On the appearance of seeds in words

Manolis Christodoulakis
Department of Electrical and Computer Engineering,
University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
christodoulakis.manolis@ucy.ac.cy

Michalis Christou
Department of Informatics, King’s College London,
Strand, London WC2R 2LS, UK
michalis.christou@kcl.ac.uk

Maxime Crochemore
Department of Informatics, King’s College London,
Strand, London WC2R 2LS, UK
Université Paris-Est, France
Maxime.Crochemore@kcl.ac.uk

Costas S. Iliopoulos
Department of Informatics, King’s College London,
Strand, London WC2R 2LS, UK
Curtin University, Digital Ecosystems & Business Intelligence
Institute, Center for stringology & Applications, Australia
csi@dcs.kcl.ac.uk

Abstract

A seed of a word z is a cover of a superword of z. In this paper
we study the frequency of appearance of seeds in words. We give
bounds for the average number of seeds in a word and we investigate
the maximum number of distinct seeds that can appear in a word.
More precisely, we prove that a word has O(n) seeds on average and
that the maximum number of distinct seeds in a word is between
in? + o(n?) and in? + o(n?), and we reveal some properties of an
extremal word for the last case.
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1 Introduction

Words, also called strings, appear in many areas of Mathematics and Com-
puter Science as well as in several interdisciplinary areas such as pattern
matching, data compression and bioinformatics (see [19, 20]). Periodicity in
words is a fundamental key to the understanding of their structure. Some
fundamental periodicities in a word include the runs and powers occurring
in it, such as squares and cubes. Apart from algorithmic interest, in the last
years a lot of research has been done on bounds on the maximal number of
distinct periodicities in a word. These bounds are essential elements of the
analysis of some algorithms on words.

The “runs” conjecture, proposed by Kolpakov and Kucherov [16], states
that the number of maximal periodicities (runs) in a word of length n, is at
most n. The first upper bound given was 5n [24], which was improved to
3.48n [23], to 3.44n [25], to 1.6n (6], to 1.52n for binary words [11] and finally
to 1.048n [7]. Regarding the lower bound a first estimate of 0.927n was
given in [10] and improved further to 0.944542n [22], to 0.94457567n [21]
and eventually to 0.944575712n [26]. The exact bounds are still unknown.
The maximal number of cubic runs in a word was found to be between 0.5n
and 0.406n [8].

Regarding the maximal number of squares in a word, Fraenkel and Simp-
son showed that it is at most 2n [9], a result proved later in a simpler way
by Ilie [13] and improved to 2n—©(logn) [14]. The same number for partial
words with one hole was found to be at most 2 [1]. Kucherov et al. showed
that a binary word must contain at least 0.55080n square occurrences [18].
The maximal number of cubes in a word has been shown to be between %
and % [17). In a more general scenario, Crochemore et al. [4, 5] proved
a ©(nlogn) bound on the maximal number of occurrences of primitively
rooted kth powers in a word.

The concept of quasiperiodicity is a generalization of the notion of peri-
odicity. In a periodic repetition the occurrences of the single periods do not
overlap. In contrast, the quasiperiods of a quasiperiodic word may overlap.
We call a border u of a non-empty word z a cover of z, if every letter of z is
within some occurrence of u in z. Seeds are regularities of words strongly
related to the notion of cover, as a seed is a cover of a superword of the
word.

There is not much known about bounds on the number of quasiperi-
odicities in words. Some scientific work has been done on that direction,
mainly related to Fibonacci words, e.g. identification of all covers of a
circular Fibonacci word {2, 15|, identification of all maximal quasiperiodic-
ities in Fibonacci words [12] and identification of all covers and seeds of a
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Fibonacci word [2].

In this paper we study the frequency of appearance of seeds in words.
Using combinatorial properties of words we prove that a word has O(n)
seeds on average. Furthermore we show that the maximum number of
distinct seeds in a word is between in? + o(n?) and in? + o(n?) and we
reveal some properties for the structure of an extremal word for the last
case. It is important to note that we restrict seeds to be factors of the given

word.

2 Definitions

Throughout this paper we consider a word z of length |z| =n,n >0,0na
fixed alphabet ¥ = {a),a2,...,as} (0 = |X|). Whenever z is a non-empty
word it is represented as z[1..n]. A word w is a factor of z if = uwv for
two words u and v. It is a prefiz of z if u is empty and a suffirof z if v is
empty. A proper factor of z is a factor which is not equal to z itself; proper
prefixes, suffixes and borders are defined similarly.

A word u is a border of x if u is both a proper prefix and a suffix of z.
The border of x, denoted by border(x), is the length of the longest horder
of x. A non-empty word u is a period of z if z is a prefix of u* for some
positive integer k (z* is the concatenation of k copies of z), or equivalently
if z is a prefix of uz. The length of u is also called a period (or an integer
period) of z. The period of z, denoted by period(z), is the length of the
shortest period of . The exponent of z is the ratio |z|/period(z).

A word w is a square of z if it is a factor of £ and w = yy for some non
empty word y. A word w is a cube of z if it is a factor of x and w = yyy for
some non empty word y. More generally a word w is an r-power of z if it is
a factor of z and w = y", for some non empty word y, and 7 € {2,3,4,...}.
A run is a maximal (non-extendable) occurrence of a repetition of rational
exponent at least two. That means, the factor z[:.. j] is a run if it has the
following three properties:

e z[i..j] has periodpand j—i+12>2p

e z[i — 1} # z[i + p — 1] (if z[¢ — 1] is defined), z[j + 1] # z[j —p + 1]
(if z[7 + 1] is defined)

e z[i.i + p — 1] is primitive, that is, it is not a proper integer power (2
or larger) of another word.

For two words u = u[1..m] and v = v[1..n| where a suffix of u equals
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a prefix of v, um — £+ 1..m] = v[1..¢] for some 1 < £ < m, the word
ull..mppll+1..n] =u[l..m—{v[l..n] is called a superposition of u and
v with an overlap of length £.

A word w is a quasiperiodic square of z if it is a factor of x and w =
yv = uy, where y, v and u are non empty words and |y| > |v|. In this case,
the factor y is called an overlapping factor of x.

A word y of length m is a cover of z if both m < n and there exists a set
of positions P C {1,...,n —m + 1} that satisfies both z[i ..i + m - 1] =y
foralli € P and Uicp{é,...vi+m—1}={1,...,n}. A word v is a seed
of z, if it is a cover of a superword of z, where a superword of z is a word
of form uzv and u,v are possibly empty words. A left seed of a word z is
a prefix of = that is a cover of a superword of z of the form zv, where v
is a possibly empty word. Similarly, a right seed of a word z is a suffix of
z that is a cover of a superword of = of the form vz, where v is a possibly
empty word.

F;= abaababaabaab

Figure 1: aba is the shortest seed of abaababaabaab

The following example shows all left seeds, right seeds, covers and seeds
of the word Fg = abaababaabaab and Figure 1 illustrates that aba is the
shortest seed of Fg.

Example 1.
Covers of Fg abaab, abaababaabaab
aba, abaab, abaaba, abaababa, abaababaa,
Left seeds of Fj abaababaab, abaababaaba, abaababaabaa,
abaababaabaab
abaab, abaabaab, babaabaab,
Right seeds of Fg | ababaabaab, aababaabaab, baababaabaab,
abaababaabaab
aba, abaab, abaaba, abaababa, abaababaa,
Seeds of Fg abaababaab, abaababaaba, abaababaabaa,
abaababaabaab
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3 Average case

In this section we study the hehaviour of the average number of seeds in
a word of L™, the set of words of length n. This number is given by the
expected value of the number of seeds when we consider a word z = z[1 .. n]
with all letters of = drawn independently from ¥ = {a;,a2,...,a,} with
equal probability 1 for each letter.

We show that a word of length n has O(n) seeds on average by using
some combinatorial properties and series relations. However, before that,

we need to prove the following basic lemma:

Lemma 1. A seed of length £ which appears only once in = implies the
appearance of either a periodic prefiz or a periodic suffiz of = of length at
least "—"2"—‘ and period at most £.

Proof. Let s =z[i..i+ £ — 1] # z be a seed of z occurring only once in z.
Therefore, z = usv with 0 < |u| < £ and 0 < |v| < £, where not both u and

v are empty strings.

Let’s assume first that both |v| > 0 and |u| > 0. Then a prefix of s
must occur after position i, say at i+ j (1 < j§ < £), and consequently = can
be written as z = u(s[1..j]) “5. Hence the suffix of z of length n — |y
is periodic with period at most £. Similarly, a suffix of s must end before
position i 4 £ — 1, yielding a periodic prefix of = of length n — |v| and period
at most £. As |u| + |u] = n — £ either n — |u] or n — |v| is at least %‘

If only |u| = 0 or only |v] = O then x has period at most £ and our
requirements are met. a

In a similar manner, we can prove the following lemma.

Lemma 2. A seedy=z[i..i+ € —1] of length £, where 1 <i<n-£0+1
and 1 £ £ < n—1, which appears at least twice in x implies the appearance
of a square of form zi..i + 20— 1) =yy orz[i —£L..i+ € — 1] = yy or the
appearance of a quasiperiodic square of form z[i..i+ €+ k — 1] = yv or
zli—k..i+€—1)=vy, wherel <k <€—1 and v is a substring of T such
that |v| =k , in z.

Proof. As there exist at least two occurrences of y in z and y is a cover
of a superstring of z then there should be a y starting in position j €
{i+1,...,i4+ £} or ending in position j € {i—1,...,i+£—2}. Those two
occurrences form the required square (if they are consecutive) or quasiperi-
odic square (if they overlap).
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The following lemma regarding the polylogarithm function will also be
required to prove further results. Basically the lemma evaluates the poly-
logarithm function at —1.

Lemma 3. For z € C such that |z| < 1, Li_1(z) = 325 k2 = o=y

Using the above lemmas, we are now able to prove the main result of
this section.

Theorem 4. On average a word of length n has O(n) seeds.

Proof. Let = be a word of length n, with its letters drawn mdependently

from £ = {a;,as,...,a,} with a constant probability distribution (1 %,

o-’
e gl
In what follows we are using “E” for the expectation, i.e. the weighted
average of the possible values of a variable, and “P” for the probability of

an event.

E(number of seeds in z) = E(# of seeds appearing only once in z)
+ E(# of seeds appearing at least twice in z)

First we find the expected value for the number of seeds appearing only
once in length n words (case 1) and then the expected value for the number
of seeds appearing more than once (case 2).

Case 1:

As in Lemma 1 we get:

E(number of Case 1 seeds)
n n—€+1
= Z Z P(z[i..i+£—1] is a Case 1 seed)
e=1 =1
n n—€+1
< Z Z P(z has a periodic prefix or a periodic suffix of length
=1 i=1

at least P—;—f and period at most ¢)

n n
Z z T has a periodic prefix of length at least = d and
e=1 i=1

period at most £)
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Case 2:
As in Lemma 2 we get:
n n—{+1
E(number of Case 2 seeds) = Z Z P(z[i..j] is a Case 2 seed)
=1 i=1

n n—€+1 ¢
< z z (Z P(z[i..i+ £ —1 + k] is a quasiperiodic square)
e=1 i=1 k=1
e
+ P(zfi..i+20—1]is asquare)-%—ZP(x[i —k..i+f—-1]isa

k=1
quasiperiodic square) + P(z[i — £..i 4+ £ — 1] is a square))
n n—=£€+1£6-1 n—0+1 n n n=0+1 ¢
<2y X X £+k+2 I IAREI BB Zoe+k
=1 i=1 k=1 =1 i=1 =1 i=1 k=1

n n-£+1 n

L1 Ga—f+1 1
2y Y S b ey it oy Loay
&=1 =1

=1 i=1 k=1 =1
_ 1-077) Ly
=2(n+1) P 2;&

Lemma 3 suggests that the last series are bounded by constant terms, thus
proving the theorem. a

4 Maximum number of distinct seeds in a
word

It is easy to see that there exist words in which every factor is a seed, e.g.

a™. In this section we are investigating how many distinct seeds can appear

in a word. We denote the maximum number of distinct seeds in a word of
length n by Seeds(n).

153



4.1 Lower Bound

Fibonacci words provide us with a first lower bound.
Lemma 5. There exists an infinite family of words for which:

¢*+1

Seeds(n) > 35

n? 4+ o(n?),
where ¢ is the golden ratio.

Proof. In [2, 3] it was shown that for Fibonacci words it holds that:

i Seeds(Fn) $?+1

= = 78..
Lam TAE 545 0.1008130618755 O

Next we show that periodic words are quite rich in word regularities. In
particular, words that are squares have more seeds than Fibonacci words.

Lemma 6. Seeds(n) > % + o(n?).

Proof. When n is even we consider the word (ajaz...as 2, Obviously
every factor of length greater than % is a seed of the word. There are %
such factors starting from the first position in the word, 2 — 1 such factors

starting from the second position of the word and so on. Overall:

% z(2 4 1) 2

si- 12,

i=1

w3

Similarly, when n is odd we consider the word (a;as .. Qa1 )2an 2l which
yields %~ 4nol "”1 distinct seeds. O

In the following lemma, we prove that among all words having similar
structure to the squares considered in the proof of the previous lemma (i.e.
words of form (ejaz...ap)° = p, where c|p| = n and 1 < |p| < n), cubes
or words close to being cubes (i.e. words in which |p| = § + o(n)) achieve
maximum number of distinct seeds.

Lemma 7. Seeds(n) > in?+ o(n?).

Proof. We consider the word (a1az...q))° = p°, where c|p| =n and 1 <
|p] < n. Obviously every factor of length greater than |p| or equal to |p] is
a seed of the word. There are n — |p| + 1 such factors starting from the first
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position in the word, n — |p| such factors starting from the second position
of the word, etc. Due to factors repeating, we only consider factors starting
from the first period of the word. We distinguish two cases, according to
|pl-

For % < |p| < n we get the following number of distinct seeds:

n—|p{+1 n
_(n=lpl+)n—lp|+2) _(n-2+1(n-¢+2)
) ;= (n—1pl )2(n pl+2) _ 2n

i=1

1-1)2
It 5 n? + o(n?)

Having assumed that % < |p| < n, it follows that 1 < ¢ < 2 and the

above expression maximizes for ¢ = 2, giving 3n? + o(n?) different seeds.

For 1 < |p| < % we get the following number of distinct seeds:

n-lzlf’l*'1 i (n—=Ipl+1)(n—|p[+2) (n—2Jp|+1)(n—2|p|+2)

i=n-2|p|+2 2 2
=(n—%+1)(n—%+2)_(n—2%+1)(n—2€-+2)
2 2
1 =12 _(1 -2y 2_3
=( ) 5 2) n? + o(n?) = £ 2?‘rn2+o(n2)

As 2 < ¢ £ n the above expression maximizes for ¢ = 3, giving énz + o(n?)
different seeds. Even when ¢ = 3 cannot be achieved, choosing p = | 3|
gives the required bound. O

4.2 Upper Bound

A first upper bound is given using the restriction that a seed must be a
factor of the word.
Lemma 8. The number of distinct seeds of a non-empty word x is at most

ﬂ';ﬂ, where |z| = n.

Proof. The number of non-empty factors of z is n + (3) = g(nTﬂl a

In the following lemma we prove a better upper bound using more com-
binatorial properties.
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Lemma 9. Seeds(n) < 4n? + o(n?).

Proof. We first consider n to be even. A seed of length £, n/2+1 < ¢ < n,
appears at least once in z (as it is a factor of z). Therefore, x has at most
n — £ + 1 seeds of length £. Overall:

n nf2

E (n—€+1)<Zi=%n2+o(n2)

e=n/2+1 i=1

A seed of length ¢, 1 < ¢ < n/2, has at least one starting position in
z[1..¢] (as it covers z). Therefore, z has at most £ different seeds of length

£. Overall:
n/2

E = 1n2 + o(n?)
8
=1

By summing the two expressions we get $n? + o(n?) as an upper bound.
The proof for odd n is similar. a

4.3 Structure of the extremal word

The hounds revealed in the previous subsections help us to get some infor-
mation for a word that maximizes Seeds(n). In particular, we are able to
restrict the length of repeating factors and the period and exponent of a
run in such a word.

Theorem 10. A word = of length n having the maximum number of seeds
Seeds(n) contains no repeating factors of length cn + o(n), where

\/g<051.

Proof. For large n, a repeating factor of length ¢cn would mean more than

%nz repeats (the subwords of the factor) and hence less than in? — gn? =
gnz candidate seeds, contradicting Lemma, 7. 0O

Theorem 11. There are no runs of period p and ezponent ¢ in a word

achieving the upper bound for which 1c?p? — Lep + 3p® > §n?.

Proof. A run of period p and exponent ¢ in z gives at least

ep—p+1

(ep)ep+1)— Y i

1
2 i=cp—2p+2
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repeating factors. The dominating terms of this expression are

2cp 2cp+2p.

Therefore, as of Theorem 7, for large n we have:

—n2_ = - et >
2" (2”’ gPtar ) 25"

5 Conclusion

In this paper we have studied the frequency of appearance of seeds in words.
We have given some bounds for the average number of seeds in a word and
we have investigated the maximum number of distinct seeds that can appear
in a word. More precisely, we have proved that a word has O(n) seeds on
average. We have also shown that the maximum number of distinct seeds in
a word is between n?+ o(n?) and $n?+ o(n?) and we have revealed some
properties achieved by an extremal word for the last case. It is important
to note that we have restricted seeds to be factors of the given word. We
conclude by showing the existing best bounds for the maximum number of

distinct regularities in a word in the following table:

Regularity Maximum number in a word
Runs Between 1.048n [7] and 0.944575712n [26)
Cubic runs Between 0.5n and 0.406n [8]
Squares Between n — o(n) [9] and 2n — ©(logn) [14]
Cubes Between 2 and < [17]
Seeds Between Z- 4 o(n?) and 2= + o(n?)
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