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Abstract

For a nontrivial connected graph G, let ¢ : V(G) — Z; be a ver-
tex coloring of G where ¢(v) # 0 for at least one vertex v of G.
Then the coloring ¢ induces a new coloring o : V(G) — Z3 of G
defined by o (v) = 3, v, ¢(u) Where N[v] is the closed neigh-
borhood of v and addition is performed in Z,. If 6(v) =0 € Z,
for every vertex v in G, then the coloring c is called a modular
monochromatic (2,0)-coloring of G. A graph G having a mod-
ular monochromatic (2, 0)-coloring is a monochromatic (2,0)-
colorable graph. The minimum number of vertices colored 1
in a modular monochromatic (2,0)-coloring of G is the (2,0)-
chromatic number x(;,0)(G) of G. A monochromatic (2,0)-
colorable graph G of order n is (2, 0)-extremal if x(2,0y(G) = .
It is known that a tree T is (2, 0)-extremal if and only if every
vertex of T has odd degree. In this work, we characterize all
trees of order n having (2, 0)-chromatic number n — 1,n — 2 or
n — 3 and investigate the structures of connected graphs having
the large (2, 0)-chromatic numbers.
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1 Introduction

For an integer & > 2 and a nontrivial connected graph G, let ¢: V(G) — Z;
be a coloring where c(v) # 0 for at least one vertex v of G and adjacent
vertices may be assigned the same color. Then the coloring ¢ induces a new
coloring o : V(G) — Z;, of the graph G defined by

oc(v) = z c(u) (1)

u€N(v]
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where N{v] is the closed neighborhood of v (consisting of v and the vertices
in the open neighborhood N(v) of v) and addition is performed in Z;. The
number o.(v) is called the color sum of a vertez v with respect to the color-
ing c. (We also write o(v) for o¢(v) if the coloring ¢ under consideration is
clear.) If o.(u) = o.(v) for every two vertices © and v in G, then the color-
ing cis called a (modular) monochromatic k-coloring. For a given integer ¢
with 0 < ¢ £ k£ — 1, a monochromatic k-coloring c of G is said to be of type
t if the induced vertex coloring o has the property that o(v) = ¢ for each
vertex v of G. Such a coloring is also referred to as a modular monochro-
matic (k,t)-coloring or simply monochromatic (k,t)-coloring. A graph G is
monochromatic (k,t)-colorable or (k,t)-colorable if G has a monochromatic
(k, t)-coloring for some integers k and t with 0 < t < k— 1. These concepts
were introduced and studied in [1] inspired by the Lights Out Puzzle (also
see (3]).

To illustrate these concepts, Figure 1 shows two vertex colorings ¢’ and
¢” of a graph G, where the color of a vertex assigned by ¢’ or ¢” is placed
within the vertex and the color sum of a vertex is placed next to the vertex.
The coloring ¢’ is a monochromatic 2-coloring since o (v) = 1 for each
v € V(G) while ¢” is a monochromatic 2-coloring since o.»(v) = 0 for
each v € V(G). Thus, ¢’ is a monochromatic (2, 1)-coloring; while ¢” is
a monochromatic (2,0)-coloring. Hence the graph G of Figure 1 is both
(2,1)-colorable and (2,0)-colorable. These two examples also illustrate a
useful observation.

1 1 0 0

c: @ ' T T
@ é —O ©® O—0—0 O
1 1 1 1 0 0 0 0

Figure 1: Illustrating monochromatic colorings

Monochromatic (2, 1)-colorings and (2, 0)-colorings are closely related
to certain domination parameters, namely odd and even dominations in
graphs (see [1, 4]). A vertex v of a graph G dominates a vertex u if u is in
the closed neighborhood N{v] of v. A set S of vertices of G is a dominating
set of G if every vertex of G is dominated by some vertex in S. A dominating
set S in G is an odd dominating set if every vertex of G is dominated by an
odd number of vertices of S. In [5] Sutner showed that every graph has an
odd dominating set. As a consequence of Sutner’s Theorem, it was observed
in [1] that every connected graph G is (2, 1)-colorable. A dominating set S
in a graph G is an even dominating set if every vertex of G is dominated
by an even number of vertices of S and the minimum cardinality of an
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even dominating set in G is the even domination number of G and denoted
by ve(G). It is known that not every graph has an even dominating set.
If G is a connected graph of order n such that x(3,0)(G) and 7¢(G) both
exist, then 2 < x(2,0)(G) < 7e(G) < n and x(2,0)(G) and 7.(G) are even.
The relationship between (2,0)-chromatic numbers and even domination
numbers of graphs was studied. It was shown that (i) for each pair a,b
of even integers with 2 < a < b, there is a connected graph G such that
X(2,0)(G) = a and 7.(G) = b and (ii) there is a connected graph G of order
n such that x(2,0)(G) = a and 7.(G) =bif and only ifa = b, or a < -g and
(a,b,n) #(2,4,4) or $ <a <bandn> 28t

A graph G is called an odd-degree graph if every vertex of G has odd de-
gree and a (2, 0)-colorable graph G of order n is (2, 0)-extremal if x(2,0)(G) =
n. For example, the tree T of Figure 1 is an odd-degree tree and it can be
shown that T is also (2, 0)-extremal. In fact, this is the case for trees.

Theorem 1.1 [1] A (2,0)-colorable tree is (2,0)-extremal if and only if
T is an odd-degree tree.

Theorem 1.1 is, however, not true for connected graphs in general. Al-
though every (2,0)-extremal graph is odd-degree graph, there are odd-
degree graphs that are not (2,0)-extremal. For example, x(2,0)(Kn) = 2
for each even integer n > 4 and x(2,0)(P) = X(2,0)(Q3) = 4 for the Petersen
graph P and the cube Q3. In this work, we characterize all trees of order
n having (2, 0)-chromatic number n — 1,7 — 2 or n — 3 and investigate the
structures of connected graphs having the large (2,0)-chromatic numbers.
We refer to the books [2] for graph-theoretical notation and terminology not
described in this paper. All graphs under consideration here are nontrivial
connected graphs.

2 On a Class of Trees

In order to present characterizations of trees of order n having (2,0)-
chromatic number n — 1,n — 2 or n — 3, we first study a special family
of trees and establish some preliminary results. The following two observa-
tions will be useful for us, the second of which appeared in [1].

Observation 2.1 Let G be a connected graph and let ¢ be a modular
monochromatic (2,0)-coloring of G.

(@) If G’ is a graph obtained by attaching a connected graph at any vertezx
of G that is colored 0 by ¢, then G’ is also (2,0)-colorable.

(b) If S is any set of vertices of G that are colored 0 by c, then the
restriction of ¢ to G — S is a modular monochromatic (2,0)-coloring
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of G — S (where it is possible that the restriction of ¢ assigns the
color 0 to every vertex of some component of G — S).

In Observation 2.1(b), if the restriction of a monochromatic (2,0)-
coloring of G to the subgraph G — S assigns the color 0 to every vertex
of some component G’ of G — S, then this restriction is called a trivial
monochromatic (2, 0)-coloring of G'; Otherwise, it is a nontrivial monochro-
matic (2,0)-coloring of G', in which case, ¢ assigns the color 1 to at least
one vertex of G’.

Proposition 2.2 [1] Ifec is a modular monochromatic (2,0)-coloring of a
connected graph G, then the subgraph of G induced by the vertices colored 1
by c is an odd-degree graph and so the number of vertices colored 1 by ¢ is
even.

A (2,0)-colorable tree T is called (2,0)-minimal if for every end-vertex
v of T, the subtree T — v is not (2,0)-colorable. For example, every (2, 0)-
colorable path, star and double star is (2,0)-minimal. We now describe a
class of trees that are closed related to (2,0)-minimal trees. For a graph
G, let H be a subgraph of G and let v be a vertex of G not belonging
to H. The vertex v is adjacent to H if v is adjacent to some vertex of
H. Let T’ be a tree of order k > 1, where V(T") = {v1,v2,...,v} and
E(T") ={e1,ez,...,ek-1}. The subdivision graph S(T") of T’ is the tree of
order 2k — 1 obtained from T by replacing each edge e; (1 <i < k—1) by
the vertex u; which is joined to the two vertices of T” incident with e;. A
tree T is an odd-degree subdivision tree if the vertices vy, vs,...,v; of some
subdivision graph S(T”) of a tree T” of order k correspond to k pairwise
disjoint odd-degree trees T}, T3, ..., Tk in T and V(T') — UL, V(T;) consists
of an independent set of k — 1 vertices of T each adjacent to exactly two

of the trees T1,T5,...,Tk. In this case, T is referred to as an odd-degree
subdivision tree with respect to odd-degree trees T4,T5,...,T) and each of
the vertices uy,us,...,ur-1 is called a subdividing vertex of T. If F is

the odd-degree forest consisting of odd-degree trees 71,T%,...,Tk, then T
is also referred to as an odd-degree subdivision tree with respect to F. In
particular, if £ = 1, then an odd-degree subdivision tree is an odd-degree
tree. Among the results established on trees is the following.

Theorem 2.3 [1] For a nontrivial tree T, the following (1),(2) and (3)
are equivalent:

(1) T is (2,0)-minimal,

(2) T is (2,0)-colorable and every modular monochromatic (2,0)-coloring
of T must assign the color 1 to each end-vertex of T,

(3) T is an odd-degree subdivision tree.



The following is a consequence of Theorem 2.3.

Corollary 2.4 (1] IfT is a nontrivial tree having exactly one even vertez,
then T is not (2,0)-colorable.

We now determine the monochromatic (2,0)-coloring and the (2,0)-
chromatic number of an arbitrary odd-degree subdivision tree with respect
to an odd-degree forest.

Theorem 2.5 Let F be an odd-degree forest. If T is an odd-degree sub-
division tree with respect to F, then the coloring that assigns the color 1
to each vertex of F and the color 0 to the remaining vertices of T is the
unique monochromatic (2,0)-coloring of T and x(2,0)(T) = |V(F)|.

Proof. Since the coloring that assigns the color 1 to each vertex of F' and
the color 0 to the remaining vertices of T is a monochromatic (2, 0)-coloring
of T, it remains to show that this is the only monochromatic (2, 0)-coloring
of T. We proceed by induction on the number k of components of a forest.
By Theorem 1.1, the result holds for k¥ = 1. Suppose, for some integer
k > 2, that the statement is true for all odd-degree forests having exactly
k — 1 components. Let F' be an odd-degree forest of order p > 2 having
exactly k components, say T},7T2,...,Tk. Assume, to the contrary, that
there is an odd-degree subdivision tree T with respect to F such that T has
a monochromatic (2, 0)-coloring ¢ that assigns the color 0 to some vertex
in F. Let S be the set of vertices of T’ colored 0 by ¢. We claim that S is
an independent set of vertices of degree 2 in T. First, we show that S is
an independent set of vertices of T'; for otherwise, suppose that uv € E(T)
where ¢(u) = ¢(v) = 0. Then T —uw consists of two components @, and Q3.
Note that either @; or Q2 has a vertex colored 1 by ¢, say the former. Since
the restriction ¢; of ¢ to @ is a (nontrivial) modular monochromatic (2, 0)-
coloring of Q; by Observation 2.1(b), it follows that ¢; can be extended to
a modular monochromatic (2,0)-coloring ¢’ of T by assigning the color 0
to all vertices of Q2. However then ¢/ must assign the color 0 to at least
one end-vertex of T', which is a contradiction by Theorem 2.3. Next we
show that each vertex of S has degree 2 in T. Let v € S. Since o(v) =0
and ¢(v) = 0, it follows that v is adjacent to an even number of vertices
that are colored 1 and so degpv = d > 2 is even. If d > 4, then, since T
is not an odd-degree tree and T — v consists of d nontrivial components,
all vertices in d — 2 of these components can be recolored 0 producing a
modular monochromatic (2, 0)-coloring in which at least d — 2 end-vertices
are colored 0, which is a contradiction by Theorem 2.3. Therefore, S is an
independent set of vertices of degree 2 in T', as claimed.

Suppose that U is the set of subdividing vertices of T where then |U| =
k —1 and degru = 2 for each © € U. We may assume, without loss of
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generality, that T} is an end-tree of T, that is, T} is adjacent to exactly one
vertex 4 € U. Suppose that u is adjacent to w € V(T1) and = € V(T3)
where j # 1, say 7 = 2. We consider two cases, according to whether
c(w) =0 or c(w) = 1.

Case 1. ¢(w) = 0. Then c¢(u) =1 by (1) and degrw = 2 by (2). Since
w € V(T1) and uw € E(T), it follows that w is an end-vertex of T3, say w
is adjacent v’ in 7;. Hence T; — w is a tree with exactly one even vertex
(namely, w'). By Corollary 2.4 then, T} — w is not (2, 0)-colorable. On the
other hand, since o(w) = 0 and ¢(u) = 1, it follows that ¢(w’) = 1. Because
¢(w) = 0 and w is an end-vertex of T}, the restriction of c to T} —w is a
nontrivial monochromatic (2,0)-coloring of T} — w by Observation 2.1(b).
Hence T7 — w is (2, 0)-colorable, which is a contradiction.

Case 2. c(w) = 1. We claim that ¢(u) = 0, for otherwise, suppose
that c(u) = 1. Since o(u) = 0 and ¢(w) = 1, it follows that ¢(z) = 0 and
degrz = 2 by (2). Let T* be the tree obtained from T} by adding the
pendant edge uw. Then T™ has exactly one even vertex (namely w) and so
T* is not (2, 0)-colorable by Corollary 2.4. On the other hand, since c¢(w) =
1 and c(u) = 1, the restriction of ¢ to T™* is a nontrivial monochromatic
(2, 0)-coloring of T™* by Observation 2.1(b), which is a contradiction. Thus,
c(u) = 0, as claimed. By (1) then, c(zx) = c(w) = 1 and the restriction
of ¢ to T is a nontrivial monochromatic (2,0)-coloring of T}. Since T is
an odd-degree tree, c(z) = 1 for all 2 € V(T1) and so c does not assign
the color 0 to any vertex of T;. Hence ¢ must assign the color 0 to some
vertex in V(F)—V (T1), namely some vertex in T for some i € {2,3,...,k}.
Let T" = T — ({u} U V(T1)). Then T is an odd-degree subdivision tree
with respect to the odd-degree forest F’ having exactly k¥ — 1 components
T,,T3,...,Tk. By the induction hypothesis, the coloring that assigns the
color 1 to each vertex of F’ and the color 0 to the remaining vertices of
T’ is the unique monochromatic (2, 0)-coloring of T’. On the other hand,
since ¢(z) = 1 and ¢(u) = 0, the restriction ¢’ of ¢ to T” is a nontrivial
monochromatic (2,0)-coloring of T/. However, ¢ assigns the color 0 to
some vertex of F’, which is a contradiction. Thus, Case 2 cannot occur.

Therefore, the coloring that assigns the color 1 to each vertex of F and
the color 0 to the remaining vertices of T is the unique monochromatic
(2,0)-coloring of T' and so x(2,0)(T") = |V(F)|. ]

In [1], it was shown that if T is an odd-degree subdivision tree with
respect to an odd-degree forest, then every monochromatic (2, 0)-coloring
of T must assign the color 1 to each end-vertices T. Hence Theorem 2.5
improves this known result.

For an odd-degree forest F, let ods(F') be the set of all odd-degree
subdivision trees with respect to F' and let Poqs(F) be the set of trees
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T such that either T € ods(F) or T is obtained from some T, € ods(F)
by adding pendant edges at one or more subdividing vertices of T, The
following observation will be useful to us.

Observation 2.6 If uv is a pendant edge in a (2,0)-colorable graph G,
then c(u) = c(v) for every modular monochromatic (2,0)-coloring c of G.

Theorem 2.7 Let F be an odd-degree forest. If T € Poas(F'), then the
coloring that assigns the color 1 to each vertex of F and the color O to the
remaining vertices of T is the unigue monochromatic (2,0)-coloring of T
and x(2,0(T) = |[V(F)|.

Proof. Since the coloring that assigns the color 1 to each vertex of F’ and
the color 0 to the remaining vertices of T is a monochromatic (2, 0)-coloring
of T, it remains to show that this is the only monochromatic (2, 0)-coloring
of T. We proceed by induction on the number k of components of a forest.
By Theorem 1.1, the result holds for k£ = 1. Suppose, for some integer k > 2,
that the statement is true for all odd-degree forests having exactly k — 1
components. Let F' be an odd-degree forest having exactly k£ components,
say T1,Tz,..., Tk and let T' € Pogs(F). We may assume, without loss of
generality, that T is an end-tree of T, that is, T} is adjacent to exactly
one subdividing vertex u of T. Then either degru = 2 or there are ¢
pendant edges of T at u, say uv,, uvs,...,uvy be the pendant edges of T’
at u. Suppose that u is adjacent to w € V(T1) and z € V(T;) where j # 1,
say j = 2. Let ¢ be a monochromatic (2, 0)-coloring of T. We consider two
cases.

Case 1. c(u) = 0. By Observation 2.6 then, c(v;) = 0 for each ¢
with 1 <7 < ¢. Let X = {u,v1,v2,...,ve}. Then T — X has exactly two
components, namely T3 and H =T —(V(T1)UX). Since c(u) = o(u) =0, it
follows that c(w) = ¢(z). Furthermore, either the restriction cr, of ¢ to T} or
the restriction cy of ¢ to H is a nontrivial monochromatic (2, 0)-coloring of
T or H, respectively. First, suppose that cz, is a nontrivial monochromatic
(2,0)-coloring of T;. Since T} is an odd-degree tree, ¢(z) = 1 for each
z € V(T1) by Theorem 1.1. Thus ¢(w) = 1 and ¢(z) = 1, which implies
that cy is a nontrivial monochromatic (2, 0)-coloring of H as well. Let F’
be the odd-degree forest consisting of the k — 1 components T3, T3, ..., Tk.
Then H € Po4s(F’). By the induction hypothesis, the coloring that assigns
the color 1 to each vertex of F’ and the color 0 to the remaining vertex of
H is the unique monochromatic (2, 0)-coloring of H. Hence ¢ must assign
the color 1 to at least |V(F’)| vertices of H. This implies that ¢ must
assign the color 1 to at least |V (F")| + |V (T1)| = |V (F)| vertices of T and
50 x(2,0)(T) = |V(F)|. Furthermore, the coloring that assigns the color 1 to
each vertex of F and the color 0 to the remaining vertices of T is a unique
monochromatic (2, 0)-coloring of T'. Next, suppose that cy is a nontrivial
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monochromatic (2,0)-coloring of H. Again, by the induction hypothesis,
¢(z) =1 and ¢(w) = 1. Now apply an argument similar to the one above
shows that x(2,0)(T") = |V(F)| and the coloring that assigns the color 1 to
each vertex of F' and the color 0 to the remaining vertices of T is a unique
monochromatic (2, 0)-coloring of T.

Case 2. c(u) = 1. In what follows, we show that this case is impos-
sible. Then ¢(v;) = 1 for 1 £ ¢ < £ by Observation 2.6. Let Np,(w) =
{w1,w2,...,w} be the set of neighbors of w in T}, where ¢ is an odd in-
teger. Next, we consider two subcases, according to whether ¢(w) = 0 or
c(w)=1.

Subcase 2.1. ¢(w) = 0. Since o(w) = 0 and c(u) = 1, it follows that
c(w;) = 1 for some ¢ € {1,2,...,t}, say ¢(w;) = 1. Now o(w;) = c(w) =0
implies that w; is not an end-vertex of T;. Let @; be the component of
T} — w that contains w;. Then @Q; is a nontrivial tree with exactly one
even vertex (namely w;) and so Q; is not (2,0)-colorable by Corollary 2.4.
However, the restriction of ¢ to @; is a nontrivial monochromatic (2, 0)-
coloring of @1, which is impossible.

Subcase 2.2. c(w) = 1. Since o(w) =0, ¢(u) = 1 and degp, w = tisodd,
there is at least one ¢ € {1,2,...,t} such that c(w;) = 0, say c(w;) = 0.
Since o{w1) = ¢(wy) = 0 and c(w) = 1, it follows that w,; is adjacent to
some vertex wi,; in Ty for which ¢(w;;1) = 1. Then w;; cannot be an
end-vertex of 1. Let Q;,; be the component of T} — w, that contains w, ;.
Then @1, is a nontrivial tree with exactly one even vertex (namely wj ;)
and so Q),1 is not (2,0)-colorable. On the other hand, the restriction of
c to Q1,1 is a nontrivial monochromatic (2,0)-coloring of @Q,1, which is
impossible.

Hence, Case 2 is impossible and so only Case 1 can occur. Therefore,
X(2,0)(T) = |V(F)| and the coloring that assigns the color 1 to each vertex of
F and the color 0 to the remaining vertices of T is a unique monochromatic
(2, 0)-coloring of T'. =

3 On Nearly (2,0)-Extremal Graphs

A (2,0)-colorable graph G of order n is said to be nearly (2,0)-extremal if
X(2,0)(G) = n — 1. Thus, if G is a nearly (2,0)-extremal graph of order
n, then n is odd. We first characterize all nearly (2,0)-extremal trees.
To simplify the notation, if F' is an odd-degree forest having exactly &
components and T is an odd-degree subdivision tree with respect to F',
then T is referred to as an ods-k-tree with respect to F' (or simply an ods-
k-tree). Thus, each ods-k-tree has exactly k — 1 subdividing vertices. In
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particular, an ods-1-tree is an odd-degree tree and so has no subdividing
vertices.

Theorem 3.1 Let T be a (2,0)-colorable tree of order n > 3. Then
X2,0(T) =n—1 if and only if T is an ods-2-tree.

Proof. First, suppose that T is a nontrivial tree of order n with x(2,0y(T) =
n — 1. Let there be given a monochromatic (2, 0)-coloring ¢ of T such that
c(v) =0and ¢(z) =1 for all £ € V(T) — {v}. Then degv is even. We
claim that degv = 2. For otherwise, suppose that degv = s > 4 and let
N(v) = {v1,v2,...,vs}. Let T; (1 < ¢ < s) be the component of T — v con-
taining v;. Then the coloring ¢’ defined by ¢/(z) = ¢(z) if z € V(T1)UV (T3)
and ¢/(z) = 0 for the remaining vertices of T is a monochromatic (2, 0)-
coloring of T such that fewer than n — 1 vertices of G are colored 1, which
is impossible. Thus, degv = 2, as claimed. For each z # v in T, since
¢(z) =1 and o(z) = 0, it follows that z is adjacent to an odd number of
vertices colored 1. Thus degv; and degvs are even and deg z is odd for all
z € V(T) — {v,v1,v2}. Therefore, T} and T are odd-degree trees.

For the converse, suppose that T consists of two disjoint odd-degree trees
T, and T3 and a vertex v of degree 2 that is adjacent to T; and T5. Suppose
that v is adjacent to v; € V(T;) for ¢ = 1,2. Note that the coloring that
assigns the color 1 to each vertex in T3 and T, and the color O to the vertex
v is a monochromatic (2, 0)-coloring of T, implying that x(2,0)(T) < n —1.
Assume, to the contrary, that x(2,0)(T) < n — 2. Let ¢ be a minimum
monochromatic (2, 0)-coloring of T. Then ¢ assigns the color 0 to at least
two vertices of T" and so there is w # v such that ¢(w) = 0.

We claim that ¢(v) = 0. If this is not the case, then c(v) = 1. Since
o(v) = 0, either c(v;) = 1 and ¢(v2) = 0 or ¢(v;) = 0 and ¢(v2) = 1, say the
former. Let T' =T — V(T3). Then T” is a nontrivial tree with exactly one
even vertex, namely v;. Thus T” is not (2, 0)-colorable by Corollary 2.4. On
the other hand, since ¢(v;) = 1 and ¢(v2) = 0, the restriction of c to 7" is a
monochromatic (2, 0)-coloring of T by Observation 2.1(b). However then,
T is (2,0)-colorable, which is a contradiction. Thus, as claimed, c(v) = 0.

By Observation 2.1(b) and Theorem 2.3, it can be shown that no two
adjacent vertices can be colored 0 (see the proof of Theorem 4.6 in [1]).
Hence c¢(v1) = c(v2) = 1. We may assume, without loss of generality,
that w € V(T1) — {v1}. Since ¢(v) = 0, the restriction ¢; of the color-
ing ¢ to the subtree T} is a nontrivial monochromatic (2, 0)-coloring of T
by Observation 2.1(b) and ¢; assigns the color 0 to the vertex w in T}.
This is impossible since x(2,0y(T1) = [V (T1)| by Theorem 1.1 and the only
monochromatic (2, 0)-coloring of 7} must assign the color 1 to every vertex
of Ty. Therefore, x(2,0)(T’) > n — 1 and the result follows. ]

As is the case of (2,0)-extremal trees (Theorem 1.1), Theorem 3.1 is
not true for connected graphs in general. By Proposition 2.2, if G is a
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connected graph of order n > 3 with x(2,0)(G) = n—1, then n must be odd
and there is a monochromatic (2, 0)-coloring ¢ of G such that ¢(v) = 0 for
exactly one vertex v of G and G —v is an odd-degree graph. Thus degg v is
even and so G must contain at least three even vertices. By Theorem 3.1,
if T is a (2,0)-colorable tree of order n with x(2,0)(T) = n — 1, then T
has exactly three even vertices. However, this is not the case for connected
graphs in general. In fact, there are connected (2,0)-colorable graphs G
of order n with X(2,0y(G) = n — 1 such that G has a large number of even
vertices. For example, for each pair k, £ of integers where £ > 1 and € > 0,
let G be the graph obtained from H = K)o with partite sets {u,v} and
X = {z1,z2,...,72c} by adding 2¢+ 1 pendant edges vv; for 1 < i < 20+1
at the vertex v of H. Then G has 2k + 1 even vertices (namely each vertex
in {u} U X). The order of G is n = 2 + 2k + 2£ + 1. We claim that
X(2,0(G) = n — 1. Since the coloring that assigns the color 0 to u and the
color 1 to all vertices in V(G) — {u} is a monochromatic (2,0)-coloring,
X(2,0(G) £ n—1. Let ¢ be a minimum monochromatic (2, 0)-coloring of
G. First, suppose that c¢(v) = 0. Then ¢(v;) =0for 1 <i < 2{+1 by
Observation 2.6. Since ¢ must assign the color 1 to at least two vertices
of G by Proposition 2.2, at least one vertex in X is colored 1 by ¢, say
¢(z1) = 1. Because o(z1) = 0 in Zy, it follows that c¢(x) = 1. Now, the
fact that o(z;) = 0 for 2 < j < 2k and c(v) = 0 implies that ¢(z;) = 1
for each j with 2 < j < 2k. However then, o(u) = 1 in Z,, which is
impossible. Next, suppose that c¢(v) =1. Thusc(v) =1for1 <i<20+1
by Observation 2.6. If c(u) = 0, then ¢(z;) =1for1 < j <2k andsoc
must assign the color 1 to n — 1 vertices of G, as desired. Hence we may
assume that c(u) = 1. Since o(u) = 0, it follows that ¢(z;) = 1 for some
j with 1 < j < 2k. However then o(z;) = 1 in Z3, which is impossible.
Therefore, the coloring that assigns the color 0 to u and the color 1 to all
vertices in V(G) — {u} is the only monochromatic (2, 0)-coloring of G and
50 X(2,0)(G) =n — 1, as claimed.

There is another possible interesting feature of connected graphs G of
order n > 3 with x(2,0)(G) = n — 1; that is, if ¢ is 2 minimum modular
monochromatic (2, 0)-coloring of G such that c(v) = 0 for exactly one vertex
v in G, then it is possible that x(2,0)(G — v) is significantly smaller than
X(2,00(G). In fact, it can be shown that if H = C, 0 K3 is the Cartesian
product of the n-cycle C, and K2 and G is the graph of order 2n + 1
obtained from H by adding a new vertex v and joining v to two adjacent
vertices on a copy of Cp, in H, then x(2,0)(G) = 2n and X(2,0(G — v) = n.
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4 On Trees Having Large (2, 0)-Chromatic
Numbers

In this section, we characterize all trees of order n having (2, 0)-chromatic
number n —2 or n — 3.

Theorem 4.1 Let T be a (2,0)-colorable tree of order n > 4. Then
X(2,0)(T) = n — 2 if and only if either T is an ods-3-tree or T is obtained
from an ods-2-tree T' by adding a pendant edge at the subdividing vertez
of T'.

Proof. By Theorem 2.7, it remains to show that if T is a (2, 0)-colorable
tree of order n > 4 with x(2,0(T) = n — 2, then either T is an ods-3-
tree or T is obtained from an ods-2-tree 7’ by adding a pendant edge at
the subdividing vertex of 7”. Let ¢ be a minimum monochromatic (2, 0)-
coloring of T such that c(u) = ¢(v) = 0 for two distinct vertices u and
vin T and ¢(z) = 1 for all z € V(T) — {u,v}. Since a(u) = a(v) =0,
each of u and v is adjacent to an even number of vertices colored 1 by ¢
(it is possible that u or v is adjacent to no vertex colored 1). First, we
claim that each of u and v is adjacent to at most two vertices colored 1
by ¢. For otherwise, we may assume that u is adjacent to at least four
vertices colored 1 by ¢. Let {u;,uz,...,us} be the set of the neighbors of
u colored 1 by ¢, where then s > 4. Now let Q; be the component of T —u
that contains u; for 1 < j < s. Then the coloring ¢’ defined by ¢/(x) = ¢(x)
ifz € V(Q1)UV(Q2) and ¢'(z) = 0 otherwise is a monochromatic (2, 0)-
coloring of T that assigns the color 1 to fewer than n — 2 vertices of T,
which is a contradiction. Thus, as claimed, each of © and v is adjacent to
at most two vertices colored 1 by ¢. Next, we consider two cases, according
to the adjacency of u and v.

Case 1. uv ¢ E(T). Then every vertex adjacent to u or v is colored 1
and so degpru = degpv = 2 by the claim above. Since uwv ¢ E(T), it
follows that T — {u, v} consists of three components, say T, T2 and T3, and
each of u and v is adjacent to exactly two of T1,T> and 73. Furthermore,
Fg =T — {u,v} is an odd forest and so each T; is an odd-degree tree for
i=1,2,3. Thus T is an ods-3-tree with respect to T — {u,v}.

Case 2. wv € E(T). Since each of u and v is adjacent to at most two
vertices colored 1 by ¢, it follows that 1 < degy v,degyu < 3. Because the
order of T is at least 4, we may assume that degpu = 3. We show that
degpv = 1, for otherwise, T' — uv consists of two nontrivial components
Q.. and Q, containing u and v, respectively. Then the coloring ¢* defined
by ¢*(z) = ¢(z) if ¢ € V(Q.) and c*(z) = 0 otherwise is a monochromatic
(2, 0)-coloring of T that assigns the color 1 to fewer than n — 2 vertices of
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T, which is a contradiction. Therefore, degyv = 1. Since Fg =T ~ {u,v}
is an odd-degree forest consisting of two components T} and T,. Each T;
(i = 1,2) is an odd-degree tree. Thus T’ = T — v is an ods-2-tree (with
respect to T' — {u,v}) and T is obtained by adding the pendant edge uv at
the subdividing vertex u of T". n

Theorem 4.2 Let T be a (2,0)-colorable tree of order n > 5. Then
X2,0)(T) =n — 3 if and only if T satisfies one of the following

(1) T is a subdivision graph S(K,3) of K\ 3,
(2) T is an ods-4-tree,

(3) T is obtained from an ods-3-tree T' by adding a pendant edge at one
subdividing vertex of T',

(4) T is obtained from an ods-2-tree T' by adding two pendant edges at
the subdividing vertex of T".

Proof. Since x(2,0)(S(X1,3)) = 4 and Theorem 2.7, it remains to show
that if T is a (2, 0)-colorable tree of order n > 5 with x(,0)(T) = n — 3,
then T satisfies one of (1) — (4). We may assume that T # S(K,,3). Let ¢
be a minimum monochromatic (2, 0)-coloring of T' such that c(u) = ¢(v) =
¢(w) = 0 for three distinct vertices u, v and w in T and ¢(z) = 1 for all
z € V(T) — {u,v,w}. Since o(u) = o(v) = o(w) =0, each of », v and w
is adjacent to an even number of vertices colored 1 by c (it is possible that
u or v is adjacent to no vertex colored 1). First, we claim that each of u,
v and w is adjacent to at most two vertices colored 1 by c. For otherwise,
we may assume that u is adjacent to at least four vertices colored 1 by c.
Let {u1,u2,...,us} be the set of the neighbors of u colored 1 by ¢, where
then s > 4. Now let Q; be the component of T' — u that contains u; for
1 <j <s. For each j with 1 < j < s, since ¢(u) = 0, ¢(u;) = 1 and
o(u;) = 0, each u; must be adjacent to some vertex colored 1 in Q; and
so Q; is a nontrivial tree. Thus [V(Q;)U V(Q2)| € n —~ 5. The coloring
¢’ defined by ¢/(z) = ¢(z) if z € V(Q1) U V(Q2) and ¢/(z) = 0 otherwise
is a monochromatic (2, 0)-coloring of T that assigns the color 1 to at most
n — 5 vertices of T, which is a contradiction. Thus, as claimed, each of u,
v and w is adjacent to at most two vertices colored 1 by ¢. The subtree
T{{u,v,w}] induced by {u,v, w} is either K3, PUK] (the union of P, and
K,) or P3s. We consider these three cases.

Case 1. T[{u,v,w}] = K3. Then each vertex in {u,v,w} is only ad-
jacent to vertices colored 1 by ¢ and so degru = degpv = degprw = 2
by the claim above. Since {u,v,w} is an independent set, the forest F' =
T — {u,v,w} consists of four components, say Ty,T>, T3 and Ty and each
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vertex in {u,v,w} is adjacent to exactly two of T}, T5, T3 and Ty. Further-
more, Fg = F is an odd-degree forest and so each T; is an odd-degree tree
for i = 1,2,3,4. Thus T is an ods-4-tree with respect to the odd-degree
forest F' whose subdividing vertices are u, v, w.

Case 2. T[{u,v,w}] = P, U K3, say uwv € E(T) and vw,vw ¢ E(T).
Since each of u, v and w is adjacent to at most two vertices colored 1 by
¢, it follows that (i) 1 < degy v,degr u < 3 and degy v and degy u are odd
and (ii) degyw = 2. Because T is connected, at least one of degy v and
degr u is 3, say degp u = 3. Next, we claim that degy v = 1, for otherwise,
degrv = 3. Let Q,, and Q,, be the two components of T — wv that contains
u and v, respectively. Note that each of @, and Q. contains at least five
vertices. The coloring ¢* defined by ¢*(z) = c(z) if z € V(Q.) and c*(z) =0
otherwise is a monochromatic (2, 0)-coloring of T" that assigns the color 1 to
at most n — 6 vertices of T', which is a contradiction. Therefore, degr v = 1.
Since (2) wv is a pendant edge of T, (b) degz v = 3 and (c) degpw =2, it
follows that Fg = T — {u,v,w} is an odd-degree forest consisting of three
components, say T1, T> and T3. Each T; (i = 1, 2, 3) is an odd-degree tree.
Thus T/ = T — v is an ods-3-tree (with respect to T — {u,v,w}) having
two subdividing vertices © and w and T is obtained by adding the pendant
edge uv at the subdividing vertex u of T".

Case 3. T[{u,v,w}] = (v,u,w). Since each of u, v, w is adjacent to at
most two vertices colored 1 by e, it follows that (i) 1 < degpv,degpw < 3
and each of degy v and degp w is odd and (ii) 2 < degru < 4 and degpu
is even.

First, we claim that degyu = 4, for otherwise, degyu = 2. Since the
order of T is at least 5, at least one degy v and degp w is 3, say degp v = 3.
This then will implies that degy w = 1. To see this, suppose that degy w =
3. Let Q. and @, be the two components of T — uv that contains v and v,
respectively. Then Q,, contains at least six vertices. The coloring ¢* defined
by ¢*(z) = c(z) if z € V(Q,) and c¢*(z) = 0 otherwise is a monochromatic
(2,0)-coloring of T' that assigns the color 1 to at most n — 7 vertices of
T, which is a contradiction. Therefore, degpw = 1. Let v; and vp be
the two neighbors of v that are colored 1. Since ¢{v;) = 1 for i = 1,2,
it follows that v; is adjacent to an odd number of vertices colored 1. Let
Q1,Q2 and Q3 be the three components of T — v where v; € V(Q;) for
i = 1,2 and u € V(Q3). We may assume that |V(Q1)| < |[V(Q2)|. If
T # S(K,3), it follows that |(V(Q2)| = 4. The coloring c* defined by
c*(z) =1lif z € V(Q1)U{u,w} and ¢(z) = 0 otherwise is a monochromatic
(2,0)-coloring of T that assigns the color 1 to at most n — 4 vertices of T',
which is a contradiction. Therefore, degy © = 4, as claimed.

Next, we claim that degpv = degrw = 1. Let u; and w2 be the two
neighbors of u that are colored 1 by ¢. Furthermore, T},7%, 75,74 be the
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four components of T — u where u; € V(T}) for i = 1,2, v € V(T3) and
w € V(Ty). Since the restriction of ¢ to T; for i = 1,2 is a nontrivial
monochromatic (2,0)-coloring of T;, it follows that T; is an odd-degree
tree. If |V(T3) U V(Ty)| > 3, then the coloring ¢’ defined by ¢*(z) = 1
if z € V(T1) U V(T2) and c¢(z) = O otherwise is a monochromatic (2, 0)-
coloring of T that assigns the color 1 to at most n — 4 vertices of T', which
is a contradiction. Thus T3 = Ty = K, and so degpv = degrw = 1, as
claimed.

Let F =T — {u,v,w} be an odd-degree forest consisting of T} and T3
and let 77 be the ods-2-tree (with respect to F') with the subdividing vertex
u. Then T is obtained by adding the two pendant edges uv and uw at the
subdividing vertex u of T". ]

According to Theorems 1.1 and 3.1, 4.1 and 4.2, for each a € {0, 1,2, 3},
if T is a (2, 0)-colorable tree of order n and T' # S(K,3) such that x(,0)(T') =
n—a, then T € Poqs(F) for some odd-degree forest F' having b components
for some b € {1,2,3,4}. This, however, is not the case if a > 4. For ex-
ample, let T’ be an ods-2-tree consisting of two odd-degree trees T3, T3,
and the subdividing vertex u and let P = (v;,v2,v3) be a path of order 3.
If T is a tree of order n obtained from T and P by adding the edge uv;,
which is shown in Figure 2(a), or T is the tree obtained from T and P by
adding the edge uvy, which is shown in Figure 2(b), then T ¢ P,q4s(F) for
any odd-degree forest F. However, the only monochromatic (2, 0)-coloring
of T assigns the color 0 to each vertex in {u,v1,v2,v3} and the color 1 to
the remaining vertices of T' and so x(2,0)(T") = n — 4.

v3
v1 v3
I \/o
v2

Figure 2: Trees T of order n with x(2,0)(T) =n —4

It is worthwhile to mention that if T is a tree obtained from an ods-k-
tree by adding four or more vertices, then x(2,0)(T") can be relatively small.
For example, let T’ be an ods-2-tree consisting of two odd-degree trees
T:, T, and the subdividing vertex u and let H = 2P, where (z,z2) and
(y1,¥2) be the two copies of P; in H. If T is obtained from T/ and H by
adding two edges uz; and uy), then x(2,0)(T) = 4 (see Figure 3). In fact,
the coloring that assigns the color 1 to each vertex of H and the color 0
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to the remaining vertices of T is a minimum monochromatic (2, 0)-coloring

of T.

T2 Y2

z1 Y1

—®

Figure 3: A tree T with x(2,0)(T) = 4
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