod3).

Note that when t = 2, each entry 5 of the sequences in (5) is 0 in Zg.4.
Since ¢’ is a proper vertex coloring, ¢ is a twin edge (A + 1)-coloring.

Case 2. A is odd. Let A = 2t + 1 for some integer t > 1. We consider
two subcases, according to whether t =1 ort > 2.

Subcase 2.1. t = 1. If £ = 3, then define ¢ : E(T) — Z4 by c(uyv;) =0,
c(ugv1) = 2, c(vyv2) = 1 and ¢(vovs) = 0. Hence ¢'(u;) = 0, ¢/(u2) = 2,
cd(v1) = 3, d{v2) = 1 and ¢(v3) = 0. Thus ¢ is a twin edge 4-coloring
of T. If £ > 4, then define ¢ : E(T) — Z4 by c(ujv1) = 1, c(ugvy) = 2,
c(vi1vz) =0 and ¢(vjvj41) =rif j—1 =7 (mod 3) and 2 < j < £—1. That
is, (c(vaus), c(vava),. .., c(ve—1ve)) = (1,2,3,1,2,3,...), which ends at » if
£—1=r (mod 3) for r € {1,2,3}. Then c/(u1) =1, /(u2) =2, ¢/(v1) =3
and ¢/(vz) = 1. Furthermore, let s¢ be defined as in (4). If £ = 4, then
sy =(1,3,2), if £ =5, then s, = (1,3,5,3), if £ = 6, then s, = (1,3,5,4,1)
and if £ > 7, then

|

Note that each entry 5 of the sequences in (6) is 1 in Zo¢4o = Z4. Thus ¢
is a twin edge 4-coloring of T'.

Subcase 2.2. t > 2. Define ¢ : E(T') — Zg¢4o such that (i)

1,3,5,4,...,3,5,4,3,5,3) if ¢ = 2 (mod 3)
s 1,3,5,4,...,3,5,4,3,5,4,1)  if £=0(mod 3) (6)
1,3,5,4,...,3,5,4,3,5,4,8,2) if £=1(mod 3).

] ?

—~ N~

* b 1 L v

{e(uw):1<i<2t} ={1,...,2t+1} - {t+1} =[1.2t +1] - {t + 1}

(ii) e(viv2) = t + 1 and (iii) c(vjvj41) =7 if § =1 = r (mod 3) where
7€ {1,2,3} and 2 < j < £—1. Then the induced vertex coloring ¢’ satisfies
that ¢/(u;) = c(uv) #t+1for 1 <i <2, d(v) =0(0,2t +1) =t +1
in Zgi4+2 and ¢/(v2) =t + 2. Note that 1,¢ + 1, 4 2 are distinct in Zgyyo.
Furthermore, if £ = 3, then s}, = (¢t + 2, 1), if £ = 4, then s}, = (t + 2,3, 2),
if £=25, then s, = (t+2,3,5,3), if £ =6, then sj, = (¢t +2,3,5,4,1) and if
£>17, then

(t+2,3,5,4,...
sp=1¢ (t+2,3,5,4,...
(t+2,3.5,4,...

) if £ =2(mod 3)
1) if £=0(mod 3) )
»3,2) if £=1(mod 3).
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Since ¢ > 2, it follows that ¢t + 2 # 3 in (7) and so ¢’ is a proper vertex
coloring. Thus ¢ is a twin edge (A + 1)-coloring. =

A double staris a tree of diameter 3. Thus each double star has exactly
two non-end-vertices called the central vertices of the double star. If the
central vertices of a double star have degree a and b, respectively, then it is
denoted by S, ; where the order of S, 4 is a+b. If a = b, then S, 4 is referred
to as a regular double star; while if a # b, then S, 4 is irregular (that is, every
two non-end-vertices have different degrees). In particular, Sy 5 is a broom
for each integer b > 2. In order to determine the twin chromatic indexes of
all double stars, we first present some preliminary results on regular graphs
or regular trees in general. The following observation appears in [1].

Observation 2.2 If a connected graph G contains two adjacent vertices
of degree A(G), then x;(G) > 1+ A(G). In particular, if G is a connected
r-reqular graph for some integer r > 2, then x{(G) 21+ .

For an integer r > 2, a tree T is r-regular if each non-end-vertex of T has
degree 7. Thus, the degree set of an r-regular tree is {1,7}. In particular,
a path P, order n > 3 is 2-regular and a star K, , is r-regular for r > 2.
We first show that if T is an r-regular tree for some integer r > 5 such
that 7 = 1 (mod 4), then x}(T) > r + 2. The following lemma is a useful
observation.

Lemma 2.3 Letr > 5 be an integer such that r =1 (mod 4). Then
o(0,7) —j# J (mod r +1)
for each integer j € [0..7].

Theorem 2.4 IfT is a reqular tree of order at least 6 such that
A(T) =1 (mod 4), then

xe(T) 2 A(T) +2.

Proof. Suppose that T is an r-regular tree for some integer » > 5 and
r = 1 (mod 4). Then A(T) = r. By Observation 2.2, it follows that
xt(T) 2 r + 1. We first show that x}(T) # r + 1. Assume, to the contrary,
that x;(T) =r+1. Let c: E(T) — Z,41 be a twin edge (r + 1)-coloring of
T. Let vy € V(T) such that degvy = r. Then there is exactly one color in
Z,+) that is not assigned to any edge incident with v; by c. Suppose that
{c(niw) : w € N(v1)} = Zy41 — {J1} for some integer j;; that is, j is the
only color that is not assigned to any edge incident with v;. Since ¢/(v;) =
o(0,7) — j1 and r = 1 (mod 4), it follows by Lemma 2.3 that ¢’(v1) # 7
and so ¢/(v1) € Zr41 — {j1}. Hence ¢'(v1) = c(vyw) for some w € N(v,).
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Let ¢'(v1) = c(viv2), where vo € N(v;). If vp is an end-vertex of T, then
c/(v2) = e(v1v2) = ¢'(v1), which is impossible. Thus v, is not an end-vertex
of T and so degvz = r. Suppose that {c(vow) : w € N(v2)} = Zr41 — {j2}
for some integer j2, where then c(viv2) € Z,41 — {j2}. By Lemma 2.3
again, ¢/(vp) # j2 and so ¢/(vg) = c(vavs) for some vz € N(vg). Since ¢ is
a twin edge (r + 1)-coloring of T, it follows that ¢’(v2) # ¢/(v1) = c(v1v2);
which implies that v3 # v;. A similar argument shows that v is not an
end-vertex and so degvz = r. Continuing in this manner, we arrive at a
sequence vy, V2, ...,V of distinct k > 2 vertices of degree r in T' such that
(1) viviy1 € E(T) for 1 <i < k—1 and (2) vg—; is the only non-end-vertex
to which vy is adjacent and so vy is adjacent to exactly r — 1 end-vertices
of T. Suppose that {c(vrw) : w € N(vk)} = Zr4+1 — {jx} for some integer
Jk, where then c(vg—1vk) € Zr41— {jx}. It then follows by Lemma 2.3 that
c'(vk) # jk. Hence ¢/(vk) = c(vkvks1) for some vgy1 € N(vg) — {vk-1}
Since vg+1 is an end-vertex of T, it follows that ¢/(vg+1) = c(VkVk+1) =
¢/ (vx), which is impossible. Therefore, x;(T) # r+1 and so x4(T') > r+2.

We are now prepared to determine the twin chromatic indexes of all
double stars.

Theorem 2.5 IfT is a regular double star, then

T A(T)+1 if AT)#1 (mod 4)
!T) = AT)+2 i A(T)=1 (mod 4)

Proof. By Theorem 1.2, we may assume that T is not a path. Let T =
S, for some integer r, where then A(T') = r > 3. Suppose that the central
vertices are u and v, where degu = degv = r. Let u;,us,...,ur_1 be the
end-vertices of T that are adjacent to v and let vy, vs,...,vr~; be the end-
vertices of T' that are adjacent to v. First, suppose that 7 # 1 (mod 4). By
Observation 2.2, it follows that x;(T") > 7 + 1. It remains to show that T
has a twin edge (r + 1)-coloring ¢ : E(T') — Z,+;. We consider two cases,
according to whether r is even or r is odd.

Case 1. r > 4 is even. Then o(1,7) =0 in Z,;. Define c(uv) = r and
{e(uw;):1<i<r—-1} = [Lar-1]
{e(vvs) :1<i<r—-1} = [0.r—1]-{1}.
Then c is a proper edge coloring. Observe that ¢/(u) = o(1,7) =0 in Z,4,
and ¢'(v) = o(1,7) — 1 = 7 in Zr41. Thus ¢(u) # ¢(v). Furthermore,

c/(ui) # 0 =c'(u) and ¢'(v;) #r =¢(v) for 1 <i <r—1. Hence, ¢ is a
proper vertex coloring and so ¢ is a twin edge (r + 1)-coloring of 7.

Case 2. 7 > 3 is odd. Since r # 1 (mod 4), it follows that r = 3
(mod 4) and so r = 4t + 3 for some integer ¢ > 0. First, suppose that
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t = 0. Define ¢ : E(T) — Z4 by c(uwv) = 2, {c(uu;),c(vuz)} = {0,1} and
{e(vv1), c(vva)} = {1,3}. Then ¢/(u) = 3 # ¢/(u;) in Z4 and ¢/(v) = 2 #
c'(vi) in Z4 for i = 1,2. Also, ¢/(u) # ¢/(v). Therefore, c is a twin edge
4-coloring of T'.

Next, suppose that ¢ > 1. Observe that 6(0,4t+3) =2t +2in Z,,; =
Z4g+4 and so

0‘(0,4t+3)—(t+1)=t+1 in Zggiq- (8)
Define c(uv) = 2t + 2 and
{c(uu):1<i<4t+2} = [0.4t+3]-{t+1,2t+2)
{e(vv;):1<i<4t+2} = [1.4t4+3]—{2t+2}.

Then c is a proper edge coloring of T. By (8),

CI(‘LL) 0‘(1,4t+3)-— (t+1) =t+1in Zgi44
dw) = o(1,4t4+3) =2t +2 in Zyz44.

Thus ¢/(u) # ¢/(v). Furthermore, ¢/(u;) # t +1 = ¢/(u) in Z4gt+4 and
(vi) # 2t +2 = c'(v) in Zyeqq for 1 <@ < 4t + 2. Hence, ¢ is a proper
vertex coloring and so c is a twin edge (r + 1)-coloring of T'.

Next, suppose that » > 5 and » = 1 (mod 4). By Theorem 2.4, it
follows that x}(T) > r 4+ 2. Thus, it remains to show that T has a twin
edge (r + 2)-coloring ¢ : E(T) — Z,;2. Let r = 4t + 1 for some integer
t > 1. Then 0(0,4t + 2) =0 in Z, 42 = Z4+3 and so

0'(0,4t -+ 2) - (2t+ 1) -1 = 2t+1in Z4g+3
(0,4t +2) - (2t) -3 = 2tin Zg4s
Define c(uv) = 2t + 2 and
{cluw) :1<i<4t) = [0.46+2)—{1,2t+1,2t+2}
{c(vv;) :1 <i <4t} = [0.4¢+2] —{3,2¢t,2t +2}.
Then c is a proper edge coloring of T. Observe that
du) = 0(0,4t+2)—(2t+1)—1=2t+1in Zygp43
d(v) = 0(0,4t+2) -2t —3=2tin Zg3,

Thus ¢/(u) # ¢'(v). Furthermore, ¢’(u;) # 2t +1 = ¢/(u) and ¢/(v;) # 2t =
¢'(v) for 1 < i < 4t. The colorings ¢ and ¢’ are shown for » = 5 in Figure 2.
Hence, ¢’ is a proper vertex coloring and so ¢ is a twin edge (7 + 2)-coloring
of T. [

We have seen in Theorem 2.1 that if T is a broom, then x}(T") < A(T)+
1. This is also the case for irregular double stars, as we show next.
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Figure 2: A twin edge 7-coloring of Ss 5

Theorem 2.6 If T is an irregular double star, then T has a twin edge
(A(T) + 1)-coloring and so x,(T) < A(T) + 1.

Proof. Let T = S, for some integers a and b with 2 < a < b. By
Theorem 2.1, we may assume that ¢ > 3 and so b > 4. Suppose that
the central vertices are u and v, where degu = a and degv = b = A(T).
Let uy,us,...,us—1 be the end-vertices of T that are adjacent to u and let
v1,v2,...,Up—1 be the end-vertices of T that are adjacent to v. To construct
a twin edge (b+1)-coloring of T', we consider two cases, according to whether
b is even or b is odd.

Case 1. b is even. Let b = 2t for some integer t > 2. There are two
subcases, according to (i) a = 2t—1lora =2t—-2 > 4 and (ii) 3 < a < 2t-3.

Subcase 1.1. a =2t — 1 or a = 2t — 2. First, suppose that a = 2t — 1.
Define a proper edge coloring ¢ : E(T') — Zg41 = {0, 1,...,2t} by c(uv) =
1 such that

Us = {c(uu): 1<i<a-1}
= {0,3,4,...,2t -1} =[0.2t — 1] — {1,2}
Ve = {e{vyy): 1<5<b-1}

= {0,2,3,...,2t —1} =[0.2t — 1] — {1}.

Figure 3 shows an example of such a twin edge (b + 1)-coloring of 7.
Then the induced vertex coloring ¢’ satisfies that

' (u) 143+4+--- 4+ (2t —1)=0(0,2t) = 2 — (2t) = 2t in Zgyy
C’('U) = 1+2+3+---+(2t—1)=0’(0,2t)—(2t)=1inZzH_1.

For each end-vertex u; (1 <i<2t—2)orv; (1 <j<2t—1)of T, it
follows that

{(w): 1<i<2t-2} [0..2t — 1] - {1,2}

{c(vj): 1<j<2t-1} = [0.2¢—1]—{1}.
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Figure 3: A twin edge (b + 1)-coloring of T in Subcase 1.1

It follows that ¢/(u;) # ¢/(u) =2t for 1 <1 <2t —2 and ¢/(v;) # (v) =1
for 1 < j <2t—1in Zoy;. Hence ¢ is a proper vertex coloring and c is a
twin edge (2t + 1)-coloring of T

For a =2t — 2 > 4, let Sg;_2 be obtained from Sy, p by deleting the
edge uu; where c(uu;) = 0 in the case a = 2t — 1 (see Figure 3). Then the
twin edge (2t + 1)-coloring ¢ for Sy;_1,5, as described above, gives rise to a
twin edge (2t + 1)-coloring of Sp;—2,5.

Subcase 1.2. 3 < a < 2t — 3. Define a proper edge coloring ¢ : E(T) —
Zae41 by c(uv) = 1 such that V. = {0,2,3,...,2t - 1} = [0..2t — 1] — {1}
(which is the same as in Subcase 1.1 and is shown in Figure 3). Hence
d(v) =1in Zgs4 and ¢'(v;) # c'(v) =1 for 1 < j <2t — 1. It remains to
define the color c(uu;) for 1 £ ¢ < a — 1. We consider two situations when
a > 3isodd or a > 4 is even.

First, suppose that @ is odd. Let a — 1 = 2k for some positive integer
k. If k = 1, then define {c(uu,), c(uuz)} = {0,2t — 1}; while if k£ > 2, then
define

Us={0,2t-1,3,2t—2,...,k+1,2 — k}.

Figure 4 shows an example of a possible coloring of each edge wu; for
1<i<a—-1.

Since c(uv) = 1, it follows that ¢/(u) = 1+ (2t — 1) = 2t in Zg¢4;. Since
a—1=2k<2t—4,it follows that k <t—2andso k4+1 <t—1. Hence
c/(u;) # 2t for 1 <i < a— 1. Therefore, ¢’ is a proper vertex coloring and
¢ is a twin edge (2¢ + 1)-coloring. Next, suppose that a > 4 is even. Let
¢ be a twin edge (2t + 1)-coloring of Sa41,5 as described above for the odd
integer a+1 > 5. We may assume, without loss generality, that c(uu;) =0
(see Figure 4). Now let S, 5 be obtained from S,41,4 by deleting the edge
uu;. Then the twin edge (2t + 1)-coloring ¢ for Sa41,6, as described above,
gives rise to a twin edge (2t + 1)-coloring of S, ».

124



Figure 4: A possible coloring of uu; for 1 < i < a — 1 in Subcase 1.2

Case 2. b is odd. Let b = 2t + 1 for some integer ¢ > 2. There are two
subcases, according toa =2¢t,a=2t—-1>30r3<a<2t—2.

Subcase 2.1. a = 2t or a = 2t — 1. First, suppose that a = 2t. Define a
proper edge coloring ¢ : E(T) — Zg;42 by c{uv) =t such that

U = {c(uw):1<i<a—-1}

= {0,1,...,2t+1} —{t—1,t,t+2} = [0.2t+ 1] — {t - L,£,¢ + 2}
{e(vy):1 <5 <b-1}
{0,2,3,...,t =1,t4+1,...,26+1} = [0.2¢ + 1] — {1,¢}.

]

Ve

Figure 5 shows an example of such a twin edge (b + 1)-coloring of T..

uy

t—1ltandt+2 "« 2t/ |91
are not used y

o

U2t—2 U1

Figure 5: A twin edge (b + 1)-coloring of T in Subcase 2.1

Then the induced vertex coloring ¢’ satisfies that

du) = o(0,2t+1)—(t—1)—(t+2)=t(2t+1) =t +2in Zg 2
dw) = (0,2t +1)-1=(2t+1)(t+1)~1=1¢in Zyyo.
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For each end-vertex u; (1 <i<2t—1)orv; (1 <j<2t) of T, it follows
that

(Cw):1<i<2—1} = [0.2t+1]—{t—1,t,t+2)
{dw):1<5<2t} = [0.2t+1]—{1,t}.

It follows that ¢/(u;) # ¢/(u) =t+2for1 i< 2t-1and ¢(v;) #/(v) =1t
for 1 € j € 2tin Zsi+2. Hence ¢’ is a proper vertex coloring and c is a twin
edge (2t + 2)-coloring of T'.

For a = 2t — 1 > 3, let Sp;—1 4 be obtained from Sz by deleting the
edge uu; where c(uu;) = 0 in the case a = 2t (see Figure 5). Then the twin
edge (2t + 2)-coloring ¢ for Sy p gives rise to a twin edge (2t + 2)-coloring
of Sat—1,b-

Subcase 2.2. 3 < a < 2t — 2. Define a proper edge coloring ¢: E(T) —
Zae42 by c(uv) = t such that V. = {0,2,3,...,t —1,t+1,2t +1} = [0..2t +
1) — {1,t} (which is the same as in Subcase 2.1 and is shown in Figure 5).
Hence ¢/(v) =t in Zgiy2 and ¢/ (v;) # ¢'(v) =t for 1 < j < 2t. It remains
to define the color c(uu;) for 1 < i < a — 1. We consider two situations
when a > 3 is odd or a > 4 is even.

First, suppose that a > 4 is even. Let a — 1 = 2k + 1 for some positive
integer k. For k = 1, define {c(uu;),c(uuz),c(uus)} = {0,t + 1,¢ + 3}.
Then ¢'(u) =t+ (t+ 1)+ (t + 3) =t + 2 in Zy42 and so ¢/(u) # ¢/(u;) for
1=1,2,3. For k> 2 and so 2k + 1 > 5, define

U={0,t+1,¢+3,1,2¢+1,2,2¢t,...,k—1,2t — k + 3}.

Figure 6 shows an example of a possible coloring of each edge wu; for
1<i<a-1

u
QO

S
2t+1
uqOI\
uz O
T3
ug 0 t+1
0 t
Uy @
v

Figure 6: A possible coloring of uu; for 1 i < a —1 in Subcase 2.2
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Again, ¢/(u) =t + (¢t +1) + (¢t +3) =t + 2 in Zg,3. Since k <t —1,
it follows that 2t — k +3 > ¢ + 4. Thus ¢/(u) # ¢(u;) for 1 <i < a-—1.
Therefore, ¢’ is a proper vertex coloring and c is a twin edge (2¢t+2)-coloring.
Next, suppose that a > 3 is odd. Let a — 1 = 2k for some positive integer
k. Let ¢ be a twin edge (2t + 2)-coloring of S,+1,5 as described above for
the even integer a + 1 > 4. We may assume, without loss of generality,
that c(uu;) = 0 (see Figure 6). Now let S, ; be obtained from S,41,5 by
deleting the edge uu;. Then the twin edge (2t + 2)-coloring ¢ for Sg41,5, as
described above, gives rise to a twin edge (2t + 2)-coloring of Se b. u

The following is a consequence of Theorems 2.4, 2.5 and 2.6.

Corollary 2.7 A double star T has xi(T) = A(T) + 2 if and only if T is
an r-regular tree for some integer r > 5 with r =1 (mod 4).

3 Regular Trees

Recall that a tree T is r-regular for an integer 7 > 2 if each non-end-vertex
of T has degree r. In this section, we verify Conjecture 1.1 for regular
trees of order at least 3. More precisely, we show that if T is a regular
tree of order at least 3, then T has a twin edge (A(T') + 2)-coloring and so
xt(T) < A(T) + 2. We begin with a lemma concerning stars only.

Lemma 3.1 For each integer r > 3, the star K, , has a twin edge (r+2)-
coloring.

Proof. Since x;(K,,) =7+ 2 for r = 1 (mod 4), we may assume that
r #1 (mod 4). Let T = K, , where V(T) = {v,v1,vs,...,v,} and degv =
r. We consider three cases.

Case 1. r =0 (mod 4). Let r = 4t for some integer t > 1. Observe that
o(l,r+1)=0(1,4t+1) =2t + 1 in Z, 42 = Zgs42.
Define the edge coloring ¢ : E(T) — Z4t+2 such that
{e(vv) 11 <i <4t} = (1.4t + 1] - {2t +1}.

Then d(v) = 0(1,4t +1) — (2t +1) =05 ¢(v;) for 1 < i <7 = 4t. Hence ¢
is a twin edge (v + 2)-coloring of T'.

Case 2. 7 =2 (mod 4). Let r = 4t + 2 for some integer ¢t > 1. Observe
that

o(l,r+1)=0(1,4t+3) =2t +2in Z,412 = Zyst44.
Define the edge coloring ¢ : E(T) — Z4t+4 such that
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{e(vvi) 11 < i< 4t +2} =[1.4t+ 3] — {2t + 2}.

Then ¢(v) = 0(1,4t+3) — (2t +2) =0 # c(v;) for 1 <i < r =4t + 2.
Hence c is a twin edge (r + 2)-coloring of T'.

Case 3. r =3 (mod 4). Let r = 4t + 3 for some integer ¢ > 0. Observe
that

0'(0, ’I') = 0'(0, 4 + 3) =1lin Zr+2 = Z4t+5.
Define the edge coloring ¢ : E(T') — Z4;45 such that
{e(vv) : 1 <9< 4t +3}=(0.4t + 3] - {2}.

Then ¢(v) =0(0,4t+3) —2=—-1=4t+4#c(v;) for 1 <i<r=4t+3.
Hence c is a twin edge (r + 2)-coloring of T'.

Theorem 3.2 IfT is a regular tree of order at least 3, then
x(T) < A(T) +2.

Proof. By Theorem 1.3, we may assume that A(T) > 7. For a given
integer r > 7, we proceed by induction on the number of vertices of degree r
in an r-regular tree to show that every r-regular tree has a twin edge (r+2)-
coloring. The star K - is the only r-regular tree that has exactly one vertex
of degree r and K, has a twin edge (r+2)-coloring by Lemma 3.1. Assume
that if T* is an r-regular tree having exactly k — 1 vertices of degree r for
some integer k > 2, then T has a twin edge (r + 2)-coloring.

Now, let T be an r-regular tree having exactly k vertices of degree r.
Then T contains a vertex v of degree r such that v is adjacent to exactly
7 —1 end-vertices and exactly one non-end—vertex Let w € V(T) for which
vw € E(T) and degw = r. Next, let T/ = T — (N(v) — {w}) be the tree
that is obtained from T by removing the r — 1 end-vertices of T that are
adjacent to v. Then T” is an r-regular tree having exactly k — 1 vertices of
degree 7. Furthermore, v is an end-vertex in T’ and w is the only vertex
that is adjacent to v in T”. By the induction hypothesis, T’ has a twin edge
(r + 2)-coloring ¢g : E(T') — Z4+2. Next, we extend the coloring ¢g to a
twin edge coloring ¢ : E(T) — Z,42 of T such that c(e) = ¢g(e) for each
e € E(T") (and so ¢'(z) = cp(z) for all z € V(T') — {v}). First, we verify

the following claim.

Claim. For each r > 7, there are six distinct elements

a1,az,B1,B2,M,72 € Zry2
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such that

o(0,r+1)—a1—az=0y inZ,42 9
0(0,7‘ + 1) - ,31 - ﬂz = ﬁl in Z,—.;.z (10)
g0, r+1)—m—72=m inZ-o. (11)

To verify this claim, we consider four cases, according to whether r is
congruent to 0,1, 2 or 3 modulo 4.

Case 0. r = 0 (mod 4). Let r = 4t for some integer ¢t > 2. Then
0(0,4t +1) =2t +1in Zy4o = Zgeyo. If t = 3, then 4t +2 =14 and

0’(0,4t+1)—3—1=3 in Zy4
0(0,4t+1)—-0—-7=0 in Z4
0(0,4t+1) —8—-5=28 in Z4.

If ¢t =7, then 4t + 2 = 30 and

0'(0,4t+1)—-7—1=7 in Zsg
0(0,4t +1)—21 -3 =21 in Z3g
0’(0,4t+1)—20-—5=20 inZ3o.

Ift>2andt# 3,7, then

U(O,4t+1)—t—1=t inZ4t+2
0'(0,4t+1)—3t—'3=3t in Z4g+2
0(0,4t+1) - (3t —-2)—7=3t—2 in Zg42.

Case 1. r =1 (mod 4). Let » = 4t + 1 for some integer ¢t > 2. Since
0(1,4t +2) = 0 in Zyz43, it follows that

0(0,4t+2) — (2t +2) — (4t +2) =2t + 2 in Zgey3
(0,4t +2)— (2t +1)—1=2t+1 in Zg43
0(0, 4t + 2) - (2t) —3=2t in Z4¢+3.

Case 2. r = 2 (mod 4). Let r = 4t + 2 for some integer ¢t > 2. Then
0(0,4t+3) =2t +2in Z, 2 = Zag4a. ft =2, then 4t + 4 = 12 and

(0,4t +3)-3—-0=3 in Zjo
0(0,4t +3) —4—-10=4 in Z,
0(0,4t+3)—-5—-8=5 in Zs.
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Ift=6, then 4¢+4 =28 and

0(0,4t+3)—6—-2=06 in Zys
0(0,4t+3)—5—4=5 in Zyp
0(0,4t +3) —3—-8=3 in Zys.

Ift > 3 and t # 6, then

U(O,4t+3)—t—2=t inZ4g+4
(7(0,4t+3)—-3t—6=3t in Zggyq
0'(0,4t+3)—(3t+4)—(4t+2)=3t+4 in Z4g+4.

Case 3. r =3 (mod 4). Let r = 4t + 3 for some integer ¢ > 1. Then
0'(0,4t + 4) =0in Zr+2 = Z4t+5- Ift= 5, then 4t + 5 = 25 and
0(0,4t+4) —10—-5=10 in Zys
0(0,4t +4) = 11— 3 =11 in Zgs
o(0,4t +4) —2—21 =2 in Zgs.

If t = 6, then 4t +5 = 29 and

0(0,4t +4) — 10 -9 =10 in Zog
0'(0,4t+4)—11—7=11 in Zog
o(0,4t +4) — 12 -5 =12 in Zg.

Ift > 1 and t # 5,6, then

0'(0, 4t + 4) —2t—-5=2t in qu+5
0’(0, 4t + 4) —4t—10=4t in Z4t+5
O'(O,4t + 4) - 2(t - 1) -90= 2(t - 1) in Z4t+5.

Therefore, the claim holds; that is, for each integer » > 7, there are six
distinct elements o, a2, 61, 82,71, Y2 € Zr42 that satisfy in (9), (10) and
(11), respectively.

We are now prepared to extend the coloring co of T/ to a twin edge
coloring ¢ : E(T) — Z,42 of T such that c(e) = co(e) for each e € E(T").
Note that E(T)— E(T') = E, — {vw}, where E, is the set of edges incident
with v in T and |E, — {vw}| =7 — 1. Let X = {a1,a2}, Y = {61, B2} and
Z = {m1,v2} where ay,az,01,82,M,72 € Zr42 are described in (9), (10)
and (11), respectively. Since |X| =[Y|=|Z] =2 and X, Y and Z are
pairwise disjoint, there is at least one of X, Y and Z that is disjoint from
the set {cp(w),co(vw)}. We may assume, without loss of generality, that
X N {ch(w), co(vw)} = O. Define
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{cle):ec E,} =[0.r +1] — X =[0..r + 1] — {1, 02}

where c(wv) = co(wv). Then c is a proper edge coloring of G. By (9), it
follows that ¢/(v) = o # cf(w) = ¢'(w) and so ¢’ is a proper vertex coloring
of G. Therefore, ¢ is a twin edge (r + 2)-coloring of G.

By Theorems 2.4 and 3.2, if T is a regular tree of order at least 6 such
that A(T) = 1 (mod 4), then x;(T) = A(T) + 2. Furthermore, we saw
in Corollary 2.7 that if T is a double star, then x{(T) = A(T) + 2 if and
only if T is an r-regular tree for some integer 7 > 5 with » = 1 (mod 4)
where then 7 = A(T). From the examples we are aware of, it suggests
that Corollary 2.7 is true for all trees in general. In any case, this problem
appears to be worthy of further study.
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