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Abstract

A lot of research has been spent determining the domination num-
bers, Ym.n, of grid graphs. But relatively little effort has been given to
constructing minimum dominating sets of grid graphs. In this paper,
we introduce a method for constructing «-sets of grid graphs Gm,n
for all m > 16 and n > 16. Further, for G n, m < 16, m # 12,13,
we show how particular v-sets can be used to construct ~y-sets for
other grid graphs.

1 Introduction

Let G = (V, E) = (V(G), E(G)) be a graph with vertexset V = {v1,v2,...,vn}
and order n = |V|. The open neighborhood of a vertex v is the set N(v) =
{u|luv € E} of vertices u that are adjacent to v; the closed neighborhood
of v is the set N[v] = N(v) U {v}. Similarly, the closed neighborhood of

a set S is the set N[S] = J,cgN[v]. A set § C V is a dominating set
of G if every vertex in V — S is adjacent to at least one vertex in S, or
equivalently if N[S] = V. The domination number v(G) of G equals the
minimum cardinality of a dominating set S of G; we say that such a set S

is a v-set. For more on domination theory, we refer the reader to [15, 16].

An m x n grid graph G, . has vertex set V = {(3,7)|]1 <i <m,1 < j < n}
with (7, j) adjacent to (k,l) ifi=Fkand |j—{|=1orj=1land |i —k|=1.
We define the rectilinear distance, dist, between vertices (i, 7) and (k,!{) as

JCMCC 95 (2015), pp. 3-26



dist((3,), (k, 1)) = i — k| + |7 - {|.

We note that dist equals the number of edges in a shortest path in G,
between (i,j) and (k,l). Further, the set of vertices of the form (,j),
1 £ j £ n, is called the ith row of Gy, , and the set of vertices of the form
(3,7), 1 € i £ m, is called the jth column of G, .. We will denote the
domination number of Gy »n by Ym,n.

Numerous papers have been published on the problem of computing the
domination number of grid graphs. Beginning in 1983, Jacobson and Kinch
[17] determined Y » for 1 < m < 4 and all n. In 1993, Chang and Clark
[3] extended this to m = 5,6 and all n. In 1989, Hare [4] settled specific
cases for m = 7,8,9,10,11. In 1998, Fisher (8] developed a method for
calculating m,» that is described in Spalding’s 2001 Ph.D. thesis [21], who
gave the values of v, , for m < 19 and all n. Several authors [5, 6, 7, 11,
13, 14, 19, 20] have developed techniques for either computing v, » exactly
or establishing bounds. Alanko et al. [1] used dynamic programming to
extend these results to m < 29 and all n. Back in 1992 Chang [2] devoted
his Ph.D. thesis to studying the domination numbers of grid graphs, and
he conjectured that

i = [ZEDEED |

for all values of m,n > 16. This conjecture has recently been proved by
Goncalves et al. in 2011 [10]. The following theorem, given in [1} and [10],
provides formulae for the value of m,, for all m,n.

Theorem 1.1 Let G, n, m,n = 1, be a grid graph. Then

n+2
71’"=[3J
na=[54]
Yo = l3n:‘ 4J
_Jn+1 ifn=5,6,9
Yam = { otherwise

|88 ifn="7
Y5,n = 5
' [6—'},“'—8J otherwise




[t ifn=1 (mod 7)
Yon = l_l—m?l—z_l otherwise

oy = l5n;— 3J
Y8n = l_lsn; 14J

Yo = l23n1—1}- 20 J

y |2m437 | if n £ 13,16, n = 0,3 (mod 13)
10,n L &%L%J otherwise
$8nt2l | ifn = 11,18,20,22,33
Til,n [3_8%-_@ J otherwise

Y2;n = [EQT%%J

|Smtlil|  if n # 14,15,17,20 (mod 33)
isn lgﬁfgﬁj otherwise

{382+40|  if n = 18 (mod 22)
T4,n [35. 'i't“l 29J otherwise

| 442427 | if n =5 (mod 26)
T5,n I_%ﬁj otherwise

- |mr2nt?)

= : J—4,m216,n216.

Most of the literature on this problem has focused on developing techniques
for computing the value of v n, but little focus has been given to finding
a method for constructing v-sets of grid graphs. Hare [14] displayed many
v-sets for m < 11, and Cockayne et al. [7] gave a method for constructing
v-sets for square grids G, ,,. In this paper, we extend the work of Cockayne
et al. to construct y-sets for many of the values of ym,» cited in Thorem
1.1.

In Section 2 we extend the work in [7] to give a method for constructing -
sets of grid graphs for all m,n > 16. In Section 3 we show how this method
can be used to construct y-sets for some values of m,n < 16, m,n # 12,13,
and how some of these y-sets for a fixed m can be used to construct y-sets
for other values of n. We also show how these ~-sets define the rate of
growth given in Theorem 1.1 for values of m < 16.



2 Constructing y-Sets when m,n > 16

In this section we show how to construct a y-set for Gy, » of size [gm—“MJ

4 for m,n > 16. These same techniques can be applied in some cases to con-
struct v-sets for G, » when m,n < 16. Assume that m,n > 4. Further, let
G* be an (m+2) x (n+2) grid graph where (¢,j) € V(G*)if0 < i <m+1
and 0 € j € n+1, and G, is a subgraph of G*, such that the (%, j) entry of
Gmn is the (i+1, j+1) entry of G*. We call any vertex in V(G*)-V(Gm,»n)
a boundary verter. Further, we define a (2,1)-slant grid S(2,1) as an in-
finite graph with vertex set V(S(2,1)) = {(4,5) : ¢ € 2,7 € Z with the
property that if (3,j) € V(S(2,1)) then so are (¢ + 2,5 + 1), (¢ +1,7 —2),
(i—2,7—-1), and (i—1, j+2)}. The edges that connect vertices (i +2, j+1),
(t+1,7-2), (:—2,7—1),and (i — 1,7 + 2) to (¢,7) are in the edge set
E(S(2,1)). We note that there are 5 isomorphic graphs of S(2,1) depend-
ing on the smallest value of k, 0 < k < 4 for which the vertex (0, k) of G* is
a vertex of S(2,1). We denote these five slant grids as $¥(2,1), 0 < k < 4.
Figure 1 shows a partial slant grid with k = 4.

Given G*, we can overlay S*(2,1) on top of G* in 5 ways depending on the
'starting’ vertex of (0,k), 0 < k < 4. Let V¥ = V(S*(2,1)) nG*. In Figure
1, we show this overlay for m = 10, n = 10, k = 4. To highlight G, », as a
subgraph of G*, we have removed the edges connecting boundary vertices
of G* to vertices in G p.

(411) 9.11)

(0.11) (11,11)
X
(11.7)
04) _
— X (11.2)
(0,0) (11,0)

Figure 1: G* and $%(2,1) when m =10, n =10, k = 4



Lemma 2.1 Forall0< k<4 endallm,n>1, V¥ = V(5%(2,1))NG* is
a dominating set of V(G ).

Proof. Let (z,y) € V(Gmx), and let k € {0,1,2,3,4}. Let (4,j) € V* so
that (i, 7) minimizes the rectilinear distance dist to (z,y). If dist = 0, then
(z,y) = (i,7) € V. Otherwise, we wish to show that dist = 1. Assume
that dist > 2. By definition of S*(2,1), if (i,5) € V(S*(2,1)) then so are
(t+2,74+1),(i+1,j-2),(i-2,5—1), and (i — 1,5 +2). Note that each
of these 4 vertices are rectilinear distance 3 from (%, j). Further, any vertex
of rectilinear distance 2 to (%, J) is adjacent to one of these four vertices.
Hence, if dist > 2, (z,y) is closer to one of (i + 2,57+ 1), (i +1,j ~2),
(t—2,7—1), and (¢ — 1,7 + 2) than it is to (¢, ), a contradiction. Hence,
dist < 1 and (z,y) is dominated by (i,j) € V*. O

We now show that we can move the boundary vertices in V* to an adjacent
vertex in Gy, to construct a dominating set for G, . that is composed
entirely of vertices in Gm . Let A = (0,k1), B = (k2,m+1),C = (n+
1,m+1—k3), and D = (n4+1—k4,0), be the closest boundary vertices in vk,
moving counterclockwise, to the four corners ((0, 0), (0, m+1), (n+1,m+1),
and (n+1,0)) of G*. We note that 0 < k; < 4 for ¢ € {1,2,3,4}. In Figure
1, each of ky, ks, k3, and k4 is 4 and A = (0,4), B = (4,11), C = (11,7),
and D = (7,0).

Depending on the value of k, we make one of five adjustments to V* so that
these four boundary vertices in V* are moved to vertices in G to form a
dominating set of Gy, ». Some of these adjustments are given in 7] and are
referred to as redomination. Since these redomination techniques are not
exhaustive, we extend them here. To start, all boundary vertices in V* that
are not involved in one of these five adjustments are replaced by the vertices
in G n that are closest in rectilinear distance. Let S* equal the set V*
where the boundary vertices that are not involved in an adjustment have
been replaced by their nearest rectilinear distance neighbor in G, .. We
describe the adjustments to the four boundary vertices closest to the four
corners of G* in terms of the boundary vertex B = (k2, m + 1). However,
these adjustments are equivalent for all four corners.

We first describe the adjustments if ko is even. When k; = 0 and B =
(0,m + 1), we simply delete the boundary vertex B from S¥, and let S* =
Sk — B. When kz =2 and B = (2,m + 1), we let S* = S¥ — {B,(0,m)} U
{(1,m)}. When k = 4 and B = (4,m+1), let S* = ¥~ {B, (2,m), (0, m —
1)} U {(3,m),(1,m — 1)}. Note that in each of these cases we remove
boundary vertices from the dominating set and add vertices in Gy so
that all of the vertices of G n remain dominated by S. Figure 2 shows
these adjustments when k is even.






When k5 is odd, there are two types of adjustments: a full adjustment and a
partial adjustment. When ky = 1, we first describe the partial adjustment.
Here we let S¥ = S¥—{B, (0,m—2)}U{(1,m—1)}. For the full adjustment,
we let Sk = Sk_{B, (01 m"2)s (21 m—l): (41 m): (61 m-l-l)}U{(l, m)s (1’ m—
2), (3, m — 1), (5,m)}. These adjustments are shown in Figure 3. We note
in Figure 3, the arrows and the X that have subscripts with a p denote
movement that occurs only in the partial adjustment. The arrows without
the p subscript denote movement that occurs only in the full adjustment.

2\
+

Figure 3: Full and Partial Adjustments for k» = 1

When k; = 3 and B = (3, m + 1), we first describe the partial adjustment.
Here we let S* = S¥ — {B, (1,m), (0, m —3)}U{(2,m), (1,m —2)}. For the
full adjustment, we let S* = S* — {B, (1,m), (0,m — 3),(2,m — 2), (4, m —
1),(6,m),(8,m + 1)} U {(1,m — 1),(3,m),(1,m — 3),(3,m — 2),(5,m —
1),(7,m)}. Figures 4 and 5 show the full and partial adjustments when
ky =3.

Figure 6 shows the full adjustments at each of the four corners of G1g,10 in
Figure 1.
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Figure 4: Partial Adjustment for ke =

Figure 5: Full Adjustment for k; = 3
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Figure 6: A ~-set for G110

We note that not all adjustments at a given corner are possible in conjunc-
tion with adjustments at other corners for some small values of m and n.
For instance, consider the example in Figure 7, where m = 5, n = 7, and

k=4

(0:4)

T .- 4 (813)

~N
'°1I
N’

Figure 7: S4(2,1) overlaid on Gs 7



Note that k; = 4 and k; = 4, but the adjustment for k; cannot be com-
pleted in conjunction with the adjustment for k; since the k; adjustment
requires the deletion of vertex (0,4) from S* without replacement whereas
the k2 adjustment requires that (0,4) be replaced by (1,4). If these two
adjustments are made together, we do not end up making full adjustments
around each corner. For grids G,;m,» where m and n take on values that
do not allow for full adjustments, we simply make as many adjustments
as possible to form a dominating set for G, . Table 1 shows the lower
bounds that m and n need to be if k; = a and k;4+; = b in order to ensure
full adjustments. Partial adjustments can be made in the cases where k = 1
and k = 3. Each of these partial adjustments require m,n > 7.

b
011123 4
0|4)10| 6 |12 | 8
1(7(13}9 15(11
a|l2]|5|11| 7 |13 9
318141016 | 12
416112 8 11410

Table 1: Lower Bounds on m and n Ensuring Full Adjustments

Knowing k, it is easy to compute the four values of k;, ks, k3, and k4 for
each value of m and n modulo 5. Given k = k;, we note that the vertex
(0,(—3k mod 5)) is in $%(2,1) but not G*. However, each vertex of the
form (0, (5¢ — 3k) mod 5) € G* forall1 < ¢ < I.gtﬂi*_’;m&l]. Hence,
k4 = (n+1 —3k) mod 5. We can apply the same reasoning to see that
k3 =(m+1—-k—3(m+1)) mod5 and k; = (3k + 2(m + 1)) mod 5.
Table 5, in the Appendix, shows the values of k;, k2, k3, and k4 for each
value of m and n modulo 5. In the table, k; is listed in the lower left-hand
corner, ky the upper left-hand corner, k3 the upper right-hand corner, and
k4 the lower right-hand corner for each m and n.

So under the conditions on m and n as defined by Tables 1 and 5 that allow
for full adjustments or partial adjustments in the case of k = 1 or k = 3,
adjusting V* to form set S*, we see that S* contains one fewer vertex per
corner adjustment than V%, so that the final set S* has four fewer vertices
than V*. Since in each case we replace a boundary vertex with one from
Gm,n, we have shown the following lemma.

Lemma 2.2 The set S* C V(Gm,n) is a dominating set for Gmn of size
|S¥| = |V*| — 4, provided m,n are of sufficient size, as defined in Table 1,
that allow for 4 full or partial corner adjustments to be performed.




Since we know that S* is a dominating set for Gy, » for certain values of
m and n, we turn our attention to the size of V*. We will show that either
|[VE| = [ﬁm—wxﬂj or [Vk| = | {24 | | 1 by examining how many
vertices in V* appear in each column of G*. For each 1 < ¢ < n+2, let 7; be
the smallest value of j such that (¢,7) € V*. Note that jo = k and for each
1<i<n+2,J; = (ji-1+2) mod 5. Further, (i,7;4+5¢),1 < ¢ < l_ﬂ‘“—‘LJ

will also be in V¥. Hence, given 7;, there will be I_Eil;LJ +1= [mj
vertices in column i. We note that 7 ranges from 0 to 4 and depends on
the value of k. Note that any span of 5 columns of G* contains

i [mj = i [MJ =m + 2 vertices of V*. (1)

g=0 3 q=0 5

Thus, if n + 2 = 55 + 7,

[V

(m+2)["‘5*2J +§[m+2+5(4—3q)J’

q=0

(m+2)(n+2-7) S m+2+@-7,)
] |

q=0

If m+2+(4—7,) =5ty +dg, for each 0 < g < r — 1, we have

|Vk| (m+2)(n+2) r(m+2 +r1m+2+(4 ]q)-— ,
5 =
_ (m+2)(n+2) r(m+2)  r(m+2)  T(A-Tg- )
- 5 5 T 5 +§ qs ;
(m+2)(n+2) lq'
——————+§5,

where ¢* = 4 — j, — d,. Let’s examine the term ¢* more closely. This term
represents the amount we round up or round down from m + 2 depending
on the value of j,. So, if 4 —j, > 5 — (m + 2), then ¢* = 5 — (m +2)
otherwise ¢* = —(m + 2). Given (1) above, we know that
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. (4 5q d) 0
E ——5 = U.
q=0

However, for values of r < 5, this sum could vary away from 0. Since
Ji = (ji-1 + 2)(mod 5),

Hence,

|-(m +2)(n +2)

(m+2)(n+2)
5 5

|=svi<| |+1.

Table 2 shows the cases for each value of m, n and k for which V* either is
exactly [{2t2(n32) | or j5 one more than this value.

n m = 0 (mod 5) m =1 (mod 5)

(modd) | k=0]k=1[k=2[k=d3]k=4[k=0]k=1}k=2[k=3[k=4
0 1 1 1 1 0 0 0 1 0 0
1 1 0 0 0 0 1 1 1 0 1
2 1 1 1 0 0 0 1 1 0 0
3 0 [1] 0 0 0 0 0 0 0 0
4 1 1 0 0 0 1 1 1 0 0
n m = 2 (mod § m = 3 (mod 5)

(mod5) [ k=0 k=1]k=2]k=3|kasd|k=0]k=1]k=2]k=3|Lk=4
0 1 [)] 1 1 0 0 0 0 [ 0
1 1 0 1 0 0 0 0 0 0 0
2 0 0 1 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 [1] 0 0
4 1 1 1 1 0 0 [ 0 0 0
n m = 4 {utod 5)

(modB) [kF=0]k=1[k=2]k=3T]k=4
0 1 0 1 [ 0
1 1 0 1 0 1
2 1 1 0 0 1
3 0 0 0 0 0
4 1 0 0 0 0

Table 2: V| — (| {mt2n42) |)

It is easy to see from Table 2 that for each value of m and n, there is at least
one value of k in which we can construct a set V* of cardinality [ﬁﬂﬂ%ﬁ"—’nl

and hence a dominating set S* of cardinality [Mﬂj — 4. From [10],
we know that for each m,n > 16, ymn = [Lm—”)sln—“lj — 4. Hence, we

can use the above construction methods to create a «v-set for G, n, for
m,n > 16. Thus, we have proven the following,.
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Theorem 2.3 For all m,n > 16, there exists a k, 0 < k < 4, such that S*
is a y-set of G .

3 Constructing 7y-sets when m,n < 15, m #
12,13

As outlined in [10] and [1], when m,n < 15, v, may or may not equal
I_MM J — 4. In this section we will show that in some of the cases

where m,n < 15, Y, = 1'"—+25H"—+9- —4, and our methods can be used to

construct a -y-set for Gp, ». In other cases, we will show how a repeatable
~-pattern can be used to construct y-sets.

We begin with an example. Consider Gsg. As in the previous section,
we form G* and overlay a slant grid. From Table 5 we see that when
m = 0 (mod 5) and n = 1 (mod 5) there is a value of k, namely k£ = 0,
that produces values k; = 0, k2 = 2, k3 = 0 and k4 = 2 that allow for full
adjustments to be made at each corner. Given m,n, we say that any value of
k that allows for four full or partial adjustments to be made is a compatible
value of k. Also, note for this value of &, k; = k3 and ky = k4. In these
cases, we say that this value of k produces symmetric adjustments. In the
previous example given in Figures 1 and 6, the compatible value of k = 4
produced symmetric adjustments. In Figure 8, we show how performing
these adjustments produces a dominating set of size 8 for G5 ¢ which, from
Theorem 1.1, is optimum.

e iy
NENEAN NN
AT |_H AN ER
AN | e
RELNE) REERN
,-""/ o

k,=0

Figure 8: Constructing a -y-set of G5

Further, note that when symmetric adjustments are made, in some cases
of m and n, the resulting y-set can be combined with itself to produce a



~-sets of larger grids. For example, the vy-set we constructed for Gs¢ can
be flipped over a line of symmetry drawn on column 6 (or column 1) to
produce a dominating set of G5 11 of size 2 * y5 6 — 7(n), where y(n) equals
the number of vy-vertices that lie in column n of G, », in this case n = 6.
We note that flipping s ¢ over a line of symmetry drawn on row 1 or row m
also produces a 7-set for v96. Figure 9 shows how this flipping can create
a y-set for Gs, 16.

BN
I

Figure 9: Constructing a vy-set of G516

In general, for m,n < 15, a compatible value for k that allows symmetric
adjustments to produce a vy-set for Gy, n is called repeatable, and this y-set
can be flipped over a line of symmetry drawn at column n (or column 1) of
Gm,n. We say that this repeatable y-set has a rate of growth, R, where

R Ymn—7(n)
n-1

For our example highlighted in Figure 8, note that the rate of growth is
R = 832 = § which matches the rate of growth highlighted in Theorem 1.1
for ysn. If R < gm_+gsun_+21, then a repeatable y-set has a rate of growth
slower than that of our construction method to produce set S, and thus can
be used to produce a dominating set of size smaller than [@ﬁsuﬁ'—zlj —4.
In Figures 10 - 14, we show the repeatable y-sets matching the growth rates
indicated in Theorem 1.1 for 2 < m <11 and 14 < m < 15.

The key to achieving a rate of growth slower than M)gﬁﬂ lies in max-
imizing y(n) or v(1). As an example, note that when m = 8, k = k; = 2
implies ko = 4, and there are 3 ~-vertices on the first column border. This
value of k maximizes the number of «y-vertices that exist on the first column
border for m = 8. From Table 2, we note that k = 2 allows for the creation
of a v-set of size [("'—”"Zsuﬂj — 4 for all values of n > 8. In Figures 15 and

16



Figure 10: Repeatable Patterns for n = 2 through n =8



Figure 11: Repeatable Patterns for n =9 and n = 10
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Figure 12: Repeatable Pattern for n = 11




Figure 13: Repeatable Pattern for n = 14
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Figure 14: Repeatable Pattern for n = 15
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16 we show the optimal ~-sets for Gg , for 8 <n < 14.
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Figure 16: k =2 y-setsfor n =8

Although the v-set for Gg g is used to define the rate of growth of y-sets for
Gs,n for all n > 8, the ~y-set in Figure 15 for Gg,g can be repeated one time
(since it is not symmetric) to create a y-set for Gg,15 as seen in the Figure
17. It can then be combined with the symmetric v-set for Gg g to create a
~-set for Gg 23. Continuing this process for other values of n shows that we
can create a y-set for G, for any value of n > 8.

Tables 3 and 4 shows how to construct a +v-set for G by indicating
the value of k to use or by showing how to use a smaller, repeatable ~-

20
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Figure 17: v-sets for Gg 15 and Gg 23

set to construct the v-set. The notation a|a indicates that the y-set for
Gm 201 is constructed by flipping the repeatable v-set for G, o once. The
notation a|a|a|a indicates that the y-set for G, 40—3 is formed by flipping
the symmetric, repeatable -set for Gy, o four times. The notation a — a
means that the v-set for G 2, is formed from two copies of G o that share
no vertices. This occurs for some special cases when m < 4 and m = 7.
When m = 10, the «y-set for G1g,4 is the same as the v-set indicated in the
chart of G4,10. It is denoted as 4*. This is a repeatable y-set and can be
used to generate y-sets of Gyo3;4+1 for 1 < j < 16.

min] 2 3 ] 5 [ 7 [ 9 10 [ 12 13 14 1]
27 | k=0 k=2 k=2] 33 | 33 | 330 [ 333 | IPPE | I3 | 3PP
3 FaO|kad|ked |kud k=l k=2| 55 [ 5-5 a2 k=2 | 555 | Sh=-5 | 5-5-5
4 k=0 kol [k=0| 44 [d-4] k=0 ] 414 | 4J4-4 |4-4—4 | S4M4[4 |4 -4 [dd -4 -4
i kod |kuO| kol ka0 k=0 | k=0 G | Ok=0 | o8 6]9 B[i0
[ k=3 |km0|k=0| k=0 | k=0 | ka0 ka0 | k=0 8!1 §[8
7 T [ k=0 [k=3| 4@ [4-4| k=2 | 4A1 | d4-4 |A-a-4 | SH0E[ | A -4 JAM-4-4
8 Fu2| kol | k=2 | k=2 k=2 | k=2 k= 38
9 k=3| k=3 | ka3 | ka3 k=3 | ka3 | k= 38
10 a* A k=2 | k=3 | 444 | k=3 k=3 |dAlA | k= kmd
_n kE=d| k=4 | k=4 | k=3 k=4 k=4 | k=3 B
4 Fwd|km3| k=l | Fad | kad k=3 | kad| k=3 88
15 k=3 | kwd | k=l Fod | k=3]| F=3 Fui

Table 3: Generation of y-sets of Gy, » for m < 15 and n < 15, m # 12,13

There are a couple of special cases in the table above. The «-sets for G11,18,
G11,20, and Gy 22 do not follow the construction methods from Section 1 or
the repeatable pattern of this section. Figure 18 shows the «y-set for G1;,1s-
The ~y-sets for G11,20 and G11,22 have a similar construction to v11,18. The
construction method for these 7-sets are more complicated and resemble
the construction of y-sets when m = 12, 13. These constructions do not use
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Table 4: Generation of y-sets of Gy, n, m < 15, m # 12,13, 16 <n < 27

a repeatable pattern to create larger vy-sets and are left for future work.
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Figure 18: v-set for Gij,18

4 Conclusion and Future Work

In this paper, we present a method for constructing v-sets for G », for all
m # 12,13 and all n, that exhibits the rate of growth noted in Theorem 1.1.
However, there is still work to be done in this area. For m < 16, our method
constructs one <-set which can be used to create other vy-sets through a
repeatable transformation. In some cases, when m = 12,13 for instance,
known v-sets of Gy,,» do not follow these repeatable transformations but
are much more complicated. From Theorem 1.1, the growth rate R when
m=121is %g and when m = 13 is %. If our construction approach works in
this case, G12,30 should have a vy-set of size 85 with 5 v-vertices on columns
1 and 30. Further, G334 should have a «-set of size 103 with 5 y-vertices
on columns 1 and 34. However, the authors have not been able to construct
such ~v-sets using various construction techniques. In fact, known ~y-sets for
these cases indicate more complicated transformations that do not conform
with the ones presented here.

Although we have given a method for constructing a <y-set of a grid graph
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Gm,n, there are other v-sets of G, ., that are not constructible using our
method, and that are not just flips and rotations of the vy-sets that we
construct. We do not know of techniques or transformations to create
these other 7y-sets.

It seems reasonable that the techniques discussed here could be used to
construct y-sets of related graphs. For instance, the methods presented here
could be extended to construct y-sets of P,0C, and C,,0C,. Further,
these techniques could construct sets that are optimal for other types of
domination. The v-sets constructed here for m,n > 16 are independent
sets, proving that ymn, = imn for m,n > 16, where i, n denotes the
independent domination number of G, .. However, if m,n < 15, many
of the v-sets created have adjacent vertices (c.f. Figures 11-14). For these
cases, we do not know if it is possible to transform the vertices so that there
is an independent y-set of the same size. Identifying the values of m and n
where Ym n < tm,n for m,n < 16 is an open question for future work.

Finally, the computation of the total domination numbers of grid graphs
has not been studied as much as the domination numbers of grid graphs.
Gravier [9] has determined the total domination numbers of G n form < 4
and all n, while Klobucar [18] has determined these numbers for m = 5,6
and all n. However, it appears that an analysis similar to that given here
applies for the construction of +:-sets of grids. Figure 1 in [9] suggests that
a transformation of the slant grid overlay given here could be applied to

produce v.-sets of grid graphs.

5 Appendix
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