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Abstract

Let i{(G) denote the minimum cardinality of an independent domi-
nating set for G. A graph G is k-i-critical if {(G) = k, but i{(G +uv) < k
for any pair of non-adjacent vertices u and v of G. In this paper, we
show that if G is a connected k-i-critical graph, for k > 3, with a cutver-
tex u, then the number of components of G — u, w(G — u), is at most
k — 1 and there are at most two non-singleton components. Further, if
w(G — u) = k — 1, then a characterization of such graphs is given.
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1 Introduction

Let G denote a finite simple undirected graph with vertex set V(G) and edge

set E(G). The complement of G is denoted by G. For § C V(G), the subgraph

of G induced by S is denoted by G[S]. S is independent if no two vertices
of S are adjacent. The number of components of G is denoted by w(G). A
vertex v of G is a cutvertex if w(G — v) > w(G). For a vertex v € V(G),
the neighborhood of v in G, denoted by Ng(v), is the set of all vertices of
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V(G) — {v} which are adjacent to v. N¢[v] is denoted the closed neighborhood
of v, i.e,, Ng[v] = Ng(v) U {v}. The non-neighborhood of v in G denoted by
Ng(v) is V(G) — Ng[v]. For S C V(G), Ng(v)NS and Ng[v] NS are denoted
by Ns(v) and Ns(v], respectively. Further, Ng(S) denotes | J,s Ne(z) and
N¢(S] denotes |J, s Nelr]. For simplicity, if S is a subgraph of G, then we
also denote Ng(v) NV (S) and Ng[v] N V(S) by Ns(v) and Ng[v], respectively.

For subsets S and T of V(G), we say that S dominates T, denoted by
S>T,if T C Ng(S]. If S > T where S = {s}, then we write s > T instead
of {s} > T. Further, if T = V(H) where H is a subgraph of G, then we also
write S > H instead of S > V(H) and we say that S is a dominating set for
H. Thus S is a dominating set for G if each vertex of V(G) is either in S or
adjacent to some vertex of S. The minimum cardinality of a dominating set
for G is called the domination number of G and it is denoted by +(G).

For a subgraph H of G, if S > H and S is independent, then we say that S
is an independent dominating set for H and denote this by S >; H. Thus S is
an independent dominating set for G if $ >; G. The minimum cardinality of an
independent dominating set for G is called the independent domination number
of G and is denoted by i(G). Observe that for any graph G, v(G) < i(G) and
if ¥(G) =1, then i(G) = 1.

In 1994, Ao [4] introduced the so called concept of “independent domination
critical”. A graph G is k-i-critical if i(G) = k, but i(G + uv) < k for any pair
of non-adjacent vertices v and v of G. It is easy to see that the only 1-i-critical
graphs are K, for some positive integer n. Ao [4] proved that G is 2-i-critical
if and only if G = Ui, K1, for some positive integers r; and n. The problem
that arises is that of characterizing connected k-i-critical graphs for k > 3. Up
to the present, there has been no characterization of such graphs. Further, there
are not many known results concerning their properties especially when k > 4.
This might be because the problem gets increasingly harder as k gets larger.
So it makes sense to add some additional hypothesis in order to investigate
connected k-i-critical graphs for £ > 3. In this paper, we concentrate on
connected k-i-critical graphs, for £ > 3, with a cutvertex. We provide some
necessary conditions for such graphs. In fact, we show that if G is a connected
k-i-critical graph, for & > 3, with a cutvertex u, then w(G — u) < k — 1 and
G —u has at most two non-singleton components. Further, if w(G—-u) =k-1,
then a characterization of such graphs is given.

We conclude this section by pointing out that graph domination is an area
of graph theory that has applications in many other fields. Most of the appli-
cations occur in the optimal location of public facilities such as police stations
and hospitals. Other areas of application include the design of communica-
tions networks and the placing of monitoring devices in electrical networks.
The reader interested in further study of the application of graph domination
is urged to consult {9, 10]. The study of criticality is not limited to indepen-
dent domination. Research has been done researching criticality and related
concepts for such domination parameters as: (ordinary) domination number,
total domination number, connected domination number and others. Just as
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can be seen in the study of k-i-critical graphs, the study of criticality of the
other domination parameters becomes progressively more difficult the higher
the domination, total domination or connected domination number becomes.
The reader interested in studying criticality in terms of other domination pa-
rameters should consult [1, 2, 3, 5, 6, 7, 8, 11, 12, 13, 14].

2 Preliminary results

In this section we state some results that we make use of in establishing our
main results. We begin with some terminology. For a pair of non-adjacent
vertices u and v of G, I, denotes a minimum independent dominating set for
G + uv.

Lemma 2.1. Let G be a connected k-i-critical graph and let v and v be non-
adjacent vertices of G. Then |I,| = k—1, |I,N{u,v}| = 1 and I,, N(Ng(u)U
Ng(v)) = 0.

Proof. Clearly, |I,,| < k— 1 and |, N {u,v}| < 1 since I,,, is independent.
If I, N {u,v} = @, then I,, is also an independent dominating set for G. But
this contradicts the fact that i{(G) = k. Hence, |I,, N {u,v}] = 1. Without
loss of generality, we may assume that I, N {u,v} = {u}. If there is a vertex
of I, — {u}, say z, such that zv € E(G), then I, is also an independent
dominating set for G, again a contradiction. Hence, I,, N(Ng(u)UNg(v)) =9
since u € I, and I, is independent. Finally, if |I,,| < k — 2, then I, U {v}
is an independent dominating set of size at most k — 1 for G. This contradicts
the fact that i(G) = k and completes the proof of our lemma. 0O

The next result provides an upper bound of the diameter of connected 3-i-
critical graphs.

Lemma 2.2, [{/
The diameter of a connected 3-i-critical graph is at most 3. O

Before we state the last result, we need one more definition. A graph G is
k-i-vertex-critical if i(G) = k and for each u € V(G), i(G — u) < k. It is easy
to see that if G is k-i-vertex-critical, then (G —u) =k — 1.

Lemma 2.3. [{/
1. A graph G is 2-i-critical if and only if G = Ui, K1,r, for some positive
integers r; and n.

2. A graph G is 2-i-vertez-critical if and only if G is isomorphic to a com-
plete graph without a perfect matching. O

3 Classes of connected k-i-critical graphs

In this section, we provide seven classes of connected k-i-critical graphs with a
cutvertex, four of them for k = 3, one for ¥ = 4 and the another two for k > 4.
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We begin with four classes of connected 3-i-critical graphs.

I. The class 4

For positive integers n, t and s > 2, define a graph G € ¢ of order 2n +
2t + s + 1 as follows. Set V(G) = {u} UXUY U Z where |X]| = 2n, [Y]| = 2t
and |Z| = s. The edges of G are defined as follows. G[{X] = K, - a perfect
matching, G[Y] = Kb, - a perfect matching and G(Z] = K,. Further, join u
to each vertex of Y U Z and finally join each vertex of Y to every vertex of
X. This defines the class 4. Figure 1 illustrates our construction. It is not
difficult to show that a graph G € %, is 3-i-critical. Note that in our diagram
a “double line” denotes the join.

L\

K;,— a perfect matching

K
K3~ a perfect matching

Figure 1: The structure of a graph in the class 4

II. The class %,

For positive integers n and ¢t > 2, define a graph G € 4%, of order 2n +t + 2
as follows. Set V(G) = {u,c¢} UX UY where |X| = 2n, |Y| =t. The edges of
G are defined as follows. G[X] = K3, - a perfect matching, G[Y] = Uf.=1 Ky,
such that t = [ + Z:=1 ri,t > 20 and | > 1. Further, join u to each vertex of
{c}UY and finally join each vertex of Y to every vertex of X. This defines the
class %. Figure 2 illustrates our construction. It is not difficult to show that
a graph G € 4, is 3-i-critical.

Kyn— a perfect matching

Ki~Ula Ky,
Figure 2: The structure of a graph in the class %,

ITI. The class ¥;

For positive integers n; and s > 2n; and non-negative integer ng, define a
graph G € ¢4 of order 2n;+2ny+3+2 as follows. Set V(G) = {u,c}uX1UX,UZ
where |X,| = 2n;, |X2| = 2n2 and |Z] = s. The edges of G are defined as
follows. G[X) U Xa] = Kop,42n, -~ (F1 U F2) where F; is a perfect matching in
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G[X;] for 1 < i < 2 and G[Z] = K,. Further, join u to each vertex of {c} U Z
and join each vertex of Z to every vertex of X, (if Xy # 0). Finally, we add
the set of edges E between Z and X;. Each vertex of Z is joined to 2n; ~ 1
vertices of X in such a way that each vertex of X; is a non-neighbor of some
vertex of Z. This defines the class ¢;. Figure 3 illustrates our construction. It
is not difficult to show that a graph G € %; is 3-i-critical.

V7 K,,— a perfect matching
y o \I_—: : . Kj,,~ a perfect matching
S
Figure 3: The structure of a graph in the class ¥

IV. The class ¥,

For positive integers n;, s > 2n; and ¢t > 2 and non-negative integer ng,
define a graph G € ¥ of order 2ny + 2ng +t + s + 2 as follows. Set V(G) =
{u,c} U X, UXa UY U Z where | X1| = 2ny, |X2| = 2ny, [Y| =t and |Z] = s.
The edges of G are defined as follows. G[X; U X3] = Kan, 420, - (F1 U F)
where F; is a perfect matching in G[X:] for 1 < < 2, C[Y] = Ui, K1,-, such
that t =1 + Z:.=1 r;,t > 2l and ! > 1 and G[Z] = K. Further, join u to each
vertex of {c}UY U Z, join each vertex of Y to every vertex of ZU X; U X, and
join each vertex of Z to every vertex of X2 (if X2 # 0). Finally, we add the
set of edges E between Z and X as defined in the class %;. This defines the
class ¢;. Figure 4 illustrates our construction. It is not difficult to show that
a graph G € %, is 3-i-critical.

Our next class is a class of connected 4-i-critical graphs with a cutvertex.

V. The class ¥;

For positive integers n, t and s > 2, define a graph G € % of order
2n + 2t + s + 2 as follows. Set V(G) = {u,c}UX UY U Z where | X| = 2n,
|Y| = 2t and |Z| = s. The edges of G are defined as follows. G[X] = Kz, - a
perfect matching, G[Y] = Ky, - a perfect matching and G[Z] = K,. Further,
join u to each vertex of Y U {c} and s — 1 vertices of Z and finally join each
vertex of Y to every vertex of X. This defines the class ¥;. Figure 5 illustrates
our construction. It is not difficult to show that a graph G € % is 4-i-critical.

We conclude this section by constructing two classes of connected k-i-critical
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K;,,— a perfect matching

Figure 4: The structure of a graph in the class ¥,

K>2— a perfect matching

Figure 5: The structure of a graph in the class ¥

graphs with a cutvertex for k& > 4.

VI. The class &

For positive integers s, n, and k where s > n > k— 1 > 3, define a graph
G eY of order s+ n + k — 1 as follows. Set V(G) = {u} UX UZUW where
|[X|=n,|Z] = s and |W| = k— 2. The edges of G are defined as follows. G[X]
is both (k — 1)-i-critical and (k — 1)-i-vertex-critical, G[Z] = K, and G{W]
= Kj_3. Further, join u to each vertex of W U Z, and then add the set of
edges E between Z and X as similar as defined in the class &;. That is, each
vertex of Z is joined to n — 1 vertices of X in such a way that each vertex of
X is a non-neighbor of some vertex of Z. This defines the class 4. Figure 6
illustrates our construction. It is easy to see that i{(G) = k. To show that G
is k-i-critical, we have to establish I, for each pair of non-adjacent vertices =
and y. We distinguish four cases according to z.

Case 1: z € W. .

Ify € Z, then Iy, = (W - {z}) U {y,7} where {7} = Nx(y). Similarly, if
y € X, then I, = WU{g} where g € Nz(y). We now assume thaty € W —{z}.
Choose z € Z. Then Iy = (W - {y}) U {z,Z} where {Z} = Nx(z).
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Case 2: z = u.

Clearly, y € X. Since G[X] is (k — 1)-i-vertex critical, there is an indepen-
dent dominating set of size k — 2, say Dy, such that D, dominates G[X] — y.
Then Iyy = Dy U {u}.

Case 3: z € Z.

By symmetry, we may assume that y € X. Then I;,, = WU {z}.

Case 4: z € X.

Again, by symmetry, we may assume that y € X. Since G[X] is (k — 1)-
i-critical, there is an independent dominating set of size k — 2, say Dy, such
that D, dominates G(X] + zy. Then I, = D, U {u}.

_____ (k- 1)-i-critical and
E__ . -
u =" (k- 1)-i-vertex-critical
I—<A'—2 K;

Figure 6: The structure of a graph in the class %

VI. The class %

For positive integers s, n, kand t where s > n > k—1 > 3and t > 2, define a
graph G € % of order s+n-+k+t—1 as follows. Set V(G) = {u}uXUYUZUW
where |X| = n, |[Y| = ¢, |Z| = s and |W| = k — 2. The edges of G are de-
fined as follows. G[X] is both (k — 1)-i-critical and (k — 1)-i-vertex-critical,
GlY]= U, K1, such that t =1+ Y i_, ri,t > 2l and ! > 1, G[Z] = K, and
G[W] = Kj-2. Further, join u to each vertex of WUY U Z, join each vertex
of Y to every vertex of Z U X. Finally, we add the set of edges E between Z
and X as similar as defined in the class %. This defines the class % . Figure
7 illustrates our construction. Observe that i{(G) = k. To show that G is k-i-
critical, we have to establish I, for each pair of non-adjacent vertices z and
y. If {z,y} NY = 0, then I, can be found by applying similar arguments as
in the class %. So we may suppose that £ € Y. Then z € V(K ;) where
K,,r; is an induced subgraph of C—;'[T"_] for some 1 < j < I, It is easy to see
thaty e YUW. If y € Y, then y € V(K),r;) and thus either I, = WU {z}
or I,, = WU {y}. So we now consider y € W. Since z € V(K,,), there is
a vertex 7, € V(K. ) such that xz; ¢ E(G). Then I, = (W - {y})U{z,z,}.

Note that for a positive integer & > 2, Ki_; is both (k — 1)-i-critical and
(k — 1)-i-vertex-critical. Hence, ¥ # @ and ¥; # 0.

183



(k— 1)-i-critical and

(k- 1)-i-vertex-critical

Figure 7: The structure of a graph in the class ¥

4 The main results

Lemma 4.1. For a positive integer k > 3, let G be a connected k-i-critical
graph containing u as a cutvertex. Then

1. If (G — u) 2 k-1, then G — u contains at least one non-singleton and
at most two non-singleton components.

2. w(G-u)<k-1.

Proof. Forl <i <t let (h,C,,...,C; be the components of G ~ u. It is
easy to see that G — u must contain at least one non-singleton component since
G is connected and i(G) =k > 3.

(1) Suppose to the contrary that G — u contains C;,Cj: and C;~ as non-
singleton components where {j,5’, 5"} C {1,2,...,t}. Choose x € Ng,(u) and
y € Ng, (u). Consider G +zy. By Lemma 2.1, || = k-1, |;,N{z,y}| =1
and u ¢ I,,. We may suppose without loss of generality that = € I,. Since
u g Iy, I, V(Ci)#Bfor 1 <i<tandi ¢ {j,5'}. Further, I;,NV(C;:)#0
since V(Cj:) — {y} # 9. Consequently, t = k — 1 and |I;, N V(C;)| = 1 for
1<i<t Thusz > C;. Put {w} = I;, NV(Cj»). Then w > Cj». Now
consider G+ 2w. By Lemma 2.1, [Iz| = k-1, |LwN{z,w}| =1 and v ¢ I,,,.
If z ¢ Iy, then I, NV(C;) = 0 since I, N(Ng(z)UNg(w)) =0 and z >~ C;.
But then no vertex of I, dominates V(C;) ~ {z}, a contradiction. Hence,
z € I;,,. By similar arguments, w € I,. But this contradicts the fact that
[Izw N {z,w}| = 1. Hence, G — u contains at most two non-singleton compo-
nents. This proves (1).

(2) Suppose to the contrary that w(G —u) =t > k. By (1), we may assume
that [V(C1)] 2 1 and |V(C2)| > 1 and |V(C;)| =1 for 3 < i < ¢t. Since G is
connected, u is adjacent to every vertex of U:=3 V(C;). Now choose a € N¢, (u)
and b € Ng,(u). Consider G+ab. By Lemma 2.1, |lop] = k=1, [IosN{a, b} =1
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and u ¢ I,5. We may assume without loss of generality that a € I,5. Since
u g Iy, InoNV(C;) # 0 for 3 <i <t. Thent =k and V(C,) = {b} since
|[Ias] = k — 1. Clearly, bu € E(G) since G is connected. Further, N¢,(u) # 0
otherwise u = G. Let ¢ € N¢,(u). We now consider G + bc. By Lemma 2.1,
Heel =k =1, Ipe N {b,c}| =1 and u & Iyc. Then L1, NV (C;) #Dfor 3<i<t
and V(C;) U V(C2) must be dominated, in G + bc, by one of element in {b, ¢}
since |Iyc]| = k— 1 and ¢ = k. It is easy to see that I, N {b,c} = {c} since
a € V(C1) — {c}. Thus c > C;. But then {c,u} »; G, a contradiction since
i(G) = k =2 3. This proves (2) and completes the proof of our lemma. a

Lemma 4.2. For a positive integer k > 3, let G be a connected k-i-critical
graph containing u as a cutverter. Suppose Cy,C,,...,Cr_1 are the com-
ponents of G — u where |V(Cy)] 2 2, |V(C2)] > 1 and |V(C:)| = 1 for
3<i<k-1 Ifz e V(Ci) and y € V(C;) where {z,y} N Ne(u) # 0,
then u € Iy, |Izy NV(C1)| 2 1 and |Izy N (V(C1) UV(C?))| = 2. Further, if
[V(C2)| 2 2, then |I., NV(C1)| =1 and |I;, NV(C,)| = 1.

Proof. Consider G + ry. By Lemma 2.1, |Iy| = k-1, [I;; N {z,y}] =1
and u ¢ I;,. Then I;; NV(C;) # 0 for 3 < i < k— 1. Because |V(C;)| =1
for 3<i<k-1,|[;;NV(Ci)|=1for3<i< k-1 Since |[Izy| =k-1
and w(G — u) = k — 1, it follows that |I;, N (V(Cy) U V(C2))| = 2. Further,
[Izy N V(C1)| 2 1 because |V(C;)| =2 2. We now suppose that |V (C2)| > 2.
If |I;, NV(C})| = 2, then no vertex of I, dominates C; ~ y, a contradiction.
Hence, |Izy NV(C})| =1 and |I., N V(C?)| = 1. This proves our lemma. O

Lemma 4.3. For a positive integer k > 3, let G be a connected k-i-critical
graph containing u as a cutverter. Suppose C1,C,,...,Cx_1 are the compo-
nents of G—u where |V(C1)| 2 2, |[V(C2)] 2 1 and |V(C;)| =1 for3 < i < k—1.
Then either i(Cy) = 1 and i(C2) = 2 or i(C1) = 2 and i(C2) = 1. Further, if
i(C1) = 2 and i(C2) = 1, then Cy is complete.

Proof. We first suppose that |V(Cs)] = 1. Clearly, i(C1) > 2 otherwise
i(G) < k — 1. We need only show that i{(Cy) = 2. Put {y} = V(C:). Then
yu € E(G). Since i(G) = k > 3, N¢,(u) # 0. Let x € N¢,(u). Consider
G +zy. By Lemma 4.2, [, N(V(C;)UV(C2))| = 2 and |I;, NV(C))| > 1. By
Lemma 2.1, [Izy,"{z,y}| = 1. Ifz € Iy, theny ¢ I, and thus |I;,NV(C)| = 2
since V(C2) = {y}. If y € Iy, then z ¢ I, and thus the only vertex of
I.,NV(C), say w, dominates V(C}) — {z} since |V(C))| > 2 and wz ¢ E(G).
In either case, i(C;) = 2.

We next suppose that |V(C3)| = 2. Choose a € Ng,(u) and b € N, (u).
Consider G + ab. By Lemma 4.2, |[[,sNV(C1)| =1 and |,z NV (C2)| = 1. Put
{a'} = Ly NV(Cy) and {¥'} = I, NV(C3). If @' = a, then b # b by Lemma
2.1. Thus a > C; and ¥’ » C; — b. Consequently, i(C;) =1 and {b,b'} >; Cs.
If i(C2) = 1, then i(G) < k — 1, a contradiction. Hence, i(C2) = 2. Similarly,
if a’ # a, then b’ = b and thus i(C;) = 2 and #(C) = 1 as required.
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We now suppose that i(Cy) = 2, i(Cz) = 1 and endeavor to show that C; is
complete. In order to finish the proof of our lemma, we need the following claim.

Claim: Ify € Ng,(u), theny > Ca.

If [V(C2)| = 1, then our claim follows immediately. So we may assume
that |[V(C;)| > 2. Choose ¢ € Ng,(u). Consider G + zy. By Lemma 4.2,
|Iy "V (C1)| = 1 and |I;,NV(C2)| = 1. Further, u ¢ Iy. If I,V (C1) = {z},
then x > C;, contradicting the fact that i(C1) = 2. Hence, I., NV (C,) # {z}.
Consequently, Iz, NV(C2) = {y} by Lemma 2.1 and thus y > C;. This settles
our claim.

We are now ready to finish our proof. Suppose to the contrary that C; is
not complete. Then there exist non-adjacent vertices v and w of V(C2). By
the above claim, {v,w} € Ng,(u). Let z € N¢,(u). Consider G + zv. By
Lemma 4.2, |I;, NV(C1)| = 1 and |I;, N V(C2)| = 1. Further, u ¢ I.,. If
I, NV(Cy) = {v}, then no vertex of I, dominates w, a contradiction. Hence,
I., NV(C2) # {v}. Therefore, Iy, N V(C;) = {z} by Lemma 2.1. Clearly,
z > C;. But this contradicts the fact that i(C;) = 2. Hence, C; is complete as
required. This completes the proof of our lemma. O

Theorem 4.4. For a positive integer k > 3, let G be a connected k-i-critical
graph containing u as a cutvertezr and w(G —u) = k—1. Suppose G —u contains
ezactly two non-singleton components, say C; and C,, where i(C;) = 2 and
i(C2) = 1. Then

1. G[N¢, (u)} is isomorphic to a complete graph without a perfect matching.
Further, each vertez of N¢,(u) dominates N¢, (u).

2. G[N¢,(u)] is isomorphic to a complete graph without a perfect matching.

3. 3 < k € 4. Further, if k = 3, then G is isomorphic to a graph in the class
9 and if k = 4, then G is isomorphic to a graph in the class 9.

Proof. Let W be a set of all vertices in the singleton components of G — w.
Clearly, |[W| =k — 3 > 0 since w(G - u) = k — 1. Further, W C Ng(u) since
G is connected. By our hypothesis that ¢(Cy) = 2 and i(C;) = 1 together with
Lemma 4.3, C; is complete. It then follows that N¢, (1) # 0 since i(G) = k > 3.

Claim 1: Ifz € N¢,(u), y € V(Cy), then I;, N V(C,) = {z'} where
z’ € N¢,(u) — {z} and I;, NV(C2) = {y}.

Consider G+zy. By Lemma 4.2, u ¢ Iy and |I;,NV(C))| = |I,NV(C)| =
1. Suppose to the contrary that z € I,. By Lemma 2.1, I, N V(C2) = {¥'}
where ¢’ # y. Then I, N Ng(y) # 0 since C; is complete. But this contradicts
Lemma 2.1. Hence, z ¢ I.,. Therefore, y € I, and thus I, N V(C3) = {y}.
Put {z'} = I;, N V(C}). Clearly, 2’ # z and ' > C; — z._Suppose to the
contrary that 2’ € N¢, (u). Then {z/,u} >=; G — N¢,(u). If Ng,(u) = 0, then
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#(G) = 2 < k, a contradiction. Hence, Nc,(u) # 0. But then 3 <i(G) =k < 3
since C, is complete. Thus k& = 3. Clearly, the distance between z’ and ¥’ is
greater than 3 where 3’ € N¢,(u). But this contradicts Lemma 2.2. Hence,
z’ € N¢, (u) — {z} as required. This settles our claim.

(1) Let £ € N¢,(u) and y € V(Cz). Consider G + zy. By Claim 1,
I, NV(Cy) = {z'} for some z' € Nc¢,(u) — {z}. Clearly, 2’ » C, - z.
Now consider G + z'y. Again, by Claim 1, I;-, N V(C1) = {z"} for some
z” € Ng,(u) — {z'}. Since 2’ » C; — z, z” = = by Lemma 2.1. Then
2’ =z > C, —z'. If [Ng,(u)| = 2, we are done. So suppose |N¢, (u})] > 3.
Let w € Ng,(u) — {z,z'}. Consider G + wy. By Claim 1, I,,, NV (C}) = {w'}
for some w’' € Ng, (u) — {w}. By Lemma 2.1, v’ ¢ {z,z'} since w € Ng(z) N
Ng(z'). Clearly, w’' » C; — w. Now consider G + w'y. By similar arguments,
Iy NV(C1) = {w} and w > C; — w'. Continuing in this fashion, G[Nc, (u)]
is isomorphic to a complete graph without a perfect matching. From our ar-
gument, it is clear also that each vertex of Ng,(u) dominates N¢,(u). This
proves (1).

Claim 2: For z € N¢,(u) and y € Ng,(u), I, NV(C1) = {2’} where
7' € Ng,(u) ~ {z} and I;, NV (C,) = {v} .

By similar arguments as in the proof of Claim 1 and the fact that each
vertex of Ng, (v) dominates N¢, (u), by (1), our claim follows.

(2) By applying similar arguments as in the proof of (1) together with Claim
2 and the fact that each vertex of Ng, (v) dominates N¢, (u), by (1), (2) follows.

(8) Clearly, u > N¢,(u) U Ncg,(u) UW. We first suppose that Ne,(u) =
Then V(C2) C Ng(u) and thus i(G) = k = 3 since i(G[N¢, (u))) = 2 by (2)
Hence, G is isomorphic to the graph in the class 4.

We now suppose that N¢,(u) # 0. Let y € N¢,(u). Since C, is complete,
{u,y} =i Nc,(u)UV(Cy)UW. Thus, by (2), 3 < i{(G) = k < 4. By Lemma 2.2,
k # 3. Hence, k =4 and |W| = 1. We next show that INC,(u)l = 1. Suppose
this is not the case. Let ¥’ € N¢,(u) — {y}. Consider G +uy’. By Lemma 2.1,
[Tuy| = 3, [Tuy N {u, ¥’} = 1. We first suppose that I,y N{u,y'} = {u}. Then
L., NV (C2) = B since I,y N(Ne(uw)UNe(y')) = @ and C: is complete. But then
no vertex of I, dominates y, a contradiction. Hence, I, N {u, %'} = {v'}.
Then Iy NW = @ by Lemma 2.1 since the only vertex of W is adjacent to
u. But then no vertex of I,y dominates W, again a contradiction. Hence,
[N, (u)] = 1. It follows by (1) and (2) that G is isomorphic to the graph in
the class &. This completes the proof of our theorem. 0O

Theorem 4.5. For a positive integer k > 3, let G be a connected k-i-critical
graph with a cutvertez u where w(G — u) = k — 1. Suppose G — u contains
ezactly one non-singleton component, say C. Then
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1. G[N¢(u)] is (k — 1)-i-critical and (k — 1)-i-vertez-critical.

2. Nc(u) consists of two disjoint sets, say Y and Z, where each vertex of
Y dominates No(u) and Z = Nc(u) = Y. Further, if Y # 0, then G[Y)
is 2-i-critical and if Z # 0, then G[Z] is complete and for each vertez
z € Z, there is ezactly one vertez of Nc(u), say 2/, such that z = C—2'.
Moreover, if k > 4, each vertez of Nc(u) is not adjacent to at least one
vertez of Z and thus Z # 0 and |Z| >| N¢(u)|.

Proof. Let W be a set of all vertices in the singleton components of G — u.
Clearly, |W| = k£ — 2 > 1 since w(G — u) = k — 1. Further, W C Ng(u)
since G is connected. Note that Ng(u) = W U N¢(u). It then follows that
Nc(u) # 0 since i(G) = k > 3. Put X = Nc(u). It is easy to see that
i(G[X]) 2 k— 1 > 2. Then the following claims follow by Lemma 2.1 and the
fact that Ng(u) = W U Ng(u).

Claim 1: Forve X, u € l,, and I,, — {u} C X - {v}.
Claim 2: If u € I, for some v,w € X, then I, — {u} C X.

Claim 3: Ifu ¢ I, for some v,w € V(C), then either I, = {v}UW or
Lw={w}uW.

(1) Since i(G[X]) = k—1 > 2, there exist non-adjacent vertices z;,z3 € X.
We first show that G[X) is (k — 1)-é-critical. Consider G + z;z,. By Lemma
2.1, [Iz,z,| = k-1 and [I;,z, N {z1,z2}{ = 1. We may assume without loss
of generality that Ir ., N {z1,22} = {x1}. We first suppose that u ¢ I,,,.
Then, by Claim 3, I ,., = {1} UW. This implies that z; > C — z2 and thus
{z1,22} >; G[X]. Consequently, k = 3 and G[X] is 2-i-critical.

We now suppose that v € I;,.,. By our Claim 2, I}z, — {¢} € X and
then I; o, — {u} >; X — {z2}. Hence, (I;,z, — {x}) U{z2} =; G[X] and thus
i(G[X]) = k — 1. Consequently, G is (k — 1)-i-critical.

By the above argument, i{(G[X]) = k—1. We next show that G[X] is (k—~1)-
t-vertex-critical. Let £ € X. Consider G + uz. By Lemma 2.1, [I,z| = k-1
and by Claim 1, u € Iy, and Iy; — {u} C X — {z}. Then I,z — {u} >; X - {z}.
Thus i(G[X — {z}]) < k- 2. If i(G[X — {z}]) < k-2, then i(G[X]) < k-1, a
contradiction. Hence, G[X] is (k — 1)-i-vertex-critical as required. This proves

Q).

(2) We first suppose that Z # 0. Let z € Z. Then there exists z € X such
that zz ¢ E(G). Consider G + zz. By Lemma 2.1, u ¢ I,;. By Claim 3, either
L:={z}UWor I, = {z}UW. If I,; = {} UW, then z > C — z and thus
z > X. But this contradicts (1) since £ > 3. Hence, I,; = {2} UW. Then
z » C — z. Consequently, G[Z] is complete.

We next suppose Y # 0. Note that each vertex of Y dominates Z U X.
If there is a vertex y € Y such that y > Y, then {y} UW »~; G. But this
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contradicts the fact that i(G) = k. Hence, for each vertex y € Y, there exists a
vertex ¥’ € Y — {y} such that yy’ ¢ E(G). Consider G + yy’. By Lemma 2.1,
u ¢ I,». We may assume by Claim 3 that I,y = {y} UW. Theny > C — ¢/
and thus y = Y — 3. Hence, {y,¥'} »: G[Y] and y > G[Y] + yy’. Therefore,
GlY] is 2-i-critical.

We now suppose that k > 4. By the definition of Y, each vertex of X is
adjacent to every vertex of Y. Suppose to the contrary that there exists a ver-
tex z € X such that z is adjacent to every vertex of Z. Then z > Y U Z. Let
w € W. Consider G+zw. By Lemma 2.1, |I| = k-1, |I;yN{z,w}| =1 and
LwN({u}UYUZ) =0. Since W C Ng(u), W — {w} C I\, — {z,w}. Because
|W| = k-2 and |I;,N{z,w}| = 1, it follows that | I, — ({z,w}UW)| = 1. Put
{a} = Lw — ({z,w} UW). Clearly, a € X — {z}. Consequently, {a,z} > X.
But this contradicts the fact that {(G[X]) = k — 1 > 3. Hence, each vertex of
X is not adjacent to at least one vertex of Z. It then follows that |Z| 2| X]|.
This proves (2) and completes the proof of our theorem. a

We are now ready to establish our characterizations.

Theorem 4.6. For a positive integer k > 4, if G is a connected k-i-critical
graph with a cutvertez u where w(G—u) =k -1, thenG e %G U% U%.

Proof. By Lemma 4.1(1), G — u contains at least one non-singleton and
at most two non-singleton components. If G — u contains exactly two non-
singleton components, then k = 4 and G is isomorphic to a graph in the class
9; by Theorem 4.4(3). We now suppose that G — u contains C as the only
non-singleton component. Let Y and Z be defined as in Theorem 4.5. Then
Z # @ and G[Z] is complete. It is easy to see that, by Theorem 4.5, if Y =0,
then G is isomorphic to a graph in the class & and if Y # @, then G is iso-
morphic to a graph in the class ¢;. This completes the proof of our theorem O

We now consider connected 3-i-critical graphs. Let Z and X be defined
as in Theorem 4.5. Note that a graph in the class &, shows that Z is empty.
Further, a graph in the class 93 U %, shows that there might exist a vertex
of X which is adjacent to every vertex of Z. Our next theorem provides a
characterization of connected 3-i-critical graphs containing a cutvertex.

Theorem 4.7. If G is a connected 3-i-critical graph containing a cutvertez,
then G € ¥;, defined in Section 3, for some 1 < i< 4.

Proof. Let u be a cutvertex of G. By Lemma 4.1, G —u contains exactly two
components, at least one of them is non-singleton. If both components of G —u
are non-singleton, then G is isomorphic to a graph in the class 4 by Theorem
4.4(3). We may now suppose that G — u contains exactly one non-singleton
component. Let C) and C, be the components of G —u where |V(C)| =1 and
[V(C2)| > 2. Clearly, N¢,(u) # 0. Put V(C)) = {c} and X = N¢,(u). Then,
by Lemma 2.3(2) and Theorem 4.5(1), G[X] is isomorphic to a complete graph
without a perfect matching.
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By Theorem 4.5(2), Nc, (u) consists of two disjoint sets, say Y and Z, where
each vertex of Y dominates X and Z = Ng,(u) — Y. Further if Y # 0, then
G[Y] is 2-i-critical and if Z # 0, then G[Z] is complete and for each vertex
z € Z, there is exactly one vertex of X, say z', such that z > Cy — 2. Conse-
quently, Ng(2] = V(G) - {c,2'}.

Claim 1: Let z,z2 € X where 7122 ¢ E(G). If z1 > Z, then 2 > Z.

By the definition of Y, z; = ZUY = Ng,(u). Then N¢[z1] = V(C2) — {z2}
since G[X] is isomorphic to a complete graph without a perfect matching. Con-
sider G + cz;. Let {2z} = I.;, — {¢,z1}. Then {c,z1,z} is independent by
Lemma 2.1. Thus z = z, since Ng[c] = {¢,u} and Ng[z,] = V(C2) — {z2}. If
I.., = {z1,z2}, then no vertex of I, is adjacent to u, a contradiction. Hence,
I.., = {c,z2}. Since c is not adjacent to any vertex of Ca, zo > C — z;.
Hence, z5 > Z. This settles our claim.

Claim 2: If z € Z and 2z ¢ E(G) for some x € X, then the only non-
neighbor of x in X is not adjacent to some vertez of Z — {z}.

This claim follows by Claim 1 and the fact that for each vertex z € Z, there
is exactly one vertex of X, say 2/, Ng[z] = V(G) — {c,2'}.

Let X; = {z € X|zz ¢ E(G) for some z € Z}. It is easy to see that, by
the definition of Z, if Z # 0, then X; # 0. Now put Xo = X — X;. Then the
following claims follow by Claims 1 and 2.

Claim 3: For z,,z; € X where z1z2 ¢ E(G), ifz; € X; for1 <1 <2,
then zo € X;. Consequently, | X,| and | X2| are both even.

Claim 4: If Z #0, then 2 < | X,| <] 2.

By Lemma 2.3, G[Y] is isomorphic to K; — U2=1 K, for some positive
integers ¢, ! and r;. Clearly, t = | + 22=1 r; and t > 20 > 2. It is now easy
to see that if Y # @ but Z = 0, then G is isomorphic to a graph in the class
% and if Z # @ but Y = 9, then G is isomorphic to a graph in the class %;.
Finally, if Y # @ and Z # 0, then G is isomorphic to a graph in the class ¥;.
This completes the proof of our theorem. a

We conclude our paper by pointing out that Ao, in [4], gave a theorem
which described 3-i-critical graphs with a cutvertex but her theorem does not
depict how such graphs exactly look like while our Theorem 4.7 provides the
explicit structure. Moreover, our proof is much more easier and shorter.
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