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Abstract

Self-dual 1-configurations (ng)1 have the most Kq-separated Menger
graph Y for connected self-dual configurations (ng). Such Y is most
symmetric if it is K4-ultrahomogeneous. In this work, such a graph
YV is presented for (n,d) = (102,4) and shown to relate n copies of the
cuboctahedral graph L(Q:) to the n copies of K4. These are shown
to share each copy of Ki with two copies of L(Q3). Vertices and
copies of L(Q3) in Y are the points and lines of a self-dual (10412)1.

1 Introduction

Letl<d<mneZandl <e<m¢&Z A configuration R = (mg,ng) is
an incidence structure of m points and n lines such that there are ¢ lines
through each point and d points on each line [8]. Thus, e = dn. Let
L = L(R) = L(m,,nq) be the Levi graph of R, namely the bipartite graph
with: (a) m “black” vertices representing the points of R; (b) n “white”
vertices representing the lines of R; and (c) an edge between each two
vertices representing a point and a line incident in R. To each configuration
R = (g, nq) corresponds the dual configuration R = (n4, m.) by reversing
the roles of points and lines in R. If (m,n) = (¢,d), then R is balanced
(17]. If R is isomorphic to its dual R, then R = (ng) is self-dual A
corresponding isomorphism is called a duality. Both R and R share the
same Levi graph, but the black-white coloring of their vertices is reversed.
To any such configuration (ng) we can associate its Menger graph, in which
the points of (ny) are represented by vertices, each two joined by an edge
whenever the two corresponding points are in a common line in (n4). Let
1 < A < d. If any two different points of R arc in at most A lines, then R is
a A-configuration (ng) [15]. The 4-cube @, is the Levi graph of the Mébius
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(84)2 with "white™ (resp. "black”) vertices being those of even (resp. odd)
weight, (and so on for the remaining Cox 2-configurations, in relation to the
respective d-cube Q) [8]. Let H be a connected regular graph. A graph
G is C-ultrahomogeneous [20], or C-UH, if every isomorphism between two
induced copies of H € € in G extends to an automorphism of G. If C = {H}
then G is said to be H-UH.

The motivation of this paper is the study of connected Menger graphs [8]
of self-dual 1-configurations (n4)1 (7, 15] expressible as K4-ultrahomoge-
neous graphs [20]. The question of for which values of n such graphs exist
is interesting because it would yield the most symmetric, connected, edge-
disjoint unions of n copies of K4 on n vertices in which the roles of vertices
and copies of I{4 are interchangeable. For d = 4, known values of n are:
n = 13, 21 (see [17, 18, 21]) and n = 42 [9]. It is of interest to determine
the spectrum and multiplicities of the involved values of n. To this aim,
Theorem 4.1 below contributes the value of n = 102. This is obtained
via the Biggs-Smith association schieme [6]. This is shown in Theorem 6.1
to control attachment of 102 (cuboctahedral) copies of L(Q3) to the 102
(tetrahedral) copies of K. These copies share each (triangular) copy of K3
with two copies of L(Q3). So, Theorem 7.1 guarantees the distance 3-graph
of the Biggs-Smith graph S {3, 5] as the Menger graph ) of a self-dual
1-configuration (102;);. On the other hand, the M&bius 2-configuration
(84)2 for example. and more generally the Cox 2-configurations ((2¢71)4)2
(8], have their Menger graphs with copies of K4 and K4 respectively not
edge-disjoint, even though these are K- and K -ultrahomogeneous graphs.
Some questions arising at this level are: Are variations of the latter graphs
as in [21] (5.3.7) K -ultrahomogeneous? Does there exist a relation hetween
K y-ultrahomogencous Menger graphs and geometric configurations [4]? Do
there exist two different configurations with common Ky-ultrahomogencous
Menger graph? Must Ky4-ultrahomogencous duality be involutory [19, 21]7

‘A connected graph G is an {H }%-graph if it is an edge-disjoint union of
n. induced copies of H with no other copies of H as subgraphs and each
vertex incident to exactly d copies of H, no two such copies sharing more
than one vertex. If H = K, is the complete graph of order » (0 < 7 € Z)
then the vertices and copies of H in G can be scen as the points and lines of
a l-configuration R with its points representing the vertices of G and its
lines representing the copies of H in G. If R¢ is a self-dual 1-configuration,
then it can be denoted (n4); and G can be recovered as the Menger graph of
Re = (nq)1. Let us illustrate these concepts with some examples. Clearly,
a connected graph G is m-regular if and only if it is a {Kg}r,‘z((,.“-graph.
In this case, G is arc-transitive if and only if G is {K»}-UH. On the other
hand:
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(A) for 1 < r € Z, the complete graph K, and its Cartesian powers
K? = K,.OK,, K} = K)0K,,...,K{ = K:"'0K,,... ctc. are K,-UH
{K,}-graphs; their orders formm a sequence r,72,73,... 7% ... of integers
corresponding to the respective K,-UH {K,}1-, {K,}3-, {K:}3.2-0 .-,
{K+}o o=, .. -graphs;

(B) for 3 < € Z the line graph L(Q,) of the r-cube Q. is a { K, K22}-
UH {K,.}g,-{Kg,g}:("rl“])2,_3-g'raph. A similar argument yields a K,-UH

{K,}m-graph out of any other regular-polytopal graph via its line graph.

There is only one case in (A)-(B) that is Menger graph of a self-dual con-
figuration, namely K3 (duality sending for example the points 00, 10,11, 01
resp. onto the lines 20, Oz, 1, 1z, where 0 < 2 < 1), even though all graphs
K have equal numbers of vertices and of copies of K, so they are Menger
graphs of balanced configurations (but not self-dual). If » = 4, then the
orders of the K4-UH {K4}7-graphs in (A)-(B) are divisible by 4. Beside
ours (n = 132), a case of even order indivisible by 4 is the one mentioned
above on n = 42 vertices [9]. Its construction was based on the ordered
pencils of the Fano plane. Extensions of that construction of [9], based on
ordered pencils of binary projective spaces, are introduced in [13] which
provides K4-UH { K }7-graphs whose even orders are indivisible by 4, the
smallest of which being 210. However, the latter graphs are not Menger
graphs of self-dual configurations. A configuration (ng), is said to be K-
UH if its Menger graph is. Are there any UH-K self-dual configurations
(n4)1 with even n < 42?7 Or 42 < n <1027

In Scction 4, the claimed Menger graph JV is constructed by means of the
distance-3 graphs of the 9-cycles of the Biggs-Smith graph S. Theorem 4.1
proves our claim about ) as an application of a transformation of distance-
transitive graphs into C-UH graphs that took in [10] from the Coxeter graph
of order 28 onto the Klein graph of order 56. A similar application allowed in
[11] to confront, as digraphs, the Pappus graph of order 18 to the Desargues
graph of order 20. These applications as well as [12] use the following
definitions. Given a family C of digraphs, a digraph G is said to be C-
UH if every isomorphism between two induced members of € in G extends
to an automorphism of G. If C = {H} then G is said to be H-UH. By
removing the suffix “di” here, the definition of C-UH graph is recovered.
A presentation of S is given in Section 2 by means of Biggs-Hoare sextets
mod 17 [2] which provide a convenient notation to present ) in Section 3
in preparation for Section 4.

We set one more definition to be used from Section 2 on. If M is a subgraph
of H and if G is both M-UH, and H-UH, then G is an {H}a-UH graph
if, for cach induced copy Hy of H in G containing an induced copy My of
M, there exists exactly one induced copy Hy # Hp of H in G such that
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V(Ho) NV (Hy) = V(Mo) and E(Ho) N E(H:) = E(Mo).

2 The Biggs-Smith graph

Figure 1: Representation of S via sextets and thick subtrees T7°

The Biggs-Smith graph S has order n = 102, diameter d = 7, girth g = 9
and automorphism group A = PSL(2,17) [6]. By letting k be the largest
integer s such that S is s-arc transitive, it is seen that & = 4. In addition,
the numnber 1 of 9-cycles of S is n = 136. Taking into account the definition
in the last paragraph of Section 1 and by denoting a 3-path by P; and
a 9-cycle by g, the following particular case of Theorem 3 of [12] holds
(which cannot be refined to a result of {5} 5 -UH digraphs; see (4) below):

S is {70} p,-UH. (1)

Properties of S we need are presented via sextets [2], where heptadecimal
notation is used to denote elements of GF(17) (for example g = 16 = —1
and d = 13 = —4). In fact, we view S as a connected graph whose vertex
set V(S) comprises 102 sextets mod 17, namely 102 unordered triples

{aobo, a1b1,a2be}
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composcd by unordered pairs a;b; of points a;,b; of the projective line
PG(1,17) = GF(17) U {oo} satisfying

(@i — a;)(bi — bj)(a; — b) ™ (bi —a;)™! = 1,
if a; # oo and satisfying
(bi — b;)(b; — az)~! = -1,
if a; = oo, whenever 7 # j in {0, 1, 2}, including the vertices

Ao = {2£,5b,6¢}, Bo = {000,2f,89}, Co = {3a,7e,89}, @
Dy = {5a,7c,4d}, Ey = {000,1g,4d}, Fy = {1g,36,be}.

Any two of the resulting 102 vertices are adjacent in S whenever they share
one such pair a;b;, in which case the resulting edge is labeled a;b;. It is
shown in [2] that this S is unique and that the edge labels a;b; are pairwise
distinct, so they determine an edge labeling of S represented in Figure 1
with the following notation. The six vertices in (2) are those of a subtree
Ts° (of S) which is the edge-disjoint union of the paths

(AU1 2fy BOv 897 CO), (D03 4d1 EO) 191 FO) al’ld (BO7 OOO, EO)

of lengths 3, 3 and 2, respectively. By adding to all elements of GF(17)
in T5® a constant i € GF(17), a similar tree T7° is obtained. The trees
Tg°, ..., Ts®, represented in Figure 1 via dark traces, are pairwise disjoint
and cover V(S). The complement of their union in S is formed by 4 17-

cycles

A= (A(),ﬁC,Al, ey Ag,5b), D= (D(), 7(.‘, D2, ‘e ,Df, 5(1),
C = (Cy,7¢,Cy,...,Cy,3a), F = (Fy,be,Fs,...,Fy, 36).

Each of these cycles y = A, D,C, F has vertices y, with » € GF(17) ad-
vancing in 1, 2, 4, 8 units mod 17 stepwise from left to right, respectively.

Employed in {12] in proving (1) above, there is a set Cg of 136 directed
9-cycles of S, of which a generating subset

{I° = (1L} ... T18): 1 = S, T, ..., Z}

(written without commas and accompanied to the right by auxiliary per-
mutations, as explained below) is as follows:

SU=(B2A2A1A0A ArB;CCs)  s"=(0Tcbdd65a)(co8g2e3 f19)
TO=(EgDuyDgDoD2 Dy EsFsFy)  19=(03ac9857¢)(0012d6b4 f )
U=(ByCuCaCoCisCsBsAsAn)  u®=(06371gacb)(c0249c58df)
V"=(E,, F,FaFoFa F1Ey Dy D,,) v":(05))3]'2&66)(00!19_([07]84) (3)
WOo=(ByEyFoFaFsEsBsAsAg)  w'=(00a3b986¢7)(0df 15c924)
XO0=(E,B,A,Ac A1 By E1 D1 Dy) x°=(oc0ebeg1563) (084 f 7a2d9)
YO=(BaFEe D2 DaDs EyBpCrC2)  y°=(006ca2f75b)(01943ed8g)
ZO=(E ByCyCoCaBsEF\Fy) 20=(co5aed437¢)(0fg9b6812)
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where the permutation 79 = (ndn?...79)(€8€7...£5) of PG(1,17) to the
right of cach II° is such that: (i) the pair 797}, , labels the edge IITIY, ,;
(ii) the pair £)€2, ; labels the only edge incident to ITY outside IT°, where ¢ =
0,...,8 and index addition is taken modulo 9. Cg also contains the directed
cycles TTI" with accompanying permutations 7" obtained from II° and 7°
by uniformly adding » € Z;7 mod 17 to all subscripts and superscripts.
Observe that: (iii) passing from s° to t° to u° to v® and again to s°,
(resp. from w° to 20 to y° to z° and again to w®) amounts to multiplying
uniformly and successively the participating entries of the permutations «°
by either 2 or —2 mod 17; and (iv) S°,...,Z° are invariant with respect
to their change-of-sign involutions mod 17, with corresponding involutions
on &', ..., z" around the initial entries of their two composing cycles, which
are cither 0 and oc, or oc and 0.

3 Distance-3 digraphs of oriented 9-cycles

A k-arc in a (di)graph is a sequence of vertices vovy ... v (written without
parentheses or commas), where consecutive vertices are adjacent and v;_y #
Vig1, for 0 < i < k [14]. A k-arc can be interpreted as a directed walk of
length k in which consecutive edges are distinct [16]. Thus, an arc in a
(di)graph I' is a l-arc of I'. The form in which the directed 9-cycles II"
in Section 2 share 3-arcs, either oppositely oriented or not, to be used in
Figure 3 below, can be encoded as in the following table that for each
I1° presents details (explained below) of the 9-cycles =, # II° in Cq that
intersect II° either in the succeeding 3-arcs II?TIY,  TI2, o112, 3 or in their
respective reversed arcs, for 7 = 0,...,8, with sums involving 7 taken mod

9:

89 :(-X), 8§, 87.-X{,-UD, US, YQ, Ub-Usy

70 (=Y, T, TE-Y2-V3, Vi, 2§, Vi-Ve)

U zy Ul Uy, Z). 8P-S7, W55, So)

VO (-WEL VE, VO WP TE-TF, XO,-T8, TS);

wouzs vivs lzitwi xd) uf) xh-w (4)

X0 :(WE.-8L-858, WP-X2, Y. V0. Yi-xI);

YO XJ T -T3. X8-Yy. 28, 5§, z{-Y}'%

Zo:( Y., US, UL, Y225 -Wg, TO -W3-Z2).
Each such =" has: either (I) a preceding minus sign, if the corresponding
3-arcs in TI° and =" are oppositely oriented, or (II) no preceding sign,
otherwise. Each shown —Z7 (resp. Z7) has a subscript j indicating the
equality of initial vertices =] = I'I?+3 (resp. =] = T19) of those 3-arcs, for
i=0,...,8.
Given a (di)graph I and a positive integer k < diameter(I'), the distance-k
(di)graph Ty, of T, with vertex set V(I'y) = V(T'), is such that from every
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u € V(T'x) an arc of Ty departs to a vertex v # u whenever there is a
shortest k-arc of length & in I from u to v. Let (Co)s be the family of
distance-3 digraphs of directed 9-cycles in Cg. On a representation of an
arc ¢ = wow; of a member ((o)3 of (Co)s, we label its tail, or initial vertex,
wo, its initial flag {wo, €}, its terminal flag {e, w1} and its head, or terminal
vertex, w;, respectively by the names of the vertices vg,v1,v2,vs of the
3-arc vyv ez in (o for which wyw; stands in ({o)s. For example, if (g =
U?® = (B,C1C5CyCyCyByAnAr), so that (Co)s = (U%)3 = (BiCoBo)(C1Cu
Ap)(CsCpAy), then the initial flag of the arc B1Cy in ((9)3 = (U%)3 is
labeled by C;, the terminal flag by Cs, while By and Cy are labeled exactly
by B; and Co, respectively. We get the labels over ({o)s = (U®)3 shown in
Figure 2.
A Ag B, A ¢ B,

By ¢, C; Co Cy Co By C, C5 Cy Cs Co By Ao Cs Cy Cy Co Bo Ao A

Figure 2: Labels of vertices and flags of (¢g)3 = (U 93

4 K,-UH self-dual 1-configuration (102,),

We arc to fasten pairs of arcs of the digraphs ({g)s defined in Section 3
in such a way that a graph Y with the properties claimed in Section 1
is produced. A sequence of operations & — Co — (Cg)s — Y (compare
with [10]) is performed in order to transforin S into the claimed ). Each
distance-3 digraph ({g)3 of a 9-cycle (g in the collection Co generated via (3)
is formed by 3 disjoint directed triangles. It yields a total of 3 x 136 directed
triangles so Cy determines a family of 408 directed triangles in the claimed
Y with each edge shared by exactly two such directed triangles in arcs that
are either oppositely or identically oriented. It amounts to 102 copies of
K; these can be subdivided into 6 subfamilies {Z¢} of 17 copies each, say
with £ € {A,B,C.D,E,F} and i € {0,1,...,16 = g} = Z;7. The vertex
scts V(Z), each followed by the set A(X;) of copies of K, containing the
corresponding vertex T; can be taken as follows, showing Zs-symmetry
produced by change of sign mod 17:
V(AY={Ci, Di, Ei+s.Eici)i MAD={C', Di, EW E"TY
V(BY={Diya,Di-3,Fiys,Fi_s }; A(Bi)={Di+2,Di—2 [i+8 [1i-8},
V(CH={Ai. Fi. BiriEial MCo={A". Fi EWSE-%) (5)
V(D)={A,. Di. Byi2,Bi_2}; A(D)={Ai. Di, Bi+3 Bi-3};
V(EN={Cis6.Cig, Aixr, Aint}i A(L)={C'T!, Ci=1, AT A1
V(FHY={Ci. Fi, Bis.Bi_s}; A(F)={C', Fi, B+ Bi-5}
where ¢ varies in Zj7. This reveals a duality ¢ from the 102 vertices of S
onto the 102 copies of Ky in S. In fact, these copics of K4 are the vertices
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of a graph ¢(S) = &* = S determined by

P(AN=AY=A;.  $(Bi)=B~"=B], #(Ci)=C*=C;, (6)
G(D)=D%=D;, $(EN=ES =E. (F)=F5=Fp,

(i € Zy7), with a structure similar to that of the vertices A;,..., F; of S,

the copies of K4 in &* precisely being ©; = A;,..., F; and corresponding

vertex sets A(X;) as specified above. Morcover, ¢ : § — S§* is a graph

isomorphism, with the adjacency of S* equivalent to that of S.

Co

Figure 3: Symmetry of edge labels in copies of K4y in Y, fori =0

Figure 3 illustrates the left side of (5) for i = 0 in terms of edge labels, where
edges of Y arising from pairs of 3-arcs of S identically (resp. oppositely)
fastened according to (1) are shown oriented (resp. unoriented) accordingly.
Observe the edges oriented in

A D\Cy, CoEy, CoEua; B":DyFs. FsD.. DsF.,F.D,; C":FoAq, AoE:. E,Au;

D%: AyDqo. B2Do, DoBg:  E°:A7Cq, A7Ch, CbAn, CeAu;  FO:FyBs, BoFo, CoFy.
By uniformly adding successively 1 € Zy7, cach of these 6 cases yields 16
additional ones. This yiclds the 102 edge-labeled copies of K4 in Y. If the
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two points of PG(1,17) labeling near its center each cdge € in the figure arc
disposed as shown, labeling the respective flags of €, then the 6 cases may
be indicated uniquely as (kl, mn)(pq, rs)(xy, zw), where the position of the
labels k,¢,m,n,p,q,7, s,w,x,y,z is as in the referential depiction ' of a
copy of Ky in the lower part of the figure. Then, the flag-label triples at
the upper, middle, lower-right and lower-left vertices of this depiction are
respectively kpzx, érz, msy and nqw. Moreover, the 6 points of PG(1,17)
in each of these copies of K4 not participating of its edge labeling conform
a unique sextet y which is not a vertex of S as characterized in Section
2. However, x is a sextet of an alternative labeling of S happening via the
remaining 102 sextets (of the total of 204). These 102 altcrnative sextets are
the iinages of the 102 vertices of S via multiplication of indices in PG(1,17)
times 3 € GF(17), operation that coincides with the duality ¢ expressed in
(6) above. This proves the assertion in Theorem 4.1 below that the vertices
and copies of Ky of S are the points and lines of a self-dual 1-configuration
(1024)y, which in turn has Y as its Menger graph. Correspondingly, the
vertex labels in £ are the sextets (rz,ms,nw), (pz,ng, my) (kp,Cz,qw)
and (kz, &r, sy).

A procedure that allows to determine which point of PG(1,17) labels which
flag in a copy of K, as in Figure 3 is given as follows:

(i) A triangle A in a copy V of Ky in Y, say A = (CoEyDp) in V = AL,
arises from a 9-cycle IIY = (IT}...II}) in S with associated permutation
m = (w)...m)(& ... €]) as displayed in Section 2, in this case Il = Y2
with 7/ = z%; and

(ii) by labeling each edge I H,’ + of IV just by w7, it holds that the flag
label of edge € = IT/IT], ; at IT} is #/,, , while the flag label of € at I, 4 is
m!, 5, where i = 0,3,6.

The distance-3 digraphs of the directed 9-cycles I1° of S are composed by
the following triples of disjoint directed triangles of ):

8% = {D"\Dy=(B240By). E'\C3=(A24,C;), E®\Cs=(A1A4,C2)};
TO = {A\Co=(E4 Do E4), B-‘{\F5=(D4D2F4), B‘\Fx=(D,D.,F.,)};
U® — {FO\Fa=(BaCaBs), E/\Ar=(CaCaiAs), F*\A2=(CuCsAs)};
VO — (CON\Ag=(E, FoE1). BI\D7=(F,FoD,), B\Du=(FsF1Dy)};
WO (FO\Cy=(BaFoBs). C*\Er=(EuFyAs), C°\Co=(FoEsA0)};
X0 —{CO\Fy=(E,AoE1), D'\Bs=(ByA\Dy). D"\D,=(A,BD,)};
YO = {D\Aa=(B2DoBy). AI\NE,=(E2D;Cy). A2\ As=(D2E;C2)};
ZY - {AN\Dy=(E CoEys). FAW\D.=(ByCsFy), FI\Fy=(CyBsFy)}.

This way, it can be seen that Y is a K4-UH graph. However, in view of
Beineke’s characterization of line graphs [1] and observing that ) contains
induced copies of K 3, which are forbidden for line graphs of simple graphs,
we conclude that ) is non-line-graphical.
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Theorem 4.1 Y is both the Menger graph of a K4-UH self-dual 1-confi-
guration (1024); and a non-line-graphical {K4}igo-graph. Moreover, Y is
arc-transitive with regular degree 12, diameter 3, distance distribution (1,
12, 78, 11) and automorphism group PSL(2,17) of order 2448. Its asso-
ciated Levi graph is a 2-arc-transitive graph with regular degree 4, diame-
ter 6, distance distribution (1,4,12,36,78,62,11) and automorphism group
SL(2,17) of order 4896.

Proof. It remains to prove that Y is K4-UH, which uses (1) and more
specifically (4) above. In fact, consider an isomorphism ¥ : ©, — ©,
between copies ©1,0;, of Ky in ). Each ©;, (i = 1,2), arises from 4 9-
cycles v = 8] in S, (j = 1,2,3,4), whose union is a subgraph ©; of S with
4 vertices v! of degree 3 and 12 vertices of degree 2 that are the internal
vertices of 6 3-paths P; whose ends are the vertices v]. For example, the
vertices v] = By,vi = B, v} = Fy,v} = Co,v = B|,1)2 = Bg,v2 =
F,,v3 = C, in S determine such bubg,raphb 91,@2 in Y and 8,0, in
S. Clearly, ¥ induces an 1somorph1bm ¥ : ©;, — O, that sends say cach
v} onto its corresponding v), (_') = 1,2,3,4). As an automorphism T of

S exists that extends U, then \I/ determines an automorphism of ) that
restricts to ¥, showing that Y is a K3-UH graph. o

5 Definitions to deal with the copies of L(Q3)

If H is a graph with an edge partition Q = Q(H) into 2-paths, then a
graph G is Q-preserving H-UH if every §-preserving isomorphism between
two induced copies of H in G extends to an automorphism of G. If M is
a subgraph of H and if G is both M-UH, and Q-preserving H-UH, then
G is an Q-preserving {H}p-UH graph if, for each induced copy Ho of H
in G containing an induced copy My of M, there is just one induced copy
H, # Hy of H in G such that:

(a) V(Ho) N V(Hy) = V(My);
(b) E(Ho) N E(Hy) = E(Mo); and
(c) the edges of M, are in distinct 2-paths both in Q(Hy) and Q(H,).

A graph G is rK,-frequent if every edge e of G is intersection of exactly r
induced copies of K, these copies having only e and its ends in common.
For example, K is 2K 3-frequent and L(Q3) is 1K3-frequent. A graph G is
{Ha2, H\}K,-UH, where H; is iK(3-frequent (i = 1,2) if:

(d) G is Hp-UH and edge-disjoint union of induced copies of Ha;
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(e) there is a partition Q of Hy into 2-paths and G is Q-preserving
{H1}k,-UH; and

(f) each induced copy of Hy in G has each induced copy of K3 in
common with exactly two induced copies of H; in G.

Theorem 6.1 shows that Y is {K4, L(Q3)}k,-UH. This allows to gather
information on S; and Sy, leading to Y = 83 in Theorem 7.1.

6 The K4-UH graph Y is {K,, L(Qs)}x,-UH

g or

o 8 . D A C4 F Bd

I
|
I
|
|

Figure 4: Toroidal cutout representation of a®

Recall from Section 4 that each copy of K in Y arises from the distance-
3 digraphs of 4 directed 9-cycles of S. The subgraph of S spanned by
these 4 9-cycles contains 4 degree-3 vertices (which are tails and heads of
corresponding 3-arcs) and 12 degree-2 vertices (internal vertices of those 3-
arcs). These 12 vertices induce a copy £ of L(Q3) in ). For the copy A° of
K, in Y, the corresponding copy £ = a° of L(Q3) in ) can be represented
as in the big rectangle R in Figure 4, where:

(a) the leftmost and rightmost dashed lines of R are to be identified by
parallel translation;

(b) each of the 8 shown triangles A forms part of a corresponding copy
V of K, cited on the exterior of R about the horizontal edge of A, while
its 4th vertex is cited at the center of A; and

(c) the edges are colored via a partition Q into 2-paths P, the edges of
each P3 with a commnon color from a set of 3 colors: (i) black; (ii) light-
gray; (iii) dark-gray; the 3 colors are present together in cvery triangle, and
opposite edges in every induced 4-cycle, or 4-hole, have a common color, a
total of two colors per 4-hole.

For 0 = a,b,¢,d, ¢, f, the copies a° of L(Q3) are expressed by means of the
data contained in Figure 4 as follows:
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a®: (D DyCyByYBaCyDaD2) FaBoFy BB} Fa A’ Ea FAB,.Df Ay X F9Bs A Eq B F,, D2 A3)
’J(’:(D(,D" E,. F',,)(D,, Filoy, Dy )P..AE:;E,., F‘:;(B2 Fy A!lC',,C"Ast Db)(BoDuC"AqA‘C] Ba D!)
O PN AL By XBLAGE, 19) D, Eo Dy BB D, C'E2D B3 P Cs X D? B, CTE; B D7 1°Cy)
dY:(A1A;D;E;XE;D2A2Ag)C2BoCr ESESC. DS B4AS EyCIF X A2Eg D2 B4E?CyC9F,)
¢":(As A9 ByCaXAyCyBsAs)Ca B B.CHE'Cs D Do F*F2 EYAyXE* A F/ Fy D*EsE'C..)
fn:(C.;CgE_)EBXEoFgCng)AanAgEo(EIA:,F"B] CgE‘. A*‘D.,)(C‘GE?F“B,,E?ACA"D‘)

and their translations mod 17 are denoted o, for 0 # i € Z;7 (uniformly
translating all involved subscripts and superscripts). Each copy o* of L(Q3)
admits an edge partition = Q(o?) into j-colored 2-paths (5 € {1,2,3}) so
that each (monochromatic) 2-path in an Q(o?) is shared only by one other
copy of L(Q3) in Y (as in Theorem 6.1(3), below). We may write

o' =oiUobUa}, (7

to stress the color partition of of into its black, light-gray and dark-gray
subgraphs, which are copies of the disconnected graph 4P; (formed by 4
disjoint copies of P3) as in Figure 4 for 6 = a°. The edge labels of ¢°
in Figure 4 (shown in gray type) and of all the other ¢'s are taken as the
flag labels for i = 0...., ¢ in Figure 3. The relation and location of these
flag labels justifics a labeling of the 12 vertices and 6 4-holes as shown with
symbols 0,. .., 9,00 (in black type) in Figure 4, the sole edge-label notation
to be used ahead.

__________ 0 [ |
12 1 a0 19 5 |' c0
V7 o Bl v/ e
a4 Ry >4
' B ]
1 ' o '
Hsle| Mo Heaz| 25
1l d i t 8,
3 1 5
9 b 4 al 6 ¢ 7 bo 7 f c0
7 c d 8 (¢} 3
g ool afl f102 3|20c fleld0 4 100d b 8109
8 9 2
Y 6 2 Y 5 ) Y a3
d 9 9
B! A+ B2 B3 Bd F8
Ds Dsny Dy Ds Fy P FsB,
D Ca - A E. C c1 A
Fu|FEo Fy| Bo F. |Fa .| Fa Dy |Eo Dy Bo
A4 Dy 9 (o) Es A! C9 Iy 4
i Cu By DN, o £y p, Dy Bo D# A B Fo o

Figure 5: Label and vertex-tetrahedron representations of a”, %, ¢° in Qs

The labels of the 12 vertices and 6 4-holes of each of 0° = a%,..., f% arc
depicted again on the middle thirds of Figures 5 and 6, this time on a copy
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7 8 b
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5 b 2 d 3 a
9 |o8 c|l1 )09 7|90 1]a|foO 2|0f el4|0d
d 4 1
6 PR [~ P 7 5
2 9 8
E8 Cl' Ev EdES = At
As AL E, Ag A6C2F2 Co c’-lEan
o)
B, (4 DI B, "
C2 |Ba Cy| Bo Co |B7 Ba|C7 Ag | Bo Agl| Eol
p2lAz q pi)Be o ps)Ce 2
A2 D: E; Ag Co Cr A, As avos Fg EsCua Ad

Figure 6: Label and vertex-tetrahedron representations of d°, %, f° in Q3

Q3 of the 3-cube Q3 from which a corresponding copy of L{Q3) in Y is
obtained with its vertices taken as the middle points of the edges of Qs,
tracing an edge between two such vertices whenever the edges they represent
have a vertex in common in Qs, with the convention that labels of vertices
and 4-holes of o label now respectively the corresponding edges and faces
of Q3. (On the bottom thirds those edges are labeled by the corresponding
vertices of S and their vertices by the corresponding containing copies of
Ky4; on the upper thirds, 4 different cutouts of Q3 are depicted to show
involution symmetry around edges labeled co, where Q3 is regained by
identifying the upper and left sides and the lower and right sides via 90°
rotations at the upper-left and lower-right corners). Opposite faces in such
o’ determine pairs of points of PG(1,17), a total of 3 such pairs leading to
a unique sextet which is not a vertex of S but uniformly 3 times a vertex
of S. For example, these 3 pairs for 0¥ = a® form the sextet {12, 6b, fg} =
3 x {6¢,2f,5b} = Ao, mod 17. By denoting a® = {12,6b, fg} and so on
for the 101 remaining copies of L(Q3) in PG(1,17), we obtain a self-dual
configuration that uses again the duality ¢ of Section 4, this time with
points and lines taken as the vertices and copies of L(Q3) in S, This is
a self-dual 1-configuration (102,);, as claimed in Theorem 6.1(8) below,
depending on the facts that L(Q3) has 12 vertices and that each vertex of
Y belongs to 12 copies of L(Q3).

Figure 7 shows the complements of vertex Ay in 4 of the 12 copies of L(Q3)
containing Ag, namely e° d2, ¢!, f9, which share the long vertical edges,
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CPAS Bl 5 A AR EY 5 D§TAJ F} 5 EFUA5 B3 5 Cy* py fo /32 @0 rsJ

Fd D3 Y/ A0 Be o2 A5 cd
sx( By | e o | S A (e E 1 g.
o eb I d Do ¢/ o E1

a PRE L[4 [CXE a [ [FOEDY e [o [BOKCY 4

1

Az e B g A By o PR |coi( 4 F, ﬂ- 4

AS Bf Ad DA F FS Fo o)

b

A v Cff Dy b BEY  FY b Fyr By b OF f’o ﬁn ac P

Figure 7: Covering graph Yy of e? Ud?Uc! U f% — Ap and -8 denotations

successively present in the copies B¢, D°, C°, E7 of K, the last long vertical
edge both as the leftmost and rightmost edges in the shown covering graph,
say Yo, of e? Ud? Uc! U f° — Ap, where:

(a) black vertices participate of the 8 4-holes containing Ag, namcly
those labeled 5 on top and b at the bottom; other labels of 4-holes internal
to them, respectively;

b) the labels j of vertices ¥; appear as superindices, as in 4, (with
P i

j also in the citations A of Ay on top), or 23"', in case labels j and 37’
happen in contiguous copies of L(Q3);

(c) each triangle contains the name ¢ of the copy of K, containing it;

(d) for cach ot = ¢ d? ¢!, f7, the partition Q(o') restricts as in the
rightmost diagram, in which darts indicate the first edges of monochromatic
2-paths whose final vertex is Ap; as a result, the 4 mentioned long vertical
edges belong each to two different monochromatic 2-paths of contiguous
copies of L(Q3) in Y;

(e) alternate internal anti-diagonal monochromatic 2-paths (i.c. from
top-right to bottom-left) coincide with directions reversed; (the middle ver-
tices of these 4 2-paths are just two neighbors of Ag in S, and their degree-1
vertices are at distance 2 from Ay in S); and

(f) the rightmost diagram contains denotations 3;, (i € [0,8]), and «;,
(j € [0.5]), respectively for the vertex and 4-hole labels in their positions
in the 4 copies of L(Q3).

Apart from the union e’ U d? U ¢! U f° of copies of L(Qz) sharing Ay in
Figure 7, there are two other unions of 4 copies of L(Q3) in Y sharing
Ay. The following display of the data in Figure 7 contains at its left the
-3 denotations of (f). Moreover, the data corresponding to the 3 unions
of 4 copies of L(Q3) sharing Ag in Y are set (or encoded) in the arrays
to the right and below the o-73 denotations (these solely for e’ d? ¢!, f9,
respectively), where the leftmost array summarizes Yo, the two doubly
repeated middle vertices in Tp (as in (e)) parenthesized to the right of A
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and the remaining data displayed in similar order, with the two rightmost
arrays preceded by the first onc of their 4 corresponding -8 denotations,
which condenses all needed information of )} around Ag:

oy =520,56b,55b,5¢ch Ay(ByA,y) f62  Ao(A1Ay)
$1B233=¢78,90d,7¢g00,093  (E7ebEed2D0cICVf9%) 4lg E7d9COd! E«ed D%*)
[3.|u1/55=coou,23e,684.fdl (C',lBsAaE.:DonE;Eg) 5d9 C[EgEgD:;A:)C?B!CG)
az8qaz=4f1.1ca,a2e,e64 (B1B1E2CoFsA2C5Ep) 8c0  (D,A;C3B,C2 B, B, Az)
37y Bs=e06,4gf.19¢.a72 (A2C9EpA4B1 D2CoFy) o070 (B,CeA2D4Ap B3 B1Cy)
39/3a Br,=93d,7800,0d3,9008 (C1A;C4Dy4ByF,FyBy) 3ae (AchElEuchbBQCo)
bt Ao(AgBo)
804 FE1dIDOcaCO fBE gb)
f83 A.:EADQFJE,;ESC«IBc)
957 (E,CoFaA C,gEanB”)
d12  (BoAg¢B,DsCoFgAsCs)
6900 (CyDyByF;FyBsCgyA,)

Somne edges are shared by two of these 3 unions. In fact, cach of the edges
bordering the central 2-paths w in anti-diagonal 4-paths in To is present
also in one of the two covering graphs, say T1 and Y5, corresponding to
the two rightmost arrangements above, one encoded on top and the other
at the bottom of the display, respectively. For example, the edge B, Az of
e’ on Yy appears in T). Also, the labels {apay, ajas, apa3} of opposite
copies of L(Q4), just sharing vertex Ay, are images of vertices at distance
3 in S via the duality ¢ (but copies of L(Q3) sharing a triangle containing
Ap are images of vertices at distance 7). The following permutations on
the set {ag,...,as,00,..., 011} relate the labels of the 12 copies of L(Q3)
sharing Ao:

LSS Ly s
(o) (5 )(B30faB6 ) (BrxsB2/30)(Bafu 1 B ) (Bsasaxz fr):
etd?el fPdd e e —d! c¥ fRe® —ebdic! fo:
(0 3486)(AocsBs) (BiBraz)(Baasas) () B7 61 ){(BsPaBo).
The following permutations allow to relate the labels of the 12 cuboctahe-
dral subgraphs sharing Ao to those sharing By, Cy, Do, Ey, Fo:
An— Bo : (vowa, o BraafzBu828 BaBoasBifsaa Bos);
Aa—Co : (a0B1B28004B3)(al Bafis) (28, B1)(a3B705) (B Psbb);
Ao— Dy : (voBse20a 318685 P1) (a1 BoBra3as B2 asfr):

Av—Eo : (anBofofa eazi3eB3B204Bs5 ) (a1 Brasas Ba)(Ba):
Ap—Fo 1 (@oByaafBaBsaz oy 8o Ba)(caBofafbiPeBrBsas Ba).

Additions mod 17 yield the remaining information for copies of K4 and
L(Q3) neighboring cach vertex of Y. In sum, we have the following theorem.

Theorem 6.1 In addition to Theorem 4.1, the following properties of YV
hold:

(1) YV is a connected union of 102 copies o of L(Q3), each with an edge
partition Q(a) into 2-paths;
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(2) cach edge in Y is shared exactly by 4 copies of L(Q3) in Y;

(8) each copy A of Ky (resp. each 2-path w € Qo)) in a copy o of L(Q3)
in Y is shared exactly by two copies o,0’ of L(Q3) in Y;

(4) Each two copies of L{Q3) sharing a copy A of K3 in Y share A with
exactly one copy of Ky in Y;

(5) each 4-hole in Y happens in just one copy of L(Q3) in Y;
(6) Y is an Q-preserving {L(Q3)}k,-UH graph;
(7) ¥ is {I4, L(Q3) } x,-UH;

(8) the vertices and copies of L(Q3) in YV are the points and lines of a
self-dual 1-configuration (10212)1.

In Theorem 6.1(8), for each triangle A in o, the copies 7,6’ of L(Q3)
intersect exactly in A, while for each 2-path w € Q(0) in o, not only w is
shared by o,0’, but these also share a vertex at distance 2 from the ends
of w. This common distance, 2, is realized hy 2-paths in the other two
colors distinct from the color of w, in cach of ¢ and o', as in Figure 4,
where for example the dark-gray-colored 2-path F3jDoBy (present both in
9 and ¢*) is at distance 2 from vertex D, (also present in a® and ¢*) via
the black-colored path By FyD, and the light-gray-colored path FyCyDjy.

Proof. It only remains to prove item (6). We explain how a monochro-
matic 2-path-preserving isomorphism ¥’ : ¢ — o4 between two copies of
L(Q3) 01.0% in Y extends to an automorphism of S. Both ¢ and o} are
colored as in Figure 4 with ¥’ respecting the color structure, thus inducing
a 1-1 correspondence between the color classes of o] and 05. In each copy
of L(Q3) in ) there are exactly 12 monochromatic 2-paths, 4 in each of the
3 colors, and exactly 12 dichromatic 2-paths not contained in any triangle,
a total of 24 2-paths not contained in any triangle. A ¥’ : o] — 05 as
mentioned can be extended to an automorphism of J because the infor-
mation gathered in o} comes via sextets from corresponding information
in a subgraph a’; of S (i = 1,2), so that ¥’ arises from an isomorphism
W' : 07y — a’9. However, o/; =@y, (i = 1, 2) for a corresponding copy o;
of L(Q3) in Y, but while the vertices of ¢! are denoted like the degree-2
vertices of ¢/; = @, the vertices of o; are denoted like the degree-3 ver-
tices of &@; = o';. Here the pairs (0;,0!) are of the form (£7,07), where
(Z,0) E{A(L)(Bb)(C'c)( d),(E,e),(F,f)} and j € Z;7. Then
VW =T:0 —oyisa correspondmg map as in the proof of Theorem
4.1. But now ¥’ = ¥ extends to an automorphism of S. This takes us to
an automorphism of ) that extends ¥, as claimed above.

For example, the black 2-path B4FyD, in the copy a® of L(Q3) in Y rep-
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resented in Figure 4 arise from the 3-paths ByEyFyFy and FyFyE4Dy in
S, which share the 2-path FyFyFE; and differ otherwise, so their union
(B4EyFiFy) U (FyFyE Dy) is realized by a tree T} with just one vertex
of degree 3, namely E;, from which two 1-paths and one 2-path depart.
A similar tree T» is obtained from the black 2-path DyF;By in Figure 4.
However T1 (T2 = F4Fy, a terminal 1-path of T; on its 2-path departing
from t;, for both i = 1,2, where ¢, = E, and t; = Ej, the vertex of degree 3
in T3. The other two black 2-paths in Figure 4 behave similarly, leading to
trees T3 and Ty intersecting at the 1-path BgEy. Similar behavior holds for
the dark gray and the light gray quadruples of 2-paths in Figure 4, leading
to pairs of trees that intersect respectively at the 1-paths Dy Dy, B4Cq and
the 1-paths B4Cy, DyDy. Thus, if o is this copy of L(Q3) in Y, then o/
coincides with @, where o7 = A%

7 Using the Biggs-Smith association scheme

The 2-paths w of Theorem 6.1(3) rearrange into an cdge partition Z of Y
into 102 4-holes. In fact, each 4-hole in Z is the union of 4 successive 2-
paths wo, wi,ws, ws from 4 respective partitions Q(a®), Q(c'), Q(0?), Q(c?)
of L(Q3) into 2-paths, with each two successive 2-paths w;,w; 41 here over-
lapping in just one edge, (subindex addition taken mod 4).

Z can be reconstructed by adding r € Z;7 uniformly mod 17 to all indexes
in the following gencrating-sct table of its member 4-holes, from those 4-
holes shown in the left column of the table. In each line of the table, the
4 pairs of copies a;- of the disconnected graph 4P; shown to the right (as
in (7) above) overlap at succeeding pairs of 2-paths of the 4-hole shown on
their left. This is continued to its right by the citation of two vertices that

alternatively are at distance 2 from the ends of those composing 2-paths:

(A2BpB1Ay) AvA, (c}' efz') (e3 Cg) (d.]x cg) (e5 dg)
(CoAyzEpAL) AoBo (rlé i) (4 d?) | (4 ) | (e] )
(C1EoCaAo) BoCo || (a} f1) | (F3 d]) | (e5 €b) | (4} £5)
{DoAoFoCo) BoEo (ch cd) | (S5 D) (af ad) | (df d2)

(CsBoBuCy) CoCy || (af €§) | (b ad) | (53 ) (e§ ff)

(DyDysE; Ev) Do D2 (a% b;:) (bg d%) (d% b3) (bg al)
(FoD2ByDy) DoEo || (el ad) | (0§ dO) | (a2 &) | (63 %)

(FsBo o Do) Eoto () | (cha) | (5 03) | (a} cg
(Es EaF,Fo) FoFs ” w5 I (b5 <) | (8 vhy l 3 b;)JJ

The vertices of each such 4-hole coincide in notation with the degree-1
vertices of a tree T in S isomorphic to T§°, (itself present in the 4th row of
this table), with the two vertices that follow each 4-hole being the vertices
of degrec 3 in T. These data insure that Y is Z-UH.
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Of the 24 2-paths in a copy o¢ of L(Q3) in ), 12 arc in the partition Q(c?)
of o'. The other 12 form a different edge partition Q'(o*) # Q(o?) of o'
The family of 2-paths in all of the ’(¢?) s reassembles, by means of unions
of those of its members having a common degree-2 vertex, as a family J of
306 copies of K 4.

A generating-set table for J representing 18 copies of K 4 is shown subse-
quently, with the remaining copies of K 4 obtained from those 18 by uni-
f01 m addition of r € Z;7 to all indexes i € Z;7 of vertices £; and subgraphs

i where j = 1,2, 3 stands for black, dark gray and light gray, respectively.
Thlb generating-set table has each entry starting with a vertex o of degree
4 in a copy of K 4 in J followed by 4 parenthesized expressions, each con-
taining as its central entry a neighbor ¥’ of ¥y flanked by two subgl aphs
a' to which the edge o3’ belongs, so that each par tlcu)atmg o' appears
1epeated twice — with 2 different colors j, 7, as a and O'J, — once before a
right parenthesis and once after the subsequent left parenthesis, the first of
the 4 left parentheses considered subsequent to the last right parenthesis,
in a mod 4 fashion:

Ap (e} Az d}) (dl Ercl) (c._, B3 cy) (¢f Cre})

Ao (F3Cy dj') (dg Do !I )(d Cq fg)(f;? an-?)

Ao (d"A e3) (€, C, cl)(ezB,c ) (c§ Ey dF)
By (e§ Ba al) (a8 By e")(eg Cy f?) (fecCy e:))
Bo (e3 Ag dg) (dy A2e3) (e B, ;€3) (e2 By Pz)

By (a3 D2 05) (c%lo ah) (a3 D; c’) (c“ Fga }

Co(d] Do d3) (d3 ALf}) (f3 F(sz) (f Agd3)

Co (e Ag 62) (ez BJ ag) (a“ E, -fl ) (f-“i C5c )
Cu (dy By “z) (“1 E, f] ) (fg Cee3) (c3 A-td )
Do (b Fy bl) (bl Eqdf) (df By af) (af Dy bE)
Do (af Fy cd) (e} Aocd) (c§ Faal) (a3 Coay)
Do (b3 Dg a3) (a2 B2 d’) (dab b (b P, %)
Eo(adeb ) (6 E2dd) (& B 63) (b DMJ)
Ey (bq Ficf) (ci Fy b‘g) (b° Ey ) (fi’ Ey b”)
Eo (/2 Ard2) (43¢ 1) (f. Agd) (] Ca £2)
F(;(('.,Auc ) (¢} D2ad) (a Coa ) (af Dy c¥)
Fo (b3 D 63) (6 Fr e (¥ Bs 18y (42 E,01)
Fo (f2 E1 6%) (b3 Dyb3) (b5 Fucd) (c? Ba fD)

Here, a copy of K4 with degree-d vertex X; has its degree-1 vertices as
those of a binary tree of S with depth 2 and whose root is one of the 3
neighbors of T;. Thus, there are 3 such copies of K 4. As a result, in con-
trast to the fact mentioned above that ) is 7-UH, now any homomorphism
hetween members of J preserving the order of presentation of the degree-1
vertices in corresponding copies of K 4, as in the t:able above (with the
expressed parenthetical behavior with respect to the o} 's), extends to an
automorphism of V. On the other hand, each copy o of L(Q3) in Y in-
tersects 8 other copies of L(Q3) in a triangle each, and 12 other copies of
L(Q3), each in a 2-path of (o) and one more vertex at distance 2 from
the ends of the 2-path.
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The graph Z’ generated by the (diagonal) chords of the 4-cycles of 7 co-
incides with Sa. On the other hand, by expressing the copies of K3 4 in J
as u(v)(w)(x)(y), (for example the copy of Ky in the first line of the last
table as Ao{As)(£&1)(B2)(C1)), we consider the graph J’ generated by the
corresponding 4-cycles (v, w,x,y). Then J' coincides with Sq. We obtain
the following final result.

Theorem 7.1 Y = S;.

Proof. 'This is obtained from the Biggs-Smith association scheme, as fol-
lows. As T/ = 85 and J ' = Sy, and because S has girth 9 and Y was con-
structed from the family (Cg); of distance-3 digraphs of directed 9-cycles
in the set Cg of 136 directed 9-cycles in Section 3, taking into account the
discussion previous to the statement, we arrive at

Kigo = SUSUS3US, = SUT'UYuJ’,

andso Y =383.
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